
Aberystwyth University

A Distributed Dendritic Cell Algorithm for Big Data
Chelly Dagdia, Zaineb

Published in:
GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
Companion
DOI:
10.1145/3205651.3205701

Publication date:
2018

Citation for published version (APA):
Chelly Dagdia, Z. (2018). A Distributed Dendritic Cell Algorithm for Big Data. In GECCO 2018 Companion -
Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion: GECCO (pp. 103-
104). Association for Computing Machinery. https://doi.org/10.1145/3205651.3205701

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 04. May. 2024

https://doi.org/10.1145/3205651.3205701
https://doi.org/10.1145/3205651.3205701

A Distributed Dendritic Cell Algorithm for Big Data
Zaineb Chelly Dagdia

Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia,

chelly.zaineb@gmail.com,zaineb.chelly@aber.ac.uk

ABSTRACT
In this work, we focus on the Dendritic Cell Algorithm (DCA), a
bio-inspired classifier, and its limitation when coping with very
large datasets. To overcome this limitation, we propose a novel
distributed DCA version for data classification based on the MapRe-
duce framework to distribute the functioning of this algorithm
through a cluster of computing elements. Our experimental results
show that our proposed distributed solution is suitable to enhance
the performance of the DCA enabling the algorithm to be applied
over big data classification problems.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence;

KEYWORDS
Dendritic Cell Algorithm, Classification, Big Data, Distributed Pro-
cessing, Scalability.
ACM Reference Format:
Zaineb Chelly Dagdia. 2018. A Distributed Dendritic Cell Algorithm for
Big Data. In GECCO ’18 Companion: Genetic and Evolutionary Computation
Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3205651.3205701

1 INTRODUCTION
In this work, the main objective is to further enable bio-inspired
algorithms to be applied on big data. In this concern, we focus
on the Dendritic Cell Algorithm (DCA) [2] which is derived from
behavioral models of the natural Dendritic Cells (DCs). The DCA
has caught the attention of many researchers due to its worthy
characteristics as it exhibits numerous advantageous features for
classification problems [2]. Despite the emergence of the DCA, in
the current literature, the practical application of the algorithm was
limited to problems with moderated size only. The reason behind
this arise from the necessity to use an antigen multiplier to generate
at once several copies of antigens, referring to data instances, to
process them in turn to finally perform the classification task. More
precisely, the DCA requires multiple instances of identical antigens,
so processing across a population can be performed in order to
generate the classification results for each antigen. However, as
the number of data instances is increasing this task becomes chal-
lenging and this is where the DCA inadequacy arises. It is quite

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3205701

unmanageable to generate the set of all antigen copies based on the
huge number of data instances due to hardware and memory con-
straints. In this work, we propose an efficient distributed dendritic
cell algorithm for large-scale datasets which solves the standard
DCA mentioned computational inefficiencies. Our novel DCA ver-
sion is characterized by its distributed implementation design based
on both Scala and the MapReduce Apache Spark framework [3].

2 THE DISTRIBUTED DENDRITIC CELL
ALGORITHM

To deal with high dimensional datasets it appears mandatory to
store all the data in a distributed environment and ensure compu-
tations in a parallel way. With respect to this, we first partition
the entire DCA algorithmic processes into elementary tasks, each
executed independently, and then conquer the intermediate results
to finally acquire the ultimate output; the classes of the antigens.

For antigen classification, Sp-DCA has to go through its dis-
tributed phases run on the original high dimensional input data-
base which corresponds to the data stored in the given DFS as a
single file. To operate on the given DFS in a parallel way, a Resilient
Distributed Dataset (RDD) is created. We may formalize the latter
as a training set, of a determined size N , which corresponds to the
antigen dataset defined asTRDD , where universeU = {x1, . . . ,xN }

is the set of antigen identifiers, the attribute set C = {c1, . . . , cV }

contains every single feature of theTRDD and the decision attribute
D corresponds to the class label of each TRDD sample. As Sp-DCA
is based on the standard DCA concepts, and since DCA is applied
to binary classification problems; then the decision attribute, D,
of our Sp-DCA is defined as: D = {dnormal ,danomalous }. The
universe set U presents the pool from where the antigens will be
multiplied by an antigen multiplierm generating a pool of antigens
AntiдensPool = {an1i , . . . ,an1m , . . . ,anNi , . . . ,anNm }.

In order to make our algorithm scalable with the high number
of both training data and antigens and within the Apache Spark
perspective, Sp-DCA partitions the given TRDD into p data blocks
based on splits from the universe set U . Indeed, Sp-DCA creates
an RDD from the generated antigens pool, AntiдensPoolRDD , and
splits it into a a number of disjoint subsets. Both of these RDDs
are accessible from any computer of the cluster independently
of their size. In such a way, TRDD =

⋃p
i=1

⋃N
j=1(x j)TRDD (i) and

AntiдensPoolRDD =
⋃a
i=1

⋃m,N
x,y=1(anx,y)AntiдensPoolRDD (i) . To

ensure scalability, rather than applying Sp-DCA toTRDD including
all antigens and to AntiдensPoolRDD including all the copies of
antigens, the distributed algorithm will be applied to every single
TRDD (i) andAntiдensPoolRDD (i) that at the end all the intermediate
results will be gathered from the different p and a partitions. In
such a way, we can guarantee that Sp-DCA can deal with the large
number of the antigens and hence solving the DCA limitations.

https://doi.org/10.1145/3205651.3205701
https://doi.org/10.1145/3205651.3205701

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Zaineb Chelly Dagdia

3 EXPERIMENTAL SETUP
To demonstrate the effectiveness of our Sp-DCA we chose the
Supersymmetry Particles (SUSY) dataset [1]. The data includes
5 million data items referring to the simulated collision events
described through 19 features. The first feature refers to the class (1
for signal, 0 for background) followed by 8 features which are low-
level features then 10 features which are high-level features. Aiming
to investigate the scalability of our Sp-DCA, we have created 4
synthetic different versions of the SUSY dataset by generating 10, 20,
30 and 40 million of instances of the original dataset. We will denote
these versions as SUSY10M, SUSY20M, SUSY30M and SUSY40M.
The databases are named according to the number of antigens
contained, i.e. SUSY10M contains 10 million data items and SUSY5M
contains 5 million items.

Our experiments are performed on the High Performance Com-
puting Wales (HPC Wales) which provides a distributed computing
facility. Under this testbed, we used dual 12 core Intel Westmere
Xeon X5650 2.67 GHz CPUs and 36GB of memory to test the perfor-
mance of Sp-DCA which is implemented in Scala 2.11 within Spark
2.1.1. The Sp-DCA parameter setting is as follows: In the initial-
ization phase, the class and the 10 high-level features are selected
among the 19 features. The first and the second high-level features
are used to be mapped as a PAMP and SS, respectively, while the
rest of the features are used to represent the DS. The weights used
in the context assessment phase are 2, 0, 2, 2, 2, 2, 1, 0.9 and -0.9 for
WPAMP,CSM ,WPAMP,smDC ,WPAMP,mDC ,WSS,CSM ,WSS,smDC ,
WSS,mDC ,WDS,CSM ,WDS,smDC andWDS,mDC , respectively. The
DC migration threshold is set to 10, each data item is mapped as
an antigen with the value of the antigen equals to the data ID of
the item and an antigen multiplier m = 9 is used to derived the
AntiдenPoolRDD resulting in 45, 90, 180, 270 and 360 million anti-
gens for the SUSY5M, SUSY10M, SUSY20M, SUSY30M and SUSY40M
datasets, respectively.

4 RESULTS AND ANALYSIS
4.1 Analysis of the Speed-Up
Considering the speed-up of Sp-DCA, we keep the size of the dataset
constant and increase the number of nodes [4]. We plot the average
speed-ups needed to run a single iteration within the Sp-DCA (over
the 10 iterations) and their corresponding average times. From our
experiments, we see that Sp-DCA has a good speed-up performance.
The more the size of the database increases, the more the speed-up
becomes closer to linear. This performance is almost the same for
SUSY20M, SUSY30M and SUSY40M databases. However, we notice
that the SUSY10M database has a slightly lower speed-up curve.
This is explained by the fact that based on the size of SUSY10M the
partitioning of the data is concentrated on the total number of nodes
used resulting in a big communication cost. Therefore, the skew in
this case is higher than in the other datasets and the total speed-
up is lower. Nevertheless, once the size increases starting from 20
million of instances we clearly observe a difference in the algorithm
speed-up performance. This observation is also supported by the
execution times which decreases with increasing the number of
nodes while for the SUSY10M we observe hardly any improvement
when it comes to more than 4 nodes.

4.2 Analysis of the Size-Up
Sizeup analysis holds the number of nodes constant, and grows
the size of the databases by the factor m. The size-up measures
how much longer it takes when the database size ism-times larger
than the original database [4]. To measure the performance of size-
up, we have fixed the number of nodes to 1, 2, 3, 4, 8, 12 and 16
respectively. Our method has a very good size-up performance as
it is able to process large datasets efficiently while keeping the
number of nodes constant and increasing the size of the data. We
can clearly see that a 2 times larger problem for instance (SUSY40M)
needs about 2 times more time (SUSY20M).

4.3 Analysis of the Scale-Up
Scale-up is defined as the ability of anm-times larger system to
perform anm-times larger job in the same run-time as the origi-
nal system [4]. To demonstrate how well Sp-DCA handles larger
datasets when more nodes are available, we measure the scale-up
where we increase the size of the databases in direct proportion to
the number of nodes. For instance, 10 million antigens are classified
on 1 node and 40 million antigens are classified on 4 nodes. Our
experiments show that Sp-DCA scales very well as the scale-up
values are all close to 1.

5 CONCLUSION
In this paper, we have developed a distributed bio-inspired DCA
for large-scale data classification under the Spark framework. The
experimental study has shown that our Sp-DCA is an efficient
distributed and scalable bio-inspired classification technique. The
algorithm is applied to large databases of 40 million of instances and
360 million of antigens and it guarantees satisfactory classification
results.

ACKNOWLEDGMENTS
This work is part of a project that has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 702527.
The author would additionally like to thank the support of the Su-
percomputing Wales project, which is part-funded by the European
Regional Development Fund (ERDF) via Welsh Government.

REFERENCES
[1] http://mlearn.ics.uci.edu/MLRepository.html , UCI Machine Learning Repository.

[n. d.].
[2] Zeineb Chelly and Zied Elouedi. 2016. A survey of the dendritic cell algorithm.

Knowledge and Information Systems 48, 3 (2016), 505–535.
[3] James G Shanahan and Laing Dai. 2015. Large scale distributed data science using

apache spark. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2323–2324.

[4] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. 1999. A fast parallel clustering
algorithm for large spatial databases. In High Performance Data Mining. Springer,
263–290.

	Abstract
	1 Introduction
	2 The Distributed Dendritic Cell Algorithm
	3 Experimental Setup
	4 RESULTS AND ANALYSIS
	4.1 Analysis of the Speed-Up
	4.2 Analysis of the Size-Up
	4.3 Analysis of the Scale-Up

	5 Conclusion
	Acknowledgments
	References

