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ABSTRACT 

As a model-based evolutionary algorithm, estimation of 
distribution algorithm (EDA) possesses unique characteristics 
and has been widely applied to global optimization. However, 
traditional Gaussian EDA (GEDA) may suffer from premature 
convergence and has a high risk of falling into local optimum 
when dealing with multimodal problem. In this paper, we first 
attempts to improve the performance of GEDA by utilizing 
historical solutions and develops a novel archive-based EDA 
variant. The use of historical solutions not only enhances the 
search efficiency of EDA to a large extent, but also significantly 
reduces the population size so that a faster convergence could be 
achieved. Then, the archive-based EDA is further integrated with 
a novel adaptive clustering strategy for solving multimodal 
optimization problems. Taking the advantage of the clustering 
strategy in locating different promising areas and the powerful 
exploitation ability of the archive-based EDA, the resultant 
algorithm is endowed with strong capability in finding multiple 
optima. To verify the efficiency of the proposed algorithm, we 
tested it on a set of well-known niching benchmark problems 
and compared it with several state-of-the-art niching algorithms. 
The experimental results indicate that the proposed algorithm is 
competitive. 

CCS CONCEPTS 
• Mathematics of computing → Evolutionary algorithms; 
Continuous optimization; • Computing methodologies → 
Cluster analysis; 

 

                                                                 
 
 
 
 
 
 
 
 
 

KEYWORDS 
estimation of distribution algorithm, archive, clustering, 
multimodal optimization 

1 INTRODUCTION 
Estimation of distribution algorithm (EDA) [1-3] is a special 
branch of evolutionary algorithm (EA). Different from other EAs, 
the new solutions of EDA are generated by sampling from a 
probability distribution. The probability distribution is generally 
estimated from some high-quality solutions selected in the 
current generation. It is hoped that the estimated probability 
distribution could capture the structural characteristics of the 
problem, thus effectively guiding the optimization process. Since 
it came into being, EDA has attracted increasing research effort 
and achieved great success in both combinatorial and continuous 
domains [4]. In this paper, EDAs for continuous domain are 
studied. 

Continuous EDA usually adopts Gaussian model as the basic 
probability distribution model. According to the variable 
dependencies, Gaussian EDA (GEDA) can be classified into three 
kinds, including univariate GEDA [1], bivariate GEDA [2] and 
multivariate GEDA [3], among these three kinds of GEDA, 
multivariate GEDA shows competitive performance on most 
kinds of problems since it can describe the variable dependencies 
well, but it usually requires a large population to build a feasible 
multivariate model. A representative algorithm that employs 
multivariate model is estimation of multivariate normal density 
algorithm (EMNAg) [3]. 

Traditional GEDAs possess powerful exploitation ability and 
perform well on some simple unimodal problems, but they may 
suffer from premature convergence in relatively complicated 
cases [5, 6]. To solve that, many techniques were successfully 
developed such as adaptive variance scaling (AVS) [5] and 
anticipated mean shift (AMS) [6]. The combination of AVS and 
AMS leads to an efficient EDA variant known as AMaLGaM [6]. 
Nevertheless, GEDAs still have difficulty in dealing with 
multimodal problems. The main reason lies in that the structure 
of multimodal problem cannot be well represented by a 
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unimodal Gaussian distribution [7], so GEDA is usually limited 
in only one promising region and has a high risk of ending up in 
a local optimum. Multimodal problems naturally call for more 
complicated models, Gaussian mixture model (GMM) based 
EDAs have been developed to remedy this disadvantage. A GMM 
is a weighted sum of single Gaussian models, where each of 
these single Gaussian model governs a group of solutions. 
However, the computational cost to learn a precise GMM is 
usually high [8] and it is non-trivial to set the number of mixture 
models in advance, especially for black box problems [9]. 

To improve the performance of EA on multimodal problems, 
many alternative techniques for locating multiple optima have 
been developed, commonly referred to as niching methods [10]. 
Some representative niching methods include clearing [8], 
crowding [11], speciation [11] and clustering [7, 9, 12]. Based on 
these methods, many niching EDAs were successfully suggested. 
Dong and Yao [8] proposed a NichingEDA which employs the 
clearing strategy to maintain the diversity of subpopulations so 
that they could explore different promising regions. Yang et al. 
[13] proposed a novel maintaining and processing multiple sub-
models technique to enhance the performance of EDA on 
multimodal problems. Yang et al. [11] developed tow multimodal 
EDAs (MEDAs) based on crowding and speciation, respectively. 
They further enhanced the two MEDAs with dynamic cluster-
sizing strategy and local search scheme for relieving the 
parameter sensitivity and improving the solution accuracy, the 
resultant algorithms were named as LMCEDA and LMSEDA. In 
addition, clustering strategies are also widely used to do niching. 
References [7] and [12] utilized adaptive rival penalized 
competitive learning clustering and affinity propagation 
clustering, respectively, to adaptively partition the population of 
EDA. Maree et al. [9] presented a hierarchical Gaussian mixture 
learning method (HGML) that determines the number of niches 
automatically based on hierarchical clustering. Then they 
integrated HGML with AMaLGaM and developed an efficient 
niching algorithm called clustered AMaLGaM (CAMaLGaM). 

In summary, the performance of EDA on multimodal 
problems has been significantly improved by using niching 
methods, but there are still some shortcomings. First, many 
niching methods are sensitive to the parameter setting. Clearing 
and speciation are both radius-based methods, they rely on a 
predefined niche radius to check whether two solutions belong 
to the some niche. Crowding method is sensitive to the crowding 
size. Second, most of these niching EDAs adopt the basic EDA to 
search the optima after locating promising areas, which may 
reduce their overall efficiency since traditional GEDA usually 
suffers from premature convergence. MEDAs and CAMaLGaM 
demonstrate competitive performance in locating multiple 
optima, but they are accompanied by more complex algorithmic 
framework and parameters. Besides, except for MEDAs and 
CAMaLGaM, the other algorithms aforementioned are all 
designed for single global optimization. 

To alleviate these deficiencies, this paper first proposes a 
novel archive-based EDA variant named EDA2, then EDA2 is 
further incorporated into an adaptive clustering strategy for 
solving multimodal problems. Instead of only utilizing solutions 

in current generation, EDA2 preserves some high-quality 
historical solutions into an archive and takes advantage of these 
historical solutions to assist estimating the Gaussian model. By 
this means, the evolution direction information is naturally 
integrated into the estimated model which in turn can efficiently 
improve the search ability of EDA2. The use of historical 
solutions also reduces the population size of EDA2 so that a 
faster convergence could be achieved. Since the performance of 
EDA is enhanced by exploiting Evolution Direction information 
hidden in the Archive, we named this algorithm EDA2. By 
combining EDA2 with an adaptive clustering strategy that could 
adaptively detect different promising regions based on the 
fitness value and relative distance of solutions, the resultant 
algorithm, referred to as C-EDA2, shows appealing performance 
in dealing with multimodal problems. To verify its efficiency, 
extensive experiments were executed on the CEC’2013 niching 
benchmark problems. Experimental results demonstrate that C-
EDA2 is competitive and has some potential to be improved. 

The remainder of this paper is organized as follows. Section 2 
briefly reviews the estimation of distribution algorithm. Section 
3 presents EDA2, the clustering strategy and the resultant C-
EDA2. Experimental results are reported in Section 4，and 
conclusions are drawn in Section 5. 

2 ESTIMATION OF DISTRIBUTION ALGORITHM 
As a model-based EA, EDA assumes that good solutions 
approximately obey a certain probability distribution over the 
solution space. It tries to learn this distribution and generate new 
solutions according to the learning results [1-3]. The general 
framework of EDA is outlined in Algorithm 1. 

 
Algorithm 1: General framework of EDA 
1. Initialize parameters, set t = 0, and generate the initial population Pt; 
2. Evaluate Pt and update the best solution bt obtained so far; 
3. Output bt if the stopping criterion is met; 
4. Select promising solutions St from Pt; 
5. Build a new probability model Gt+1 based on St, update t ← t + 1; 
6. Generate a new population Pt by sampling from Gt and goto step 2. 

 
Continuous EDAs generally employ Gaussian model as the 

basic probability distribution model. The Gaussian probability 
density function for an n-dimensional random vector x can be 
parameterized by its mean μ and covariance matrix C as follows: 
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μ and C for the next generation are generally estimated 
according to the maximum likelihood estimation method based 
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where tS  denotes the set of solutions selected from the current 
population. The Gaussian model estimated by Eqs. (2) and (3) 
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takes the dependencies between all pairs of variables into 
account. It could ensure rotation-invariance and is capable of 
capturing some complex structural characteristics of the solution 
space [6], hence is widely used. 

However, the covariance matrix of this model totally have 
0.5n2+0.5n free parameters. To make a proper estimation, the 
number of required samples should be much larger than n. For 
the traditional GEDA, all the samples are selected from the 
current population. This is the main reason why it requires a 
much larger population size. If a limited amount of 
computational resource is available, it can only evolve a few 
generations. Especially for multimodal optimization where 
multiple promising regions are of interest, the computational 
resource for each niche would be further reduced. This will 
greatly deteriorate the performance of GEDA. Therefore, it is of 
great significance to study new estimation method that could 
reduce the population size of GEDA and thus improve its search 
efficiency. 

Furthermore, from the perspective of optimization, the aim of 
learning Gaussian model in EDA is not to rigidly describe the 
distribution of high-quality solutions in the current population, 
but to predict the distribution of new promising solutions thus 
facilitating the algorithm finding them in subsequent 
generations. Based on this point of view, it is reasonable to 
exploit historical solutions rather than just the current 
population for model estimation since they could reveal the 
evolution information of good solutions. According to this idea, 
this paper proposes a novel archive-based EDA variant named 
EDA2 which would be shown to be simple and efficient. Then, 
EDA2 is further incorporated into an adaptive clustering strategy 
for solving multimodal problems. 

3 DESCRIPTION OF C-EDA2 
This section first introduces the two components of C-EDA2, i.e. 
EDA2 and the adaptive clustering strategy, then presents the full 
procedure of C-EDA2 in detail. 

3.1 Archive-based EDA: EDA2 
During the optimization process, EDA generally builds the 
probability model based on the current population. Historical 
solutions produced in previous generations are usually 
abandoned, although they may contain some meaningful 
information. To exploit such information, EDA2 maintains an 
archive to store a certain number of historical high-quality 
solutions and estimates the covariance matrix of Gaussian model 
by using these solutions as well as the ones selected from 

current generation. For each generation, the archive tA  is 
defined as follows: 

1 2A S S S     t t t t l... ,         (4) 

where t iS   denotes the set of solutions selected at the (t−i)th 
generation, l is a nonnegative integer and denotes the length of 
the archive. This means that EDA2 preserves the solutions 
selected at the last l generations into its archive. The archive 
would be empty if we set l equal to zero. 

Once tA  is determined, EDA2 estimates its covariance matrix 
as follows: 
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where the new mean 1t   is still estimated according to Eq. (2) 

which implies it only depends on tS . 

It is known that   and C  determine the search 

characteristics of GEDA, which can be geometrically described 
by a probability density ellipsoid (PDE) in the hyperspace [6]. A 
schematic is shown in Fig. 1 to demonstrate the effect of the new 
estimation method in EDA2. PDE-0, PDE-1 and PDE-l in Fig. 1 
schematically represent three new PDEs estimated by Eq. (5) 
with archives of length 0, 1 and l, respectively, where PDE-0 
could represent the PDE of traditional multivariate GEDA. It can 
be seen that PDE estimated by the solutions selected at several 
consecutive generations according to Eq. (5) will be 
approximately elongated along the movement direction of 
corresponding means, i.e., along the evolution direction of EDA2. 
And the greater the archive length is, the further PDE will be 
elongated. 

The new estimation method naturally integrates the 
evolution direction information into the estimated covariance 
matrix, which endows EDA2 with better search direction and 
greater search scope. With a proper value for archive length l, 
the search efficiency of EDA2 is expected to be greatly enhanced. 
Moreover, the new estimation method can greatly reduce the 
population size of EDA2 since solutions selected from (l+1) 
generations rather than only the current generation are used to 
estimate the covariance matrix. 

 

Figure 1: Schematic of PDEs estimated with different 
archive lengths in EDA2. 

Algorithm 2 presents the detailed steps of EDA2, where three 
points should be noted. First, EDA2 initializes archive to be 
empty (step 2) and constantly adds the solutions selected at each 
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generation to archive until the archive length reaches the 
specified value (steps 8-9). If that is the case, EDA2 updates 
archive by replacing the oldest set of selected solutions with the 
latest one (steps 10-11). Second, EDA2 employs the commonly 
used truncation selection rule to select solutions from the 
current population (step 5). Finally, EDA2 also takes an elite 
strategy which maintains the best solution at the current 
generation to the next generation. Therefore, it just generates 
p−1 new solutions for the population of size p (steps 13-14). 
 

Algorithm 2: Procedure of EDA2 
1. Initialize parameters, including population size p, selection ratio 

τ, and archive length l; 
2. Set t = 0, i = 0, and At = Ø , and randomly generate the initial 

population Pt; 
3. Evaluate Pt and update the best solution bt obtained so far; 
4. Output bt if the stopping criterion is met; 
5. Select the best τp solutions from Pt and store them into St; 
6. Estimate the mean 1t   with St according to (2); 
7. Estimate covariance matrix 1tC    with St and At according to (5); 
8. If i < l then 
9.     set At+1 = At  St and set i ← i + 1; 

10. Else 
11.     At+1 = At  St \ St−l; 
12. Set t ← t + 1, build a probability model Gt based on t  and tC ; 
13. Generate p − 1 new solutions by sampling from Gt and store them 

into Mt; 
14. Set Pt = Mt  bt-1 and goto step 3. 

 

 

3.2 Adaptive Clustering Strategy 
Decision space and target space (DS-TS) information based 
clustering is adopted in C-EDA2 to adaptively capture different 
promising regions without using any prior knowledge. DS-TS 
clustering is inspired by the thought of a fast clustering strategy 
proposed in [14]. The fast clustering strategy is based on the 
assumption that cluster centers are characterized by relatively 
higher density and larger distance, it is mainly used for image 
clustering. Considering the characteristics of optimization 
problem, the basic idea of DS-TS clustering consists in that 
cluster centers are solutions with better fitness value and farther 
relative distance. 

Supposing there are m solutions that need to be clustered, the 
procedure of DS-TS clustering is described by the following steps. 
Without loss of generality, maximization problem is assumed in 
here. 

1) Sorting solutions in ascending order according to their 
fitness values; 

2) Computing the relative distance of each solution; 
For the i th solution, its relative distance i  is defined as the 

minimum distance between it and any other solution with better 
fitness value: 

( )i ij
j: f(j)> f(i)

min d  ,   (6) 

where f (i) is the fitness value of the i th solution, dij is the 
Euclidean distance between the i th and j th solution. Particularly, 

for the best solution xm, since there is no better solution than it, 
we directly define its relative distance m  as: 

1
( )m i

i m
max 
 

 .          (7) 

3) Computing the distance threshold and choosing cluster 
centers; 

The distance threshold th  is defined by Eq. (8), where α is 

the threshold factor. Then solutions who satisfy Eq. (9) would be 
chosen as cluster centers. 
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4) Assigning cluster members; 
After determining the cluster centers, each remaining 

solution is assigned to the same cluster as its nearest neighbour 
of better fitness value. 

Fig. 2 shows a simple example to illustrate the effect of DS-TS 
clustering in one-dimensional space. It can be seen from Fig. 2 
that points 2 and 6 have better fitness values and farther relative 
distances, they would be chosen as cluster centers. Then, points 
1 and 3 are assigned to the cluster of point 2. Point 4 belongs to 
the same cluster with point 5, and they are both assigned to the 
cluster of point 6. DS-TS clustering is very simple and fast, it has 
been shown to perform well in the former work [15]. The only 
parameter in DS-TS clustering, i.e. the threshold factor α, should 
be generally set within (0, 1). 

 

Figure 2: Example of DS-TS clustering. 

3.3  Procedure of C-EDA2 
The design of C-EDA2 is to cluster a group of selected solutions 
into clusters by DS-TS clustering strategy, then EDA2 is utilized 
to evolve these clusters independently and find their optima. 
Algorithm 3 presents the procedure of C-EDA2, where several 
points should be noted. First, the truncation selection ratio τ in 
step 3 is set to the same with that in EDA2. Second, we use EDA2 
with the same parameter setting to evolve different clusters 
independently (step 6). Since the number of solutions in different 
clusters may be different, in the first generation of EDA2, 
different numbers of solutions would be used to estimate the 
Gaussian model, while the rest steps of EDA2 are the same with 
that in Algorithm 2. Besides, EDA2 would be stopped if one of 
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the following termination criteria is met: 1) the improvement of 
the median of population values is smaller than the defined 
accuracy level in the last 5 generations; 2) the maximum number 
of function evaluations (MaxFEs) is reached. 

 
Algorithm 3: Procedure of C-EDA2 
1. Set the initial solution number N, selection ratio τ, initialize EDA2 

and DS-TS clustering, set Output= Ø ; 
2. while the MaxFEs is not reached do 
3.  Randomly and uniformly initialize N solutions and select the 

best τN solutions of them; 
4.  Use DS-TS clustering strategy to divide the selected solutions 

into different clusters; 
5.  for k = 1 to the number of clusters do 
6.   Use EDA2 to evolve the solutions in the k th cluster until 

the termination criteria is met; 
7.   Store the best solution obtained into Output; 
8.        end 
9. end 

10. Output the solutions in Output. 
 

4 EXPERIMENTAL STUDY 
This section aims to study the influence of parameters, 
investigate the effectiveness of EDA2 and DS-TS clustering 
strategy, and synthetically evaluate the performance of C-EDA2 
by testing it on the 20 niching benchmark problems of CEC’2013 
special session on multimodal optimization. 

4.1 Influence of Parameters in EDA2 
There are only three parameters in EDA2, including selection 
ratio τ, population size p and archive length l. The selection ratio 
τ is conventionally set as τ = 0.35, this section mainly focus on 
studying the influence of p and l. To achieve that, the 
performance of EDA2 is systematically tested on a set of 
optimization problems in [16] with different values of p and l. 
For brevity, here we only show the experiments on two typical 
test functions in 20 dimensions, including the high conditioned 
elliptic function and Rosenbrock’s function. High conditioned 
elliptic function is a unimodal function and Rosenbrock’s 
function is a multimodal function, they are both shifted and 
rotated to increase the solving difficulty. Details of this two 
functions can be found in [16]. 

In this experiment, the maximum number of function 
evaluations (FEs) in a single run is set to 200,000 and 25 
independent runs are conducted on each function. The 
performance of EDA2 is evaluated according to the function 
error value (FEV) of the obtained best solution, i.e. the difference 
between its fitness value and that of the global optimum. Note 
that the FEV will be reported as zero if it is smaller than 10−8. 

The values of p and l consider in this experiment include p ∈ 
{50, 80, 110, 140, 170, 200} and l ∈ {5, 10, 15, 20, 25, 30}. Fig. 3 
shows the results obtained by EDA2 with different combinations 
of p and l. It can be found that EDA2 performs surprisingly well 
on the two functions when p and l are located in a valley-like 
region, which is very meaningful since it reveals that p and l can 
complement each other. A small value for one parameter 

coupled with a large value for the other or moderate values for 
both of them could always achieve satisfying performance. 

To further investigate the influence of p and l on the 
evolution process of EDA2, Fig. 4 presents the evolution curves 
of the average FEVs obtained by three different EDA2s whose 
parameter settings are: 

1) EDA2-1: p = 80, l = 10; 
2) EDA2-2: p = 80, l = 15; 
3) EDA2-3: p = 140, l = 10. 
It can be seen from Fig. 4 that EDA2-1 demonstrates the 

fastest convergence speed on the two functions and achieves 
superior result on the first unimodal function, but it is more 
likely to fall into local optimum of the second function. 
Compared to EDA2-1, EDA2-2 and EDA2-3 have larger value of l 
and p, respectively. It can be observed from Fig. 4 that EDA2-2 
and EDA2-3 indicate stronger exploration ability and could find 
the optimal solution of the Rosenbrock’s function, but their 
convergence speed on the first function is slowed down. For 
reference, Fig. 4 also presents the evolution curve of a traditional 
multivariate GEDA, i.e. EMNAg [3], whose population size is set 
to 500. It is obvious that EMNAg converges prematurely on both 
functions. 

In summary, EDA2 is very efficient, which demonstrates the 
effectiveness of exploiting evolution direction information with 
archive. Moreover, EDA2 is also robust to its parameters, the 
settings of p and l usually have many options. Relatively small 
values of p and l endow EDA2 with faster convergence speed, 
while larger values of p and l are beneficial to improve the 
exploration ability. In addition, compared to the traditional 
multivariate GEDA, the population size of EDA2 is significantly 
reduced. 

4.2 Effectiveness of DS-TS Clustering 
In order to illustrate the performance of DS-TS clustering, its 
clustering process on a multimodal function is presented in this 
section. Six-hump camel back function from the CEC’2013 
niching benchmark suite [17] is adopted, which is a two 
dimensional maximization function with two global optima and 
two local optima. We uniformly initialize 1000 solutions in the 
solution space and select the top 35% solutions after evaluating 
them. Then DS-TS clustering strategy is used to cluster the 
selected solutions. The threshold factor α of DS-TS clustering is 
set to 0.8. 

Fig. 5 shows the fitness value and relative distance of selected 
solutions obtained by DS-TS clustering, it is clearly that there 
are four striking solutions that have relatively better fitness 
values and farther relative distances. After calculating the 
distance threshold, these four solutions are chosen as cluster 
centers and four different clusters could be obtained. Fig. 6 
presents the landscape of Six-hump camel back function and the 
final clustering result, where points and stars with four different 
colours on the surface represent the cluster members and cluster 
centers of different clusters. It can be seen from Fig. 6 that DS-TS 
clustering strategy correctly divides the selected solutions into 
four clusters, and each cluster covers a promising region of the 
solution space.  
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(a) High conditioned elliptic function    (b) Rosenbrock’s function 

Figure 3: Average FEVs obtained by EDA2 with different combinations of p and l. 

 
(a) High conditioned elliptic function    (b) Rosenbrock’s function 

Figure 4: Evolution of FEVs derived from three EDA2s and EMNAg. 

 

Figure 5: Fitness values and relative distances of selected 
solutions. 

 

Figure 6: Landscape of Six-hump camel back function and 
the clustering result. 

Besides, it can be also observed from Fig. 5 that DS-TS 
clustering could obtain stable result with a wide range of α. 
Relatively smaller value of α may result in more clusters, while 
larger value of α can filter out some local regions that are less 
attractive. 

4.3  Performance of C-EDA2 
In this section, C-EDA2 is tested on the CEC’2013 multimodal 
function set and compared with several state-of-the-art niching 
algorithms for multimodal optimization. CEC’2013 multimodal 
function set contains 20 multimodal functions, their main 
characteristics are summarized in Table 1, including problem 
dimension D, number of global optima (No. of GO) and the 
allowed maximum number of function evaluations (MaxFEs). To 
evaluate the performance of C-EDA2, the peak ratio (PR) is used, 
which is defined as the percentage of the number of the global 
optima found out of the total number of global optima averaged 
over multiple runs. A peak, i.e. a global optimum, is correctly 
detected if it is within an accuracy level ε of the true optimum. 

The initial solution number N in C-EDA2 is set as 
N=1000+10D2 to improve the exploration ability on high 
dimensional problems like f20. The selection ratio τ is set to 0.35, 
and the threshold factor α of DS-TS clustering is set to 0.8. Since 
the promising solution regions have been located by clustering, 
we suggest choosing relatively small values of p and l for EDA2 
to enhance its exploitation ability so that it could find the 
optimum of each cluster using fewer FEs. For this set of test 
functions, p and l of EDA2 are set as p = 4(D+1) and l = 5. 
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Table 1: Main characteristics of the 20 functions of 
CEC’2013 multimodal function set. 

Fun. D No. of GO MaxFEs 
f1 1 2 5.0E+04 
f2 1 5 5.0E+04 
f3 1 1 5.0E+04 
f4 2 4 5.0E+04 
f5 2 2 5.0E+04 
f6 2 18 2.0E+05 
f7 2 36 2.0E+05 
f8 3 81 4.0E+05 
f9 3 216 4.0E+05 
f10 2 12 2.0E+05 
f11 2 6 2.0E+05 
f12 2 8 2.0E+05 
f13 2 6 2.0E+05 
f14 3 6 4.0E+05 
f15 3 8 4.0E+05 
f16 5 6 4.0E+05 
f17 5 8 4.0E+05 
f18 10 6 4.0E+05 
f19 10 8 4.0E+05 
f20 20 8 4.0E+05 

Table 2: Average peak ratio obtained by C-EDA2 over 50 
independent runs on the 20 functions of CEC’2013 

multimodal function set at five different accuracy levels. 

Fun. ε=10−1 ε=10−2 ε=10−3 ε=10−4 ε=10−5 
f1 1.000 1.000 1.000 1.000 1.000 
f2 1.000 1.000 1.000 1.000 1.000 
f3 1.000 1.000 1.000 1.000 1.000 
f4 1.000 1.000 1.000 1.000 1.000 
f5 1.000 1.000 1.000 1.000 1.000 
f6 1.000 1.000 1.000 1.000 1.000 
f7 0.793 0.741 0.729 0.711 0.705 
f8 0.878 0.856 0.844 0.839 0.822 
f9 0.644 0.330 0.309 0.300 0.292 
f10 1.000 1.000 1.000 1.000 1.000 
f11 0.683 0.667 0.667 0.667 0.667 
f12 0.670 0.667 0.667 0.663 0.653 
f13 0.673 0.667 0.667 0.667 0.667 
f14 0.670 0.667 0.667 0.667 0.667 
f15 0.770 0.745 0.743 0.740 0.740 
f16 1.000 0.667 0.667 0.667 0.667 
f17 1.000 0.698 0.690 0.660 0.648 
f18 1.000 0.667 0.667 0.667 0.667 
f19 1.000 0.500 0.500 0.500 0.500 
f20 0.798 0.250 0.250 0.248 0.243 
Average 0.879 0.756 0.753 0.750 0.747 
 
Table 2 reports the optimization results of C-EDA2 on 

CEC’2013 multimodal function set at five different accuracy 
levels, i.e., ε = 10−1, ε = 10−2, ε = 10−3, ε = 10−4 and ε = 10−5. All 

experiments are carried out for 50 independent runs. From Table 
2, the following observations can be made: 

1) C-EDA2 successfully finds all the global optima of f1-f6 and 
f10 at all accuracy levels, it could also locate all the global optima 
of f16-f19 at accuracy level ε = 10−1. Both f7 and f8 contain dozens 
of global optima, nevertheless, C-EDA2 can find most of them at 
all accuracy levels. With respect to f11-f15, C-EDA2 achieves 
almost the same performance at five accuracy levels. However, 
the results on f9 and f20 are relatively undesirable that C-EDA2 
misses most of the global optima when the accuracy level varies 
from 10−2 to 10−5. The reason for the former lies in that f9 has an 
ocean of global optima that it is hard to locate them all, while the 
reason for the latter mainly consists in that the solution space is 
too huge to be fully detected with the increase of problem 
dimension. 

2) From the perspective of accuracy level, C-EDA2 obtains 
fine results on most functions at accuracy level ε = 10−1, and the 
average PR on the 20 functions reaches 0.879. While the 
performance of C-EDA2 degenerates rapidly when the accuracy 
level changes form 10−1 to 10−2, especially on f9 and f20. Such 
phenomenon is common for many multimodal algorithms [11]. 
As for the other accuracy levels, C-EDA2 shows very similar 
performance on all the functions and the average PR only 
decreases a little when ε varies from 10−2 to 10−5, which 
demonstrates the powerful exploitation ability of EDA2. 

To further evaluate the efficiency of C-EDA2, we compared it 
with LMCEDA [11], LMSEDA [11] and RS-CMSA [18]. LMCEDA 
and LMSEDA are two well-established multimodal EDAs, which 
have been briefly introduced in Section 1. RS-CMSA combines 
the famous covariance matrix self-adaptation evolution strategy 
[19] with a novel niching technique based on repelling 
subpopulations, it is the winner of the GECCO’2017 competition 
on niching methods for multimodal optimization. For saving 
space, we only compare their results at accuracy level ε = 10−4. 
Table 3 summarizes the average PRs obtained by the four 
algorithms, where the results of LMCEDA and LMSEDA are 
directly taken from their original paper, and the results of RS-
CMSA are taken from [20]. 

From Table 3, the following comments can be made: 
1) C-EDA2 achieves better performance than LMCEDA and 

LMSEDA on most functions. Concretely, C-EDA2 obtains better, 
same or worse results than LMCEDA on 8, 10 and 2 functions, 
and the corresponding numbers for LMSEDA are 8, 9 and 3. So 
C-EDA2 has an edge over the two algorithms. 

2) Compared to RS-CMSA, C-EDA2 obtains the same results 
with it on eight functions (f1-f5, f10, f16, f18). Besides, their 
performances are very close to each other on three functions (f6, 
f15, f19). But C-EDA2 is surpassed by RS-CMSA on the remaining 
functions. 

In summary, C-EDA2 indicates better performance than 
LMCEDA and LMSEDA, which is achieved with much simple 
algorithmic framework and less parameters. But C-EDA2 also 
has some shortages, there is still room to improve its 
performance. The major disadvantage of C-EDA2 lies in the 
restart mechanism. Independent restarts may improve its 
performance to some extent, it is still very likely to revisit 
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previously explored regions. While in RS-CMSA, taboo method 
is adopted to reduce the chance of revisiting in restarts, which 
makes RS-CMSA more efficient. Similar idea could also be 
introduced to C-EDA2 to further enhance its performance. 

Table 3: Average peak ratios obtained by C-EDA2, 
LMCEDA, LMSEDA and RS-CMSA on the 20 functions of 
CEC’2013 multimodal function set at accuracy level 10−4. 

Fun. LMCEDA LMSEDA RS-CMSA C-EDA2 
f1 1.000 1.000 1.000 1.000 
f2 1.000 1.000 1.000 1.000 
f3 1.000 1.000 1.000 1.000 
f4 1.000 1.000 1.000 1.000 
f5 1.000 1.000 1.000 1.000 
f6 0.990 0.972 0.999 1.000 
f7 0.734 0.673 0.997 0.711 
f8 0.347 0.613 0.871 0.839 
f9 0.284 0.248 0.730 0.300 
f10 1.000 0.998 1.000 1.000 
f11 0.667 0.892 0.997 0.667 
f12 0.750 0.990 0.948 0.663 
f13 0.667 0.667 0.997 0.667 
f14 0.667 0.667 0.810 0.667 
f15 0.696 0.738 0.748 0.740 
f16 0.667 0.670 0.667 0.667 
f17 0.456 0.620 0.703 0.660 
f18 0.657 0.660 0.667 0.667 
f19 0.451 0.458 0.503 0.500 
f20 0.059 0.248 0.483 0.248 

5 CONCLUSIONS 
This paper first introduces a novel archive-based EDA named 
EDA2 and further proposes a niching EDA called C-EDA2 by 
combing EDA2 with an adaptive clustering strategy. Different 
from most existing EDAs which only employ some good 
solutions in the current population to build their probability 
models, EDA2 maintains an archive to preserve the high-quality 
solutions generated in a certain number of previous generations 
and uses these solutions to assist estimating the Gaussian model. 
This simple operation naturally integrates the evolution 
direction information into the estimated covariance matrix, 
which significantly improves the search efficiency of EDA2. 
Moreover, the population size of EDA2 is also greatly reduced by 
utilizing historical solutions. Experiments on typical test 
functions demonstrate that EDA2 is simple and efficient, it is also 
very robust to its parameters. Then EDA2 is further incorporated 
into an adaptive clustering strategy for solving multimodal 
optimization problems. Comparison results on a set of niching 
benchmark functions indicate that C-EDA2 is competitive to two 
well-established multimodal EDAs. 

However, even though C-EDA2 shows its potential in dealing 
with multimodal problems, there is still room to further improve 
its performance. For future research, the restart mechanism in C-
EDA2 could be improved by combining techniques like taboo 

method. Besides, it is also interesting to equip EDA2 with other 
niching schemes. 
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