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Motivation

+ Evolutionary Computation (EC) techniques have been

frequently used in the context of computational
Introduction and Motivation creativity.

* Various techniques have been used in the context of
music and art (see EvoMusArt conference and DETA

track at GECCO).
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Motivation

+ Evolutionary algorithms have been frequently used to
optimize complex objective functions.

+ This makes them well suitable for generative art where
fitness functions are often hard to optimize.

« Furthermore, objective functions are often subjective to
the user.

Motivation

* In terms of novel design, evolutionary computation
techniques can be used to explore new solutions in terms
of different characteristics.

+ Evolutionary algorithms are able to adapt to changing
environments.

* This makes them well suited to be used in the context of
artistic work where the desired characteristics may
change over time.

This Tutorial

* Summary of results in the areas of

— 2d and 3D artifacts
— Animations

+ Overview on our recent work to create unique generative
art using evolutionary computation to carry out

— Image transition and animation
— Image composition
— Diversity optimization for images

Outline

+ Introduction and Motivation

* Evolving 2D and 3D Artifacts

» Aesthetic Features

* Evolutionary Image Transition

* Quasi-random Image Animation

+ Evolutionary Image Composition

+ Evolutionary Image Diversity Optimization

» Discrepancy-Based Evolutionary Diversity Optimization
for Images

* Conclusions




Evolving 2D and 3D Artifacts

Evolving 2D and 3D Artifacts

Blind Watchmaker (Dawkins, 1986) evolved 2D
biomorph graphical objects from sets of genetic

parameters (combined with Darwinism theory).

Latham (1985) created Black Form Synth. These are
hand-drawn “evolutionary trees of complex forms” using

a set of transformation rules.

Evolving 2D and 3D Artifacts

In 1991, Sims published his seminal SIGGRAPH paper.

He introduced the expression-based approach of

evolving images.

He created images, solid textures, and animations using
mutations of symbolic lisp expressions.

Evolving 2D and 3D Artifacts

The mathematical expression is represented as a tree
graph structure and used as the genotype.

The tree graph consists of mathematical functions and
operators at the nodes, and constants/variables at the
leaves (similar to genetic programming).

The resulting image is the phenotype.

To evolve sets of images, it uses crossover and mutation.




Evolving 2D and 3D Artifacts (Sims,
1997)
* In Galapagos (Sims, 1997) created an interactive

Darwinian evolution of virtual "organisms” based on
Darwinian theory.

» Several computers simulate the growth and

characteristic behaviours of a population of abstract
organisms.

* The results are displayed on computer screens.

EC System (Sims, 1997)

* The EC system allows users to express their preferences

by selecting their preferred display by standing on step
sensors in front of those displays.

* The selected display is used for reproduction using
mutation/crossover. The other solutions are removed
when the new offspring is created.

Evolving 2D and 3D Artifacts (Latham,
Todd, 1992)

* Latham, Todd (1992) introduced Mutator to generate art
and evolve new biomorphic forms.

+ The Mutator creates complex branching organic forms
through the process of “surreal” evolution.

* At each iteration the artist selects phenotypes that are

“breed and grow”, and the solutions co-interact.

Other Selected Contributions

* Unemi (1999) developed SBART. This is a design support
tool to create 2-D images based on user selection.

+ Takagi (2001) describes in the survey research on
interactive evolutionary computation (IEC) which
categorises different application areas.

 Machado and Cardoso (2002) introduced NEvAr. This is

an evolutionary art tool, using genetic programming and
automatic fitness assignment.




Other Selective Contributions

Gary Greenfield (1998-2005) evolved simulated ant and
robot parameters, and investigated image co-evolution.

Draves (2005) introduced Electric Sheep. The system
allows a user to approve or disapprove phenotypes.

Hart (2009) evolved different expression-based images
with a focus on colours and forms.

Kowaliw, Dorin, McCormack (2012) explore a definition

of creative novelty for generative art.

Image Morphing (Banzhaf, Graf 1995)

« Banzhaf and Graf (1995) used interactive evolution to
help determine parameters for image morphing.

* They combine IEC with the concepts of warping and
morphing from computer graphics to evolve images.

* They used recombination of two bitmap images through
image interpolation.

Aesthetic Measures

Aesthetic Measures

. Comlputational aesthetic is a subfield of artificial
intelligence dealing with the computational assessment

of aesthetic forms of visual art.

* Some general image features that have been used are:
-Hue

- Saturation
- Symmetry
- Smoothness




Aesthetic Measures

+ Examples of aesthetic measurements:

- Benford’s Law
- Global Contrast Factor
- Reflectional Symmetry

- Colorfulness

Aesthetic Measures (den Heijer, Eiben

2014)

* den Heijer and Eiben (2014) investigated aesthetic

measures for unsupervised evolutionary art.

* The Art Habitat System uses genetic programming and
evolutionary multi-objective optimization.

* They compared aesthetic measurements and gave
insights into the correlation of aesthetic scores.

Evolutionary Image Transition

Neumann, Alexander, Neumann (EvoMusArt 2017)

Evolutionary Image Transition

* The main idea compromises of using well-known
evolutionary processes and adapting these in an artistic
way to create an innovative sequence of images (video).

* The evolutionary image transition starts from given
image S and evolves it towards a target image T

* Our goal is to maximise the fitness function where we
count the number of the pixels matching those of the
target image.




Example Images

Starting image S (Yellow-Red-Blue, 1925 by Wassily
Kandinsky) and target image T (Soft Hard, 1027 by
Wassily Kandinsky)

Image Transition

h):.

Evolutionary Image Transition

Algorithm 1 Evolutionary algorithm for image transition

o Let S be the starting image and T be the target image.
o Set X:=S.

e Evaluate f(X,T).

e while (not termination condition)

— Obtain image Y from X by mutation.
- Evaluate f(¥,T)
-Iff(Y,T) > f(X,T),setX :=Y.

Fitness function: fX.T)={X;j X | Xij = T;;}-
]

Asymmetric Mutation

* We consider a simple evolutionary algorithm that has
been well studied in the area of runtime analysis, namely
variants of (1+1) EA.

* We adapt an asymmetric mutation operator used in

Neumann, Wegener (2007) and Jansen, Sudholt (2010).




Asymmetric Mutation

Algorithm 2 Asymmetric mutation

e Obtain Y from X by flipping each pixel X;; of X in-
dependently of the others with probability ¢, /(2| X|s)
if Xi; = Sij, and flip X;; with probability ¢./(2|X|r)
if X;; = Tij, where ¢s > 1 and ¢; > 1 are constants,
we consider m = n.

+ for our experiments we set cs =100 and ct=50.

Video: Asymmetric Mutation

Video — Uniform Random Walk

Uniform Random Walk

* A Uniform Random Walk - the classical random walk
chooses an element X« € N (Xy) uniformly at random.
* We define the neighbourhood N (X) of X as

N(Xij) ={X -1, X+ Xig-n Xigi+n }




Uniform Random Walk

Algorithm 3 Uniform Random Walk

— Choose the starting pixel X;; € X uniformly at random.
- Set Xi]' = Tl]
— while (not termination condition)
e Choose Xj; € N(Xj;) uniformly at random.
o Seti:=k, j:=1and X;; :=Tj;.
— Return X.

Biased Random Walk

* A Biased Random Walk - the probability of choosing the
element X« is dependent on the difference in RGB-values

fOI‘ Tij and T«

Video — Biased Random Walk

Biased Random Walk

Algorithm 4 Biased Random Walk

— Choose the starting pixel X;; € X uniformly at random.

- Set Xij = T'”

— while (not termination condition)
e Choose X € N(Xj;) according to probabilities p(X:).
e Seti:=k, j:=1and X;; :=Tj;.

— Return X.




Biased Random Walk
We denote by Ti’;-, 1 <1 < 3, the rth RGB value of Tj; and define

3
¥(Xkt) = max {Z T — 1751, 1}
r=1

B (1/7(Xw1))
P(Xn) = szteN(Xij)(l/W(X“))'

Mutation Based on Random Walks

* We use the random walk algorithms as part of our
mutation operators.

+ Each mutation picks a random pixel and runs the
(biased) random walk for tm.x steps.

» For our experiments we use 200x200 images and set
twax=100.

Videos - Biased Random Walk
Evolutionary Algorithm

Feature Values During Transition:

10



SALA 2016 — Art Exhibition

SALA 2016 — Art Exhibition, Australia

© Aneta Neumann

SALA 2016 — Adelaide, Australia

© Aneta Neumann

Quasi-random Transition and Animation

Neumann, Neumann Friedrich (2017)

11



Quasi-random Walks

* So far: Random walks as main operators for mutation
and transition process

* Quasi-random walks give a (deterministic) alternative
which is easy to control by a user.

Quasi-random Transition and Animation

General setting:

* There are k agents each of them painting their own
image I* through a quasi random walk. Quasi-random
walk is determined by the sequence that the agent uses.

* Process starts with a common image X.

+ All agents paint on this image overriding X and previous
painting of other agents.

+ This leads to complex animation processes.

« Image transition is a special case where all agents paint
the same image I.

Example Video: 4 Agents Symmetric
Sequences

Agent Moves

Move of an agent:

+ Each pixel has a sequence of directions out of from
{left, right, up, down}.

* At each iteration, the agent moves from its current pixel
p to the neighbor pixel p’ determined by the current
position in the sequence at p.

+ It paints pixel p’ with the current pixel in its sequence
and increases the position counter at p by 1 (modulo

sequence length).

12



Algorithm

Algorithm 1 QUASI-RANDOM ANIMATION

Require: Start image Y of size m x n. For each agentk, 1 < k < r, an image I* of size m x n, sequence
S* and position counters ¢* (i, j) € {0,..., [SFh1<i<m,1<j<n.

1: X <Y

2: for eachagentk,1 < k < rdo

3 choose P* € m x n and set X (P*) := I*(P¥).
4: end for

5:t+1
6
7
8;

: while (¢ < tmax) do
for each agent k,1<k<rdo
Choose P* € N(P*) according to Sk (c(P*)).

o X(P*)  I*(PY)
10: ck(P’“)f— (*(P*) +1) mod |S¥|.
1 P¥ P,

12: end for
13: tet+1
14: end while

2 Agents Symmetric and Asymmetric
Sequences

Example Video: 4 Agents Asymmetric
Sequences

Video Quasi-random Walks

13



Evolutionary Image Composition

Neumann, Szpak, Chojnacki, Neumann (GECCO 2017)

Key Idea

* Create a composition of two images using a region
covariance descriptor.

+ Incorporate region covariance descriptors into fitness
function.

* Use evolutionary algorithms to optimize the fitness such

that a composition of the given two images based on the
considered features is obtained.

Evolutionary Image Composition Using
Feature Covariance Matrices

+ Evolutionary algorithms that create new images based
on a fitness function that incorporates feature

covariance matrices associated with different parts of
the images.

+ Population-based evolutionary algorithm with mutation
and crossover operators based on random walks.

Algarithm 1 (p « |) GA 6 evodinotasy iSage compoets

Roguivn: 5 and 7 woe images
lesmaiewe popalatas F ’ r,

el * Wesorew
o rand) < 0.5 then
Y o Raspona Wl s Va2, S
alne
Y o Rapond Wl s MU TAT o —
Fu o Ssaacresi /LY
Adapt o, v e T
* petura o Breck a s popaistar. X Cviowwd Tagem
University of Adelaide 85
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#1
pixel-based mutation

#2
self adaptive random

walk mutation

[A. Neumann, B.Alexander, F. Neumann, EvoMusArt 2017]
[B. Doerr, C. Doerr, GECCO 2015]

University of Adelaide

88

#1
s L (v ot (ag A5 ) .
&, covariance-based
o o (AL AL ) fitness function
]
#3

square region of interest
*’; ¥

#4

saliency mask
Hou, Harel, Koch, IEEE 2012]

© Angelica Dass
——

#5
set of features
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Experiments

+ Investigate the impact of different region
covariance features on the resulting images

» Discover how different weighting schemes
for covariance matrices influence the results

« Understand the influence that the distance
measures have on the final results

University of Adelaide o1

Impact of Different Features

4
Y
>
“’

Ao~
'o"
.\F”.J

. - .
o= g gk o
Image composition with different features. Rows 1, 2and 3
correspond to Feature Sets 1, 2 and 3, respectively.

University of Adelaide

Tmnact of Different Weichtineg
p . -

Rows 1, 2 and 3 correspond to setto $0.25%, $0.5% and $0.75% and _ setto $0.75%, $0.5% and $0.258$,

‘
respectively. In the last row the weights were set using an image saliency algorithm. The saliency algorithm strikes

aco

Impact of Distance Metrics

Rows 1, 2 and 3 correspond to distance metrics dists, dist, and

dist.., respectively.

16



Variants of Image Composition

composition with Feature Set 1, saliency-based weighting and
-Euclidean distance measure.

SALA 2017 Art Exhibition
Adelaide, Australia

University of Adelaide 96

Evolutionary Diversity Optimisation for Images
Alexander, Kortman, A. Neumann (GECCO 2017)

Diversity

* Majority of approaches consider diversity in the objective
space.

* Ulrich/Thiele considered diversity in the search space
(Tamara Ulrich’s PhD thesis).

« Diversity with respect to other properties (features)
could be useful in various domains.

* Goal: Compute a set of good solutions that differ in
terms of interesting properties/features.

University of Adelaide 98
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Key Idea

* Produce diverse image sets using evolutionary
computation methods.
* Use the (u + A)-EA» for evolving image instances

» Select the individuals based on their contribution to
diversity of the image.

1 5 10 15 20 Individuals
(0.613, 0.180) (0.559, 0.265) (0.541, 0.284) (0.577, 0.368) (0.595, 0.478)
e - o T e S e

u

0.0342854

Evolution of Artistic Image Variants
Through Feature Based Diversity
Optimisation

+ Weuse (1 + A)-EAb to evolve diverse image instances.

+ Knowledge on how we can combine different image
features to produce interesting image effects.

* Study how different combinations of image features

correlate when images are evolved to maximise
diversity.

Algsiim 1 e e 0 A gt p=20andA =10
gt ar mage §
owipet & populstion F o« {4, Iy} of image variams
{malioe with y mutated copues of source umage )
2 F » {naiaint ¥) e L AN
C repest
pendonly it C L FPobhere O » 4
v Mistde
poodace I « maami )
’ o Wil then
s " wr
wad it
ewd fon
while >4 do
» semave an individeal | « aeg min 4. P)
w end wiile
i il Termanaton condition rew hed

#1
starting image

#2
pixel-based mutation

#3
image validity check

Image has mean squared error to starting image less than 10

18
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#4
feature diversity measure

[ L.
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[Gao, Nallaperuma, F. Neumann, PPSN 2016, arxiv2016]

Single Dimensional Feature Results
1 5 10 15 20 Individuals

#5 Coebazay Odrem 0 s AT .:-
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Two-Dimensional Feature Experiments
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a) Symmetry and Hue 20 Individuals

Discrepancy-Based Evolutionary Diversity Optimization

for Images

A. Neumann, Gao, Doerr F. Neumann, Wagner (GECCO
8 Wednesday 11:55 in GA track)
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Discrepancy-Based Evolutionary
Diversity Optimization

+ New approach for discrepancy-based evolutionary
diversity optimization

+ Investigate the use of the star discrepancy measure for
diversity optimization for images

* Introduce an adaptive random walk mutation operator
based on random walks

* Compared the previously approach for images

[Alexander, Kortman, A. Neumann, GECCO 2017]

University of Adelaide 108

Motivation and Background

Given a set of Points X:={s,...,s"} .
with S =[o,1]"'s',...,s" €S

[a.b] = lay.by) x ... x [ag.bg)

Vol([a, b]) = |X N [a,b]|/n ‘

XX, B) = sup(Vol(la. b)) = IX N |a.b)i/n | a < b e lo.1]9)

University of Adelaide 109

Discrepancy-Based Evolutionary Diversity
Optimization for Images

#1

Self-Adjusting Offset
Random Walk Mutation

N‘-\‘U' - {-\14 lla"\u-lt;"\ul ll"\uuli}

University of Adelaide 13

#2
Features
‘. -, ‘ -
: | '.q:‘. . | . *
! i .:..4,.”..? . .. .
* ® w. : .'o..

University of Adelaide 114
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Discrepancy-Based Evolutionary Diversity
Optimization for Images #4

Results

Discrepancy-Based Evolutionary Diversity
Optimization for Images

#4
Results

For details come to the paper presentation

Wednesdg 11:55 in GA track

University of Adelaide 17
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Conclusions

« Evolutionary algorithms provide a flexible approach to
the creation of artistic work.

+ Alot of algorithmic approaches have been shown to be
able to create artistic work.

« Evolutionary process itself can be used to create artistic
digital work.

« Random processes exhibit in interesting sources of
inspiration.

+ Evolutionary diversity optimization can be used to create

a diverse set of designs that vary with respect to given
features.

Thank you!
|
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