Check for
Updates

Proceedings of the 1985 ACM Cemputer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

Performance of the
V Storage Server:
A Preliminary Report

David R. Cheriton and Paul J. Roy

Computer Science Department
Stanford University

Abstract

Network file access cfficiency is a key issue in a distributed
system’s performance, cspecially when many of the network
nodes arc diskless and rely on a shared network file server. We
have designed and implemented a file server that uses the
network interprocess communication of the V kcernel for file
access. 'This paper deseribes the basic design of the file server
with emphasis on the performance-critical arcas. We also give its
performance under a variety of workloads and compare these
measurcments with results predicted by other modeling studics.

We conclude that the bulfering and disk layoul strategics we have
Performance resulls are consistent
with a previous modeling study that the file server processor is the
most critical resource. {lowever, our cxperiments with high load
were limited by the small amount of buffering on the nctwork
interface, i.c. large numbers of packets arc dropped at high load
giving poorer than predicted performance.

used work well under load.

1. Introduction

Shared network file servers are a basic part of most distributed
systems. ‘Typically, a file server is a machine with onc or more
disks connccted 10 the local nelwork and dedicated to providing

file service Lo other nodes on the network. A shared file server
may be used (o augment the disk storage of individual Vstorage Other
workstations or to replace it aftogether, as with diskless server programs
workstations.

V Kernel

This work was sponsored in part by the Defense Advanced Rescarch
Projects Agency under contracl NO0039-83-K-0431.

Permission Lo copy without fee all or part of
this material 1is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and
its date appear, and nolice 1is given that
copying 1is by permission of the Association
for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or
specific permission.

Sharcd hile servers have the advantages over local disks of:

® Lconomy of scale and sharing - onc 500 micgabyte disk is
cheaper than 10 50 megabyte disks. Also, onc copy of the
file systemi code executes on the server, not on cvery clieat.

®] css environmental impact - filc servers can reside in
compuler rooms so the noise, heat and power problems are
away from individual users and workstations.

o Simpler maintenance and backup - maintenance of disks
and backup of files can be handled the samic as for a
timesharing system, ic. by an opcrator working in the
compuler room.

The major disadvantage is, of course, performance.l Sharing
leads to contention between users and degradation for cach user
under load. With this in mind, we have been exploring how to
build an elficient file server.

We have designed and impiemented a software module we called
the V srorage server (because it provides an organized systemy of
"storage” as a service). This server module execultes as a rcam? of
processes on top of the V kernel, using the V nmiessage-based
interprocess communication facilities both internally as wetl as for
its clicnt inlerface. ‘The storage server and V kernel are fairly
portable. Howcever, our measurements in this paper deal
exclusively with this software executing on a SUN wortkstation-

based file server {1} This structure is iltustrated in Vigure 1.

SUN-based Hardware
(including disk and ethernet)

Iig. 1: V SUN-Hased Iile Scrver Machine
This paper describes the basic design of the storage server module
with emphasis on the performance-critical arcas. We also give its

Un some applications, users are lso concerned about aulonomy and
data security, but we do not consider these issues here.

2A team is acolleetion of processes sharing the same address space.

Permission to copy without fee ali or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage. the ACM copyright notice and the titie of the

© 1985 ACM 0-89791-150-4/85/003/0302 $00.75

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

302

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320599.320695&domain=pdf&date_stamp=1985-03-01

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

performance under a varicty of workloads and compare (hese
measurements with resulls predicted by other modeling studics.

I'rom these measurements, we have formed some preliminary
conclusions that arc guiding a refinement 1o the design, In
particular, we conclude that the buffering and disk layout
strategics we have used work well under lond. We also confirm
conclusions drawn in modcling studics that the file server
processor is the most critical resource. owever, our experiments
with high load were limited by the small amount of buffering on
the network interface, i.e. large numbers of packets are dropped
at high load giving poorer than predicted performance. We
discuss future plans for dealing with this problem in the last
section.

‘The next section describes the basic design, including the disk
data structurcs. the mulliprocess structure of the storage server
and the buffer mechanism. Scction 3 gives our performance
measurements with interpretation of results. We end with a
discussion of our conclusions to date. "This report is intended as a
preliminary study of the performance of our hardware and
softwarc. Yurther refinement of the implementation and
additional work on the V storage server is planned.

2. Design of the V Storage Server

The V storage server is a program that exccutes on top of the V
kernel [4, S It implements a fRirly conventional tree-structured
file system on one or more raw disk devices using the basic disk
support provided by the V kernel. Clients access liles using the V
170 protocol |5, 6] as a presentalion and session protocol on top
of the transport-level 'V interprocess communication. The V
kernel provides transparent message-based interprocess
communication, allowing clicnts to access the storage locally or
remotely with no functional differcnce.. Thus, our lile server is
distinctive in that it is not implemented inside the kernel, or as a
standatone program on a dedicted machine, nor does it usc a
specialized protocol or protocol implementation, Instead, it is
simply a multi-process program that can exceute on any machine
with a disk tunning the V kernel.

We divide the deseription of the storage server into three parts:
the disk data structures, the multi-process structure, and the
bufTering. Besides being background for our performance
cvaluation, we believe the design is of interest in itscll

2.1. Disk Data Structures

The disk Jayoul is almost identical 1o that of the Thoth file
system [3], from which our design and implementation descends.
It is also similar to the DEMOS file system {9]. In particular, filcs
arc represented as exvenrs ol contiguous blocks. [iach cxtent is
specificd as a start block and a count of blocks in the cxtenl. A
file may be zero, one or more extents.d ‘The block allocation is
maintained in a bitmap, allowing the storage scrver to maximize

3here is a flimit in our current implementation of 9 extents.

303

the contiguity of filcs in creating, rewriting or growing files.

Files are described by file descriptor records that are stored in a
file called the file descriptor file, with the first descriptor
describing the file descriptor file itself. "This is similar to the Unix
i-node scheme {10, 12], except that the file descriptor arca can
grow and be accessed just as any other file (sinceitis a file- not a
reserved area of disk).

"Thig disk layout is given in Figure 2.

Block O system boot

program
FD1

FD File

FD k

Block allocation
bitmap file

Remaining
disk area

* {allocated in
contiguous extents)

block N

Fig. 2: Disk Tayout

2.2. Multiprocess Structure

The storage server lakes advantage of the message-based
inlerprocess communication and inexpensive processes of the V
kernel to use multiple concurrent processes internally in its
implementation. ‘The overall multi-process structure 3] is
iltustrated in Yigure 3.

At the highest level, there are one or more main storage server
processes that handie opening files, changing file size, and various
dircctory operations. Once a file is opened, read and write
requests to the file are handled Ly a read/writd(r/w) server
process. ‘There are multiple r/w servers. The main scrvers
distribute the file access load over the /7w servers. (We are
planning to experiment with dynamic creation of new r/w servers
but this paper only deals with a configuration-specificd (static)
number.)

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

buffer

| xe—al

[xo—a]

Ifig. 3: Storage Server Multi-process Structure

Cticnt read and wrile requests arce sent directly Lo the r/w servers.
On a read request, a v/w server searches the buffer pool in an
attempl 1o locate the data in memory. 10 it succeeds, it replics o
the request with (he data immediately. Otherwise, it makes a
record of the request, allocates onc or more buffers, and ihen
engueucs a request for the required data with one of the disk
On a write request, so-called write-behind is
implemented by enqueuing the written data (o a disk helper and

replying immediately to the client.

helper processes.

Fach disk helper process services a queue of disk requests. It
execules an inlinite loop of waiting for, next disk request,
perfouming the disk operation, and (oa a read) returaing the
request Lo the reguesting r/w server, A disk request is presented
to a disk helper as a record describing the operation plus a pointer
1o the bulTer in which the data resides (on a write) ot is to reside
(on a rcad).
between the r/w servers and the helpers, transferring requests and

Taking advantage of the shared address space

bullers between the /7w servers and helpers is done by enqueuing
records in queucs at cither level and by passing pointers. Thus,
this additional level of processes docs not introduce copying
overhiead.

The disk helpers issue reamd and write operations on the raw disk
using the V kernel device server[2). The device server is
implemented directly by the kernel as a pscudo-process (as
opposed to a normal process like other system servers) and is
accessed using the V 170 protocol.

We claim that the use of a multi-process structure such as this
within a single address space allows a cleanly structured
concurrent program that does not incur excessive cost in copying
or bullering of data. In patticular, considerable effort has been
made to optimize the data path between client and disk. A key

304

aspect ol this is the bullering scheme,

2.3. Buffering Mechanism

The primary purpose ol the buffering miechanism is to improve
performance by reducing the disk access overhead. 1[access to
disk pages s totally random and in sipgle sectors, bulfering
cannot provide any performance improvement with a realistic
amount of bufler space. For example, the buller space on our file
server is 17500th of the space on the disks (1.5 megabytes versus
760 megabytes), giving a low expected hit ratio for random access.
Tlowever, previous studics by Sager [11] indicate a disk access
behavior that allows considerable benelit from buffering, and we
have designed our buflering mechanism accordingly.

In particular, Sager's measurements indicate:

@ Reading predominales over wriling: on average 80 percent
of disk /0 arc reads. Variation has been observed
depending on the type of data. For instance, standard
system programs and data have 95 percent reads while
lemporary file space and swap space is accessed roughly
50750 between reads and writes.

® Scquential file /O predominates. Thus, the [ile
organization on disk and the bulfer management should be
oplimized for efficiently handling sequential access,

@ Disk [70 qucues arc short. This implies there is little
improvement 1o be gained by disk head scheduling,
especially if the disk fayout is optimized for scquential
organization.

It is important to note that access is scquential to files (not o
disk). so it is also of considerable benefit 1o layout files on disk to
minimize disk access overhead with sequential file access. ‘Thus,
the file system aflocates blocks using extents, giving a strong bias
to scquential allocation of blocks on the disk. That is, sequential
file reading translates into sequential disk reading (for the most
patt).

We recopnize that buffering serves three main [unctions:

® (ache - data in the bufler pool need not be read off disk.

@ Preferching - the stormge server can heuristieally recognize
scgquential file access and prefeteh {ile pages. reducing
latency. ere, the bufler pool provides temporary storage
for the Nile pages pending the clent request for them,
Similatly (0f course), it provides so-catled write-behind of
pages oul to disk.

o ragmentation/Reassembly Area - large disk data transfers
must be fragmented into units that fit into network packet
sizes, The butfer pool provides large buffers into which one
can (ransfer from disk, and then fragment into smallfer
network packets. Tor instance, we can transfer § kilobyte
units ¢ind Largery direetly fromy the disk in one operation
but the Ethernetis limited to 1536-byle packets.

The bulTering mechanism is designed not only to provide cachy of
these funclions, bul 1o recopnize cach class of use and apply
different heuristics.

Cache behavior is detected as repeated access to the same disk
pages. This is assumed to predominale with small read and write
requests such as aceess to a directory or index file. ‘Therefore, the
storage server uses small buffers for caching data that have
repeated references. This keeps the hit rate high relative to the
size of the cache,

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

Scquential reading and writing is recognized by keeping a onc-
block history ol access {or each open file, I the current request is
for the page following the previous request, the storage server
assumes this file as being accessed sequentially. In this casc,
buffered data i unlikely to be read again once read or writien.
Thus, the storage server does not hesitate to reallocate buffers
used during scquential access.

On sequential reading, the storage server initiates read-ahead
beyond the current client request, thus overlapping disk
operation wilh clienl processing. Taking advantage of the
contiguous allocation of blocks in files, the slorage server can read
ahcad numerous blocks in a single disk operation. l'or instance,
currently the storage server reads ahead in 8 kilobyte units. This
is more cfficient in disk channel utilization than multiple disk
reads with virtual sectoring (or disk interleaving)? as used on
other systems, The contiguous allocation facilitates these large
disk transfer units yet avoids the disk space wastage of large
allocation umit, Vor cxample, il the disk were allocated in 4
kilobylc unils, measurements of Unix indicate [7] (hat more than
45 percent of the disk space would be wasted with internal
fragmentation. Our use of a | kilobyte allocation unit reduces

this waste (by (he same measuremeats) to 11.4 percent.?

Finally, clients can issuc large read and wrile requests in the V
170 protocol. For example, a client process can request a 1
megabyte read in a single request to the storage server which
replics with the requested megabyte of data. Large wriles are
usclul for checkpointing programs and performing file transfers,
Targe reads are useful for program loading, file transfers, and fast
file access.

Client programs can rccognize and realize the cfficiency of
volme file access operations, thus reducing the number of
network packets, disk transfers, and server CPU cycles required
per unit of data. The storage server supports this by using extra
large buflers when they are available and the request size justitics
it.

Qur storage scrver project is now at the stage of having produced
a basic working file server matching our design. It is in regular
use at Stanford as a file server within our project. AL this point,
we embarked on some measurements of its performance, both to
corroborate the intuition we had used in formulating the original
design and to detect problems that would teguire further
aticntion, 1t was also to guide future refinements of the software
and hardware configuration.

4Our disk is actually interleaved at the disk controller level because the
bus and memory cannot keep up with the non-tnterleaved tansler vate of
the disk! Thus, we do lose some transfor capacily to interleaving, but less
than if the CPU was issuing multiple disk operations fur the same amount
of data.

SThis is based on Unix file system measurements. We would expect our
{ile system to do at least as well, if not better beeise there are no indirect
blocks and an cqual amount of cost for internal fragmentation.

305

3. Performance Measurements

The configuration used for was a SUN
workstation [1] with a 10 MITz 68010 processor, 2 megabytes of
memory, a 3COM FEthernet interface and 2 Pujistu Pagles
connected through a Xylogics controller. The client workstations
were identical except for being without disks. The ujitsu Hagle
disk rotates at 3961 RPM with 5 milliscconds track-to-track scck
time, 35 milliscconds maximum scek time, and 7.5 milliscconds
average rotational fatency. Disks are formatted with 46 512-byte
sectors per track and a 3:1 interleave ratio. The storage server was
configured with 10 read/write servers, giving a high degree of
concurrency in handling read and wrile requests.

We identified three different aspects of the file scrver
performance, unloaded clapsed time, maximum
throughput, and expected responses with different numbers of
clients,
subscctions. We first describe how the measurements were made,

measurement

namely:

Iach of these is discussed in turn in the following

3.1. MeasurementMethods

Measurements of individual filc access opceralions were
performed by executing the operation N times {typically 1000
times), recording the total time required, subtracting loop
overhead and other artifact, and (hen dividing the total time by
N. Mcasurcment of (otal time relied on the softwarc-maintained
V kernel time which is accurate plus or minus 10 milliscconds.

Mcasurement of processor ulilization was done using a low-
priority "busywork™ process on cach workstation that repeatedly
updates a counter in an infinile loop.
utilization reduces the processor allocation to this process. Thus,
the processor time used per operation on a workstation is the total
time minus the processor time allocated to the "busywork™
process divided by N, the number of operations exccuted.

All other processor

Using 1000 trials per operation and lime accurate plus or ninus
10 milliseconds, our measurements should be accurate to about
02 milliseconds exeept for the effect of variation in network load.

Mecasurement of done severat
instantiations ol a client program which issues repealed file
requests as fast as possible. We simply increased the number of

such clients until no further increase in throughput occurred.

throughput was running

3.2. Elapsed Times on an Unloaded Server

The measurements in this section indicate performance when the
file server is not loaded with requests from other clients,

The clapsed times for the basic kernel operations have been
Here we include some
kernel overhead times particularly relevant to this section. ‘The
basic message (ransaction time for sending a 32 byle request
message and recciving a 32 byte response with a 1024 byte
segment s 6.50 milliseconds. Message transactions that include
moving 4 or 8 kilobytes over the network take 17.45 and 29.92
milliscconds, respectively.

measured and reported clsewhere [4].

Table 3-1 gives basic elapsed time read performance for the file
server when accessed by remoie clicats, ot operations requiring

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

disk activity. the seck time is about 10 milliscconds and the
average rolational laleney is 7.5 milliscconds. Disk transfer time
(including interleave cffects) for 1k, 4k, and 8k is approximately
1.3,7.3, and 15.2 milliscconds, respectively.

File Operation [dapsed Time per Operation

1K buffer read 7.80

1K no-bulfer rcad 35.48
4K bulffer read 18.69

4K no-buflfer read 52.94
8K buffer read 31.23

8K no-buffer read 73.81
1Mcg no-buffer read 5000.95

Table 3-1: File Access Elapsed Times (times in milliscconds)

The measurements designated "no-buffer” mean that the data
was first read from disk. "Buffered” means it was in a disk bufler
when the request was received.
several points. Uirst, the cost per byte of file access drops with
increasing data transfer units, As obscrved in a previous study (8],
increasing the data transfer unit is the key to performance.
However, its utility is limited by buffering constraints, decreasing
benelit once overheads are well-amortized. and small file sizes (in
many cnvironments). Il‘or example, a | megabyle rcad can be
done by the storage server using 8 128 kilobyte disk transfers and
1034 nctwork packets, as opposed to 1024 | kilobyte disk transfers
and 2048 nctwork packels, as might be the case for simple
page-level access of the same amount of data.
Mbytc read is fairly uncommon.

‘These measurcments indicate

However, a 1l

Finally, processor time is a sigaificant portion of the cost, as
shown by the cost for buffered operations for which no disk
With the 10 Mb FEthernet, a simiple
indicates that the network (unloaded in these
experiments) transfer Gme accounts for less than 20 pereent of the

activity is required.
calculation

clapsed time with buffered operations,

3.3. Throughpul Measurements

We were also interested in the peak throughput of the file server,
1.¢. the maximum number of bytes that it can deliver per sccond.
To determine maximum throughput, we wrote a client program
We kept
incrementing the number of instantiations of the client program
(This occurred at 3-5

that pencrates a stcady stream of 4k sead requests.

until the throughput stopped increasing,
clicnts, depending on the buffer hit ratio.)
Different file regquest patlerns produce different throughput. l'or
instance, highly random sead requests can defeat the buflering
mechanism and also incur overhead for considerable secking, In
this paper, we usc file request behavior Lhat is characterized by
the buffer hit ratio it gcncmles.(’ lligure 4 gives the throughput

Swith read ahead and reasonable secking behavior, the seek time is not a
major factor compared to bufler hit ratio.

306

we measured as a function of the buffer hit ratio.
Throughput (kilobytes/sec)
400

350
300
250
200

150

100 ¢

- }]]

025 050 0.75 1.00

Buffer Hit Ratio

Lig. 4: Throughput as a function of buffer hit ratio

0.0

Unfortunately, our mecasurement for buffer hit ratio of 1 is
deficient because the clients suffered from considerable
presumably because Iithernel
interface receive buflers could not be emptied fast cnough to
keep up with the rate of requests. So, once this problem is
alleviated {possibly with a network interface with more reccive

retransnussions, the server’s

butters). the throughpul for buffer hit ratio of | should be higher.

AU maximum throughput, ideaily (he storage server should be
100 pereent
capacily. Tor Tow hit ratios, the file server throughput is limited
by disk overhcad. At higher hit ratios, the CPU becomes the
major factor, Ligure S plots the CPU utilization as a function of
the buffer hit ratio. the fact that the utilivation does not reach
100 percent at a hit ratio of 1 again indicates that our network
interface problem mentioned above is restricting throughput,

utifizing whatever is (he bottiencck resource at

I s interesting to nole the problem we are obscrving, namcly
performance being curtailed by lost network packets, lost because
of fimited buffering on the Ethernet board, was recognized as a
factor in our previous study [8]

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

CPU Utilization
100

96 7 o1

801

78
60 %7
40 -t
20 -t

| | | -

0.0 0.25 050 075 1.00
Buffer Hit Ratio

Fig. 51 Server CPU Ultilization vs, Bufler it Ratio

3.4. Response withDifferent Numbers of Clients

A previous study [8] used a quening model o predict average
response time for {ilc requests with different numbers of clients.
We were anxious to compare the actual performance of our file
server with the predicted performance.

Measurement of response with various numbers of "realistic”
clients way done using maltiple instantiations of a client program
that generated a sequence ol file aceess requests with an expected
rate. ‘That is. it tandomly delayed between requests but averaged
the data request rate desired. The average response time per
requesl was caleulated by sublracting the tolal delay and overhead
time (determined in a separate timing test) from the total clapsed
time and dividing by the number of requicsts.

With 1 kilobyte read requests and clients averaging one read per
sccond, no measurable degradation was observed at up o the
eguivalent of 20 workstations, With clients generating 4 kilobyte
read requests on average onc per client per second and a 50
pereent bulfer cache hit ratio, the clapsed lime rose from 40
nilliscconds with one clicat o 47 millisccouds (or 20 clients.
Unfortunately, with targer numbers of clients, we started sceing
high levels of packet loss. giving figures badly inflated by packet
retransmissions. Our Fthersiel interfice has only 2 receive buffers
making the veal-ime response in handling of incoming packets
critical. - We believe that improvements in the kernel nctwork
handler and (especially) @ network interface with more packet
bullers wouldd allow the tile server to handle more than 30 clients
with only modest performance degradation, as predicted by the
previous modeling study [8].

307

4. Conclusions

Good network file access performance is crucial o distributed
systems, cspecially those using diskless workstations. We have
presented the design of a file scrver and some measurements of its
performance: both the elapsed time for individual operations as
well as its performance under load.

Its behavior closely follows that predicted in some carlier papers
on the V kernel [4] as well as some results based on queuing
nctwork models (8] In particular, clapsed times for file aceess
incrcase under load as the processor. being the most critical
resource, saturales. Network utilization and disk utilization are

much lower.

In performing these experiments, we ran into a danger raised in
the previous modeling study, nanely that lack of bulfering at the
network level can cause packet loss such that some gains from
large transfer units are lost. Because our network interface has
only 2 receive buffers and one transmit bufter, it is critical to
schedule these well to avoid packets being dropped because the
receiver bullers are full and o avoid small acknowledgement
packets, ctc. being cexcessively delayed &t the network i_mcrfacc
Nole that this problem
ariscs, not from the average arrival rate of network packels, but
from the occasional clustering of packets from many clicnts in a
short time interval.

behind large multi-packet transfers.

We arc endeavoring to improve the kernel handling of the
network interface to reduce the amount of packel loss with this
particular network interface. We are also acquiring some higher
performance network interfaces with mote buffering on board o
further reduce this effcet. At this point, we suspect that such a
network interface is absolutely required for the file server to
provide its full service potential and make maximum use of the
cbu.

In this vein, performance we have.measured is valid for file server
hardware providing a processor similar to those ol the client
workstations. 1 one views this processor as providing the file
system processing for K processors which would be distributed if
cach had a local disk, the saturation of the processor is not
surprising. That is. if file system processing takes 5 percent of a
processor with a local disk, then one processor should be able Lo
support less than 20 workstations, and saturate at higher loads.
Of course, the file server processor hags the additional overhead of
implementing the nctwork protocol and the clients run slightly
faster without this file system processing overhead,

Ourresults are dependent on the use of a single similar processor
for the file server. We plan to extend this work 1o consider file
server performance on multiprocessor machines as soon as the V
kernel is available on one.

References

1. A. Bechtolsheim, I°. Basketl, V. Pratt. ‘The SUN Workstation
Architecture. C'ompuler Science Department, Stanford
University, January, 1982,

Proceedings of the 1985 ACM Computer Science Conference— Agenda for Computing Research: The Challenge for Creativity, 1985 March 12-14

2. 2.1 Berglund, P. Bothner, K.P. Brooks, D).R. Cheriton, S.1.
Dcering, 1.C. Dunwoody, R.S. Finlayson, D.R. Kacelbling, K.A.
Lantz, I.P. Mann, R.J. Nagler, W.1. Nowicki, P.J. Roy, M.M.
Theimer and W. Zwacnepocel. V-System Relerence Manual,
Computer Systems Laboratory, Stanlord University

3. DR Cheriton, The Thoth System: Multi-process Structuring
and Portability. American Llsevier, 1982.

4. D.R. Cheriton and W. Zwaencpoel. The Distributed V Kernel
and its Performance for Diskless Workstations. Proccedings of
the 9th Symposium on Operating System Principles, ACM, 1983.

5. D). Cheriton. "The V Kernel: A Software Base for Distributed
Systems.” ILAT Software £, 2 (1984), 19-43.

6. DR Cheriton. A Uniform 170 Interface and Protoco! for
Distributed Systemis. submitted for publication

7. M. McKusick, W.N. Joy, S.J. [effler and R.S. fabry. "A Fast
File System for Unix.” ACM Transactions on Computer Systems
2, 3(1984).

8. I Lavowska, J. Zahorjan, D.R. Cheriton and W. Zwacncpocl.
File Access Performance of Diskless Workstations. Tech, Rept.
STAN-CS-84-1010, Computer Science Department, Stanford
Universitly, 1984

9. M. Powell. The DEMOS FFile System. Procecdings of the 6th
Symposium on Operating System Principies, ACM,
Novemiber, 1977. Published as Operating Systems Review 11(5).

10, . M. Ritchie and K. Thompson. “The UNIX timesharing
system.” Comm. ACM [7, 7 (July 1974), 365-375.

11, G.R. Sager. Unix Iile Performance Notes. Unpublished
Unix file performancé measurements

12. K 'Thompson. "UNIX lmplementation.” Bell System
Technical Journal 57, 6 (July- August 1978).

308

