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ABSTRACT

In this paper, we propose to utilize Convolutional Neural Net-

works (CNNs) and the segmentation-based multi-scale anal-

ysis to locate tampered areas in digital images. First, to deal

with color input sliding windows of different scales, a uni-

fied CNN architecture is designed. Then, we elaborately de-

sign the training procedures of CNNs on sampled training

patches. With a set of robust multi-scale tampering detectors

based on CNNs, complementary tampering possibility maps

can be generated. Last but not least, a segmentation-based

method is proposed to fuse the maps and generate the final

decision map. By exploiting the benefits of both the small-

scale and large-scale analyses, the segmentation-based multi-

scale analysis can lead to a performance leap in forgery lo-

calization of CNNs. Numerous experiments are conducted to

demonstrate the effectiveness and efficiency of our method.

Index Terms— Image forensics, forgery localization,

multi-scale analysis, Convolutional Neural Networks.

1. INTRODUCTION

Image forgery localization is one of the most challenging

tasks in digital image forensics [1]. Different from forgery

detection which simply discriminates whether a given im-

age is pristine or fake, image forgery localization attempts

to detect the accurate tampered areas [2]. Since forgery lo-

calization needs to conduct pixel-level analyses, it is more

difficult than the conventional forgery detection task.

Different clues are investigated to locate the tampered ar-

eas, e.g., the photo-response nonuniformity noise (PRNU)

[3], the artifacts of color filter array [4], the traces left by

JPEG coding [5], the near-duplicate image analysis [6], and

copy-move forgery detection [7], etc. The tampering oper-

ations inevitably distort some inherent relationships among

the adjacent pixels, features motivated by steganalysis [8] are

frequently adopted to localize tampered areas [9, 1]. In 2013,
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Fig. 1. The framework of MSCNNs. Note that the sliding

windows (blue, green, red squares) and superpixels do not

indicate their real sizes.

IEEE Information Forensics and Security Technical Commit-

tee (IFS-TC) established the First IFS-TC Image Forensics

Challenge [10]. In the second phase, a complicated and prac-

tical situation for evaluating the performance of forgery lo-

calization was set up. The winner [11] and successors [6,

1] combined different clues to achieve high scores. As far

as we know, the former best F1-score using a single clue

from statistical features was achieved in [1] which was based

on color rich models [12] and the ensemble classifier [13]

(SCRM+LDA).

We focus on forgery localization utilizing statistical fea-

tures extracted by Convolutional Neural Networks (CNNs)

[14]. Booming in computer vision tasks, CNNs are also ap-

plied in image forensics. In [15], CNNs are applied in me-

dian filtering image forensics. In [16], a novel constrained

convolutional layer is utilized to suppress the content of the

image, and CNNs are adopted to detect multiple manipula-

tions. In [17], a CNN with SRM kernels [8] for the first

layer initialization is adopted for forgery detection. In [18],

they show that residual-based descriptors can be regarded as

a simple constrained CNN which can conduct forgery detec-

tion and localization. Numerous meaningful works have been

http://arxiv.org/abs/1706.07842v4


done to improve the performance of image forensics by adopt-

ing CNNs, they try to construct different CNN architectures.

While in computer vision tasks, typical CNNs, e.g. AlexNet

[14], VGG [19], ResNet [20], etc., are directly adopted for

different purposes [21], and they mainly focus on the prepro-

cessing and postprocessing. This kind of adoptions acceler-

ate the development of many computer vision tasks. Thus,

instead of designing a totally novel CNN, we adopt and mod-

ulate the state-of-the-art CNNs [22] to construct our frame-

work for image forgery localization. More powerful CNNs

can also be adopted in the proposed framework in the future.

In this paper, an image forgery localization method based

on Multi-Scale Convolutional Neural Networks (MSCNNs)

is proposed, as shown in Figure 1. In our method, sliding

windows of different scales are put into a set of CNNs to gen-

erate real-valued tampering possibility maps. Then, based on

the graph constructed on superpixels [23], we can generate

the final decision map by fusing those possibility maps. The

contributions are two-fold: First, we propose to utilize multi-

scale CNNs to detect forged regions. A unified CNN architec-

ture is formulated for color patches, and multi-scale CNNs are

treated as a set of “weak” classifiers to fully exploit the bene-

fits of both the small-scale and large-scale analyses. Second,

based on the fusion method in [2], the segmentation-based fu-

sion method is proposed to efficiently process images of dif-

ferent sizes. Maps fusion based on conditional random fields

is conducted on the superpixel-level graph, and two strate-

gies for superpixel-level tampering possibility maps genera-

tion are proposed and compared.

On the IFS-TC dataset, MSCNNs can achieve the best

performance among the forgery localization methods which

merely utilize one kind of clue for splicing detection. To the

best of our knowledge, only three methods, i.e., the winner

[11] and successors [6, 1], can achieve higher scores than

MSCNNs, but they all combine multiple different clues, e.g.

statistical features, copy-move clues etc. The proposed MSC-

NNs only utilizes statistical features extracted by CNNs and

can be further improved by adopting other clues. Besides, to

demonstrate the robustness of the proposed framework, we

also conduct experiments on another dataset, i.e. Realistic

Tampering Dataset (RTD) [2, 24].

The rest of the paper is structured as follows. In Section 2,

we elaborate the proposed method. In Section 3, experiments

are conducted. In Section 4, we draw conclusions.

2. METHOD

2.1. CNNs architecture

Our motivation is that we want to replace the SCRM+LDA [1]

with the end-to-end CNNs to estimate the tampering probabil-

ity of a given patch. Adopting the sliding window manner, we

can give the tampering possibility map of the investigated im-

age. The CNNs proposed in [22] achieve the state-of-the-art

performance for steganalysis on gray-scale images. Consid-

ering the close relationship between image forensics and ste-

ganalysis, we adopt this kind of CNNs as the basic architec-

ture in our work. In the first layer of their CNNs, a single high

pass filter (we call it the base filter) is utilized to suppress the

image content. In our work, to deal with color patches, two

kinds of base filters are tested:

(1) Fixed SRM kernels: the base filters are fixed, and

set as the SRM kernels [8]. In [17], 30 SRM kernels are

adopted for the initialization of the first layer of their CNNs.

We adopt all the SRM kernels as fixed base filters, and leave

the task of validating their effectiveness to the backend net-

work. Referring to [17], the 30 SRM kernels are formu-

lated as 5 × 5 matrixes {F1, · · ·F30} with zero-valued un-

used elements. The inputs are three-channel color patches,

so we need 30 × 3 filters to generate 30 feature maps. For

the jth feature map (j ∈ {1, 2, · · ·30}), the corresponding fil-

ters are set as {Fj
1,F

j
2,F

j
3} = {F3k−2,F3k−1,F3k}, where

k = ((j − 1) mod 10) + 1.

(2) Constrained filters: in [16], a kind of constrained filter

was proposed for manipulation detection. Here, we adopt it

for forgery localization. The constraint means that the filter

weight at the center f(0, 0) = −1, and
∑

r,c 6=0 f(r, c) =
1, f(r, c) denotes the element in the base filter F. For fair

comparisons, 90 5× 5 constrained filters are adopted.

As we adopt 90 base filters, we modulate the parameters

of CNNs in [22], and the unified CNN architecture can be

depicted as Figure 2. For different scales of input patches,

we only need to change P in the last average pooling layer,

ensuring that the input of the fully-connected layer is a 256-

dimensional vector. Based on the CNN depicted in Figure 2,

we can train a set of CNN detectors with input patches of dif-

ferent scales. The detailed training procedures are introduced

in Section 3.

2.2. Maps generation

For each input image, it is analysed by the sliding window of

the scale as s × s with a stride of st based on the CNN de-

tectors described in Section 2.1. Then, we can get the tam-

pering possibility map M̂s of size hs × ws, where hs =
⌊(h− s)/st⌋+1 and ws = ⌊(w− s)/st⌋+1, h and w denote

the height and width of the input image, and ⌊·⌋ denotes the

floor function. The elements in M̂s denote the probabilities

of the corresponding patches being fake. In order to get the

possibility map Ms with the same size as the input image, the

element ms
i,j in Ms is computed as:

ms
i,j =

1

K

∑K

k=1
m̂s

k (1)

where K is the number of patches containing pixel Ii,j , and

m̂s
k denotes the corresponding value in M̂s. Inevitably, for

some pixels, K is equal to 0, and the pixels always appear



Fig. 2. The architecture and parameters of the unified CNNs.

around the edges of the image. We simply set the same prob-

abilities as the nearest pixels whose K 6= 0. Since we have

a large stride st, there are mosaic artifacts in the possibility

map generated by formula (1). Naturally, it is expected that

the map for an image tends to be smoother [1]. To smooth the

possibility map, the mean filtering is applied as:

m̄s
i,j =

1

s× s

s

2
−1∑

i′=− s

2

s

2
−1∑

j′=− s

2

ms
i+i′,j+j′ (2)

where s is the size of corresponding patches. Thus, we can

get the smoothed possibility map M̄s with elements as m̄s
i,j .

2.3. Maps fusion

With the analyses of multi-scale CNNs detectors, we can get

a set of tampering possibility maps {M̄s} for each image, and

s denotes the scales of input patches. The final task is to fuse

possibility maps to exploit the benefits of multi-scale analy-

ses. In [2], the multi-scale analysis in PRNU-based tampering

localization was proposed. By minimizing an energy func-

tion, possibility maps fusion is formulated as a random-field

problem where decision fusion resolves to finding an optimal

labeling of authentication units. The optimization problem

is solved by the graph cut algorithm whose worst case run-

ning time complexity is O(ev2) [25], where v is the number

of nodes in the graph and e is the edge number. They con-

sider a 2nd-order neighborhood, which means that e ≈ 4v,

so the complexity of the method is O(v3). They adopt pix-

els as the nodes in the graph, thus the computing time of the

large image is almost unacceptable. So we propose to con-

struct graphs on superpixels, and find the optimal labels on

the superpixel level.

Simple linear iterative clustering (SLIC) [23] is a com-

monly used efficient superpixel segmentation method, and we

adopt SLIC to conduct oversegmentation on the investigated

color images. The complexity of SLIC is linear, i.e. O(v),
and it is easy to generate superpixels by SLIC for large im-

ages. In the computer vision tasks, images are usually seg-

mented into hundreds of superpixels. In the task of tampering

possibility maps fusion, large superpixels can lead to informa-

tion loss. Thus, thousands of superpixels must be generated

in our task. Then, a graph on the superpixels is constructed,

each superpixel is treated as a node in the graph and the ad-

jacent superpixels are connected by an edge. The number of

graph nodes is around several thousand, which is much easier

to compute by the graph cut algorithm. Besides the efficiency

of the superpixel-level computation, the segmentation-based

method can also well adhere to the real boundaries, and avoid

mislabeling of homogeneous pixels, resulting in the perfor-

mance improvement.

As for the superpixel-level tampering possibility maps

M
sup
s generation, two strategies are proposed and compared.

The one is “mean”, and the tampering possibility ms
supl

of

superpixel l under scale s is computed as:

ms
supl

=
1

Pl

∑Pl

p=1
m̄s

p (3)

where Pl denotes the number of pixels in superpixel l, and

ms
supl

∈ M
sup
s . m̄s

p is the element in M̄s. The other strategy

called “maxa” is:

ms
supl

= m̄s
p0
, p0 = arg max

p=1,··· ,Pl

(abs(m̄s
p − θ)) (4)

where m̄s
p ∈ [0, 1], so we set θ = 0.5. With the superpixel-

level graph and superpixel-level maps at hands, it is easy to

fuse the maps by minimizing the energy function in [2]:

1

S

N∑

i=1

∑

{s}

Eτ (c
(s)
i , ti) +α

N∑

i=1

ti +

N∑

i=1

∑

j∈Ξi

βij |ti − tj | (5)

where S is the number of candidate possibility maps. In our

segmentation-based method, N is the number of elements in

M
sup
s , ti = 1 denotes tampered units, and c

(s)
i denotes the

element of the input candidate map with analysis windows of

size s, i.e. c
(s)
i = ms

supl
. The three terms can penalize differ-

ences of different possibility maps, bias the decision towards

the hypotheses and encode a preference towards piecewise-

constant solutions. For space limitations, the detailed defi-

nitions and discussions of the terms are not provided here,

readers can kindly refer to the seminal work [2] for details. In

terms of the parameters in the energy function, we adopt the

default settings of the codes provided by [2].

3. EXPERIMENTAL EVALUATION

Experiments are conducted on two publicly available datasets.

In Section 3.1, we introduce the experimental results on the

image corpus provided in the IFS-TC Image Forensics Chal-

lenge (IFS-TC) [10]. In Section 3.2, experiments are con-

ducted on Realistic Tampering Dataset (RTD) [2, 24].



3.1. Experiments on IFS-TC

In the IFS-TC image dataset, there are two sets of images,

i.e. 450 images in the training set with corresponding human-

labeled ground truths, and 700 testing images without ground

truths. The scores on the testing set have to be computed by

the system provided by the IFS-TC challenge. Thus, in order

to test the methods locally, we randomly select 368 images

for training and 75 images for testing (7 images are deserted

for imperfect ground truths) from the training set of IFS-TC.

For the sake of clarity, the image set of 368 images is called

sub-training set, the image set of 75 images is called testing

set-1, and the testing set of IFS-TC with 700 images is called

testing set-2.

During the patches generation, we also adopt the sliding

window manner. The sliding window with a fixed scale slides

across the full image. We set the stride st as 8 to get plenty

of sampled patches. In the training set, the tampered areas are

marked as the ground truths, we can sample patches based on

whether they contain tampered pixels. In [1], the patches tam-

pered with 10% to 90% are regarded as fake patches for that

discriminative features mostly appear around the contours of

manipulated regions, we also adopt this strategy. The rates of

the tampered areas in the full images differ greatly. In some

images, more than ten thousand patches can be generated,

while in some images, no patch can be generated. The im-

balance of patches distribution can lead to overfitting, so we

set an upper threshold T . While more than T patches are gen-

erated, we randomly select T patches, and we set T = 500
to make sure that we sample a similar number of patches on

most images. With the sliding window sampling manner, no

patch can be generated for some images. For those images,

we resample patches which are centered at the tampered ar-

eas. If the tampered rates of patches are satisfied, the patches

are selected. After the fake patches are generated, we sample

the same number of pristine patches in the same images, and

the pristine patches do not have any tampered pixels. With 5
groups of sampled patches of scales as {32, 48, 64, 96, 128},

5 independent CNNs can be trained, and the CNNs are trained

on the sub-training set.

Our method is implemented via Caffe and Matlab. Mini-

batch gradient descent is adopted for training, the momen-

tum is 0.99 and weight decay is 0.0005. The learning rate

is initialized to 0.001 and scheduled to decrease 10% for ev-

ery 8000 iterations. The convolution kernels are initialized by

random numbers generated from zero-mean Gaussian distri-

bution with standard deviation of 0.01, and bias learning is

disabled. The parameters in the fully-connected layer are ini-

tialized using “Xavier”. Note that the input patches for the

CNNs should all subtract the mean values of each channel.

We summarize localization performance as an average

F1-score [1]. As shown in Table 1, the comparisons between

SCRM+LDA (codes provided by [12, 13]) and different vari-

ants of CNNs are conducted. “MF” denotes mean filtering,

Table 1. The comparisons on the IFS-TC testing set-1. Time-

1 denotes the training time, and Time-2 denotes the average

computing time.
Method Size Stride Time-1 (s) Time-2 (s) F1-score

SCRM+LDA 64 16
3.20 × 105

2854.75 0.2847

SCRM+LDA+MF 64 16 2855.05 0.3123

CNN-SRM 64 8
3376.07

17.11 0.3263

CNN-SRM+MF 64 8 17.32 0.3423

CNN-SRM+MF 64 16 3376.07 8.38 0.3354

CNN-C-SRM+MF 64 8 3843.03 31.66 0.2816

CNN-C-GAU+MF 64 8 3849.09 31.71 0.2718
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Fig. 3. The F1-scores of CNNs with input patches of different

sizes on IFS-TC testing set-1.

and it can certainly improve the F1-scores based on the exper-

imental observation. The results in Figure 3 also corroborate

that, and the main reason of the improvement achieved by MF

smoothing is that the map for an image tends to be smoother

without mosaic artifacts caused by sliding-window opera-

tions. The training procedure of SCRM+LDA takes too much

time. Although we have a powerful CPU, it takes almost 4
days. Furthermore, its average computing time on the images

is also unacceptable. With the same patch size (64) and stride

(16), the computing time of CNN is 1/340 of SCRM+LDA.

CNN-SRM denotes the CNN with fixed SRM base filters,

CNN-C-SRM denotes constrained filters with SRM initial-

ization and the base filters of CNN-C-GAU are constrained

filters with Gaussian initialization. It can be seen that CNN-

SRM can achieve higher F1-scores. Because there are many

zero values in the SRM base filters, it is also more efficient

than CNN-C-SRM and CNN-C-GAU.

For the good performance of CNN-SRM, we adopt this

form of CNN for multi-scale analyses, and the stride is set as

8. As shown in Figure 3, CNNs with scales as 64 and 96 can

achieve higher scores, and no single-scale CNN can achieve

a score higher than 0.35. Nevertheless, as shown in Figure 4,

the multi-scale analysis can improve the performance signif-

icantly. As an alternative, we resize the maps, and conduct
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Fig. 4. The F1-scores of MSCNNs with different combina-

tions on IFS-TC testing set-1.

maps fusion on the resized pixel-level maps directly. Let w
and h denote the width and height of the maps, if w > 2000
and h > 2000, the map is reduced to 1/10 of the original

map; if w < 1000 and h < 1000, the map is reduced to 1/2;

otherwise, it is reduced to 1/4. We call this kind of method

as “MSCNN-resize”. “mean” and “maxa” represent the two

strategies for superpixel-level tampering possibility maps

generation. It can be seen that MSCNNs can achieve higher

scores with more scales, and MSCNNs-maxa can achieve

a higher score than MSCNNs-resize and MSCNNs-mean.

In MSCNNs-maxa and MSCNNs-mean, all the images are

empirically segmented into 4000 superpixels, and adaptive

segmentation strategies for maps fusion need further research

in the future.

Subsequently, we adopt five single-scale CNNs and the

5-scale MSCNNs to test on the testing set-2. As shown in Ta-

ble 2, the right side presents the results of different variants

of our method, and the left side presents results of the state-

of-the-art methods for splicing detection. In another word,

the compared methods are not designed for some particular

cases, e.g. copy-move forgery detection, and can be utilized

to detect any splicing forgeries. Their results are borrowed

from their papers [1, 6, 11]. SCRM+LDA adopts the slid-

ing window manner with the scale of 64, and our CNN with

s = 64 can achieve better performance than SCRM+LDA.

Multi-scale analyses can greatly improve the performance of

CNNs, and MSCNNs-maxa can achieve a similar F1-score as

the winner of IFS-TC challenge [11] (0.4063 vs. 0.4072). The

winner makes use of three different clues, while MSCNNs-

maxa only utilizes features extracted by CNNs and can be

further improved by combining other clues.

We evaluate the computing time on the testing set-2 in

which the sizes of images vary from 922×691 to 4752×3168
(most images are around 1024× 768). Experiments are con-

ducted on a machine with Intel(R) Core(TM) i7-5930K CPU

@ 3.50GHz, 64GB RAM and a single GPU (TITAN X). As

Table 2. Results on the IFS-TC testing set-2.
Method F1-score Variant F1-score

S3+SVM [11] 0.1115 CNN-SRM32MF 0.3436

S3+LDA [1] 0.1737 CNN-SRM48MF 0.3526

PRNU [6] 0.2535 CNN-SRM64MF 0.3570

SCRM+LDA [1] 0.3458 CNN-SRM96MF 0.3423

CNN-SRM128MF 0.3135

MSCNNs-resize 0.4014

MSCNNs-mean 0.4025

MSCNNs-maxa 0.4063

Table 3. Computing time on IFS-TC testing set-2.
32 48 64 96 128

CNNs
Average time (s) 15.47 15.10 17.74 19.21 19.56

Median time (s) 7.96 7.67 8.89 9.33 9.20

MF
Average time (s) 0.08 0.13 0.19 0.37 0.63

Median time (s) 0.04 0.07 0.11 0.20 0.35

multi-scales fusion: 32+48+64+96+128

Fusion
Average time (s) 20.88

Median time (s) 11.75

shown in Table 3, the computing time of 5-scales MSCNNs

is around 60 s for most images. The MF and Fusion (includ-

ing SLIC) procedures are implemented on CPU which can be

further accelerated by implementing on GPU.

3.2. Experiments on RTD

The RTD dataset contains 220 realistic forgeries created by

hand and covers various challenging tampering scenarios in-

volving both object insertion and removal. The images were

captured by four different cameras: Canon 60D (C60D),

Nikon D90 (ND90), Nikon D7000 (ND7000), Sony α57

(S57). All images are 1920 × 1080 px RGB uint8 bitmaps

stored in the TIFF format [2, 24]. Each kind of camera con-

tains 55 images, and we randomly select 27 as the training

set, and the left 28 images compose the testing set. In another

words, there are 108 images in the training set and 112 im-

ages in the testing set. We adopt the same manner to sample

patches on RTD, readers can refer to Section 3.1 for details.

Firstly, we adopt the models trained on the sub-training

set of IFS-TC to test on the RTD testing set. The CNN is

the model based on CNN-SRM and mean filtering, and the

results of SCRM+LDA are also processed by mean filtering.

The size of the sliding window is 64× 64, and the stride is set

as 16 for fair comparison. The models based on MSCNNs are

the 5-scale models as above mentioned. As shown in Figure

5, the performance of all the models decline than the perfor-

mance on IFS-TC. It proves that both CNN and SCRM+LDA

tend to be sensitive to the training sets for that the images may

be captured from different cameras and the quality of manipu-

lations may be different. In a different dataset, MSCNNs can

still achieve better performance.

Then, models trained on the RTD training set are com-
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Fig. 5. The F1-scores on RTD testing set. All the models are

trained on the sub-training set of IFS-TC.
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Fig. 6. The F1-scores on RTD testing set. All the models are

trained on the training set of RTD.

pared. As shown in Figure 6, it can be seen that the perfor-

mance of CNN is worse than SCRM+LDA. However, with

the help of multi-scale analyses, MSCNNs can achieve better

performance than SCRM+LDA except for results on ND90.

Furthermore, the CNN and MSCNNs are very efficient, the

average computing time of CNN is 6.58 s, and the comput-

ing time of MSCNNs is 34.62 s (5 CNNs on GPU) +30.36
s (the fusion procedure on CPU), while SCRM+LDA takes

2220.45 s per image. Thus, MSCNNs is a better alternative

of SCRM+LDA in the image forgery localization tasks.

4. CONCLUSIONS

In this paper, a novel forgery localization method based on

Multi-Scale Convolutional Neural Networks is proposed.

CNNs for color patches of different scales are well designed

and trained as a set of forgery detectors. Then, segmentation-

based multi-scale analysis is utilized to dig out the informa-

tion given by the different-scale analyses. Full experiments on

the publicly available datasets demonstrate the effectiveness

and efficiency of the proposed method named MSCNNs. Al-

though the proposed method can achieve the state-of-the-art

performance, it still has a long way to go for real applications.

The robustness of existing works against post compression,

manipulation qualities and camera models still needs to be

further studied. In the future, MSCNNs can also be improved

by adopting more powerful CNNs.
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