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ABSTRACT

Loitering is a suspicious behavior that often leads to criminal
actions, such as pickpocketing and illegal entry. Tracking
methods can determine suspicious behavior based on tra-
jectory, but require continuous appearance and are difficult
to scale up to multi-camera systems. Using the duration of
appearance of features works on multiple cameras, but does
not consider major aspects of loitering behavior, such as
repeated appearance and trajectory of candidates. We intro-
duce an entropy model that maps the location of a person’s
features on a heatmap. It can be used as an abstraction of
trajectory tracking across multiple surveillance cameras. We
evaluate our method over several datasets and compare it
to other loitering detection methods. The results show that
our approach has similar results to state of the art, but can
provide additional interesting candidates.
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1 INTRODUCTION

Loitering is a problem in the public safety domain, where an
individual stays in an area for an extended period of time
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Figure 1: Overview of the entropy model. a) Split the

camera view up into bins. b) Add each feature to the

correct bin based on location in camera view. c) Calculate
the entropy score

without a clear goal [15]. It is seen as a precursor to illegal
behavior such as pickpocketing or illegal entry.

A number of approaches exist for detecting loitering be-
havior [6]. Detecting loitering is usually done by looking at
a single camera view. Loitering behavior is then decided by
looking at the duration of appearance, or the trajectory of a
person. For duration, if the person is visible on the camera
view for a certain amount of time, he or she is considered
loitering. For trajectory-based methods, the length or the
curvature of the trajectory is used to determine loitering
behavior. Some methods also consider people leaving and
re-entering the camera’s field of view [5, 12].

These works provide a yes/no answer to whether or not
a certain candidate is a loiterer. For this, some threshold
for time or a score is involved. Choosing this threshold is
challenging, as pedestrians showing suspicious behavior that
stay in the area below this time threshold will not be detected.
Finally, tracking based methods require people to be tracked
continuously and therefore struggles in crowded scenes due to
occlusions. In contrast to this single view, many areas exist
where multiple cameras are installed, covering a larger region
of a space or providing different viewing directions. We could
apply single-camera methods to all these cameras in parallel.
However, this would treat each camera as their own confined
space. As a result we will lose insight into the big picture of
the entire surveilled scene.

Liu et al. [9] address the problem of loitering across mul-
tiple cameras. They forgo tracking approaches and instead
propose a scalable approach based on the frequency of the
appearance of facial features. This approach works regardless
of the amount of cameras used and it does not need to keep
the positional relationship between cameras into account. It
groups similar facial features together in their proposed simi-
larity tree. It then provides a list of loitering candidates based
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on the amounts of facial features captured of one individual.
Having a lot of features signifies that a person has been in
the area for a long time.

While their method can provide a good list of initial candi-
dates they only use duration to determine loitering behavior.
Duration is a good initial indication of loitering, but there
are other indicators as well, such as frequently reappearing
in the same area. As they do not rely on tracking methods,
they do not consider the trajectory of a person either.

To utilize the more in-depth information that tracking
approaches provide, without relying too much on detailed
tracking, we introduce an entropy model. We use this model
to determine the amount that someone moves across a camera
view. Using this model, we assign a higher likeliness of loiter-
ing to people that move more as opposed to standing still.
We combine this entropy model with appearance duration
and frequent reappearance to provide a loitering candidate
list.

An overview of our entropy model can be seen in Fig. 1.
First we input the features of people in the camera view
into our system. For each camera view we create a heatmap,
by splitting the camera view into bins. Next, we transform
the position of features to the heatmap. The heatmap serves
as an abstraction for tracking methods. It shows the rough
trajectory of a person across the camera view, as well as how
long they stood still in a certain location. Then by calculating
the entropy of the heatmap, we get a measure for the amount
a person moved inside the camera view.

Based on this hybrid approach we can provide a potential
list of loiterers in the same level of accuracy and recall as
other loitering detection methods. Both single- and multi-
camera feature extraction can be used to provide input to our
system. Our method scores people that show more aspects of
loitering as higher candidates than people that only appear for
a long duration. In addition our method provides additional
interesting candidates.

In this paper we contribute the following:

• We propose an entropy model applied to a multi-camera
surveillance system that models the movement of peo-
ple. In addition we propose a measure for repeated
leaving and entering of an area.
• We combine our measure into a loitering score that
can be used to provide a list of potential loitering
candidates.
• We conduct experiments over several datasets to eval-
uate our method and compare it to other loitering
retrieval methods. The results show that our method
provides similar levels of accuracy and recall as with
other state-of-the-art methods, but will rank moving
and frequently reappearing candidates higher. Finally,
our method provides additional interesting candidates.

2 RELATED WORK

Trajectory. One way to detect loitering behavior is by
looking at the trajectory of a pedestrian. Ko et al. [7] trans-
form their camera image to account for the camera’s angle

and then track the center of an object moving in the camera
view. Loitering behavior is then determined if a trajectory
has irregular and large direction variations compared to a
pre-defined threshold. Li et al. [8] track the trajectory of
people moving in their static scene and determine loitering
based on the angle of their path and the time duration of
the path. Park et al. [13] propose a loitering detection algo-
rithm using a regional histogram and object velocity. While a
pedestrian is tracked, their location is stored in a histogram.
If they exit and re-enter the same area multiple times, they
are considered a loiterer. In addition to that, if the pedes-
trian’s velocity is lower than a pre-defined threshold and
the displacement is higher than a pre-defined threshold, the
pedestrian is classified as a loiterer.

Looking at the trajectory can be an effective way to detect
loitering behavior. However, these approaches require con-
tinuous and reliable tracking to obtain the trajectories. In
crowded or occupied scenes the tracking could fail, making
these methods difficult to use in real scenarios. We will pro-
pose the entropy model measure based on tracking that does
not require a consistent view of people, but will still provide
information on where the tracked person has been.

Entropy. Some methods utilize entropy theory to detect
abnormalities. Ren et al. [14] propose a behavior entropy
model to detect abnormal behaviors in a crowd. Xiong et al.
[17] use a kinetic energy model to determine irregularities
in crowd behavior. They create a histogram for each axis
of the foreground pixels. Then they calculate the entropy
to determine the crowd dispersion, which is used to get the
kinetic energy of the crowd. If the crowd dispersion or kinetic
energy exceeds a set threshold, an alarm signal is sent.

These works show that entropy theory can be applied to
detect irregularities in crowds. Inspired by this, we will apply
entropy theory to individuals as a measure to determine how
much they are moving.

Classification. Bird et al. [2] use a single camera method
to detect loiterers around a bus stop. Their method takes
snapshots of people that are clearly visible and then uses the
clothing color of people for similarity matching. Loitering is
determined based on the duration of appearance. Tomás et
al. [16] identify sequential micro-patterns (such as walk, stop,
walk, stop) to determine loitering behavior of the elderly.
Elhamod et al. [3] provide a semantics-based approach using
both features of objects and the relationship between them
to define and detect behavior of interest, such as loitering or
abandoned luggage.

Nam [12] tracks pedestrians as blobs using a color feature
model. Difference in shape, color and distance traveled is
then used to track these blobs over multiple frames. It raises
a loitering alarm if a person remains in a pre-defined region of
interest longer than a loitering time-threshold. The method
also accounts for pedestrians briefly moving out of view and
re-entering again, without resetting the alarm timer. The
loitering time-threshold is adapted automatically during a
learning phase.
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Table 1: Quick reference to the meanings of notations

used through the paper.
Symbol Meaning of notation

Ci Camera with id i
CC Camera count, the amount of cameras the candidates is visible on
CAj Camera Appearance with id j
Tca Camera Appearance Threshold
RA(Ci) Camera i’s Reappearance
RAS ReAppearance Score
FC(x) Feature Count of x

bji Bin with id i in the heatmap of CAj

p
b
j
i

Probability of bin with id i in the heatmap of CAj (p
b
j
i
for empty bins)

hej Heatmap entropy of the heatmap of CAj (excludes empty bins)
Dur(x) Duration of x
P (CAj) Presence of CAj

WES Weighted Entropy Score
DS Duration Score
LS Loitering Score

Huang et al. [5] extract their features through a color
structure approach. They can then track people in a single
camera. They define local loitering; someone loitering in the
scene for an extended period of time, and global loitering;
which keeps in mind that the candidate can temporarily
leave the camera view and then return to it if they are
loitering around the area. Arsic et al. [1] use multiple cameras
surveilling the same scene at different angles to track and
detect loiterers and abandoned luggage.

Lu et al. [11] present a summarization method consisting
of three steps. First, pre-processing finds and tracks objects.
Next, the holistic-level summarization decides on representa-
tive images using an energy minimization method. Finally,
the object-level summarization provides relevant meta data
for each object. Loitering is detected by mapping the tra-
jectory of objects on histograms for each axis. If the ratio
between windows of these two histograms exceeds a threshold
value the object is considered a loiterer.

Most of the related work on loitering detection only pro-
vides a classification of a loiterer. For this, some threshold
for time or a score is involved. Choosing this threshold is not
easy in practice. For example, pedestrians showing suspicious
behavior that stay in the area below this time threshold
will not be detected. Additionally, they make no distinction
between people who move and people who are waiting. When
analyzing a large amount of footage, there could be many
potential loiterers. It will be difficult to fine tune an alarm
based on a time threshold. We reconsider trying to classify
loiterers, by providing a list of candidates instead, with the
most likely loiterer at the top. This allows the operator to
make the final judgment. Our method can retrieve loiterers
and provide other suspicious candidates in an ordered list
sorted by suspicion level.

3 OUR APPROACH

Most methods deal with classification of loitering. They clas-
sify a person as loitering or not loitering. Such a yes/no
answer requires a score or a time threshold. Thresholds will
bring misclassification for border cases.

In reality however, there will still be an operator that is
using surveillance systems. We do not have to completely
replace the operator and instead should focus on assisting

them. With this in mind, we rethink the loitering analysis as a
loiterer retrieval problem in this paper. We propose a ranking
measure to retrieve a list of loitering candidates ordered by
level of interest. The operator or expert in the surveillance
domain can then use this list to determine the actual loiterers.
In our model, we take into account three important properties
to determine loitering behavior: (1) entropy, (2) reappearance
and (3) duration. Finally, we combine these properties into
a (4) loitering score. Their details can be found in next
subsection.

3.1 Model description

Before we describe our measure, we introduce necessary defi-
nitions that will be used in our approach.

Definition 1 (CA: Camera Appearance). A sequence
of chronologically ordered features of the same person on
the same camera, starting when they enter the camera view
and ending when they leave the camera view (after a time
threshold Tca)

We then use the camera appearance CA to introduce our
entropy model that will be adopted in the ranking measure.

(1) Entropy Model. Two people that appear on a cam-
era for the same amount of time (i.e., duration) can show
vastly different behaviors. For example, one person could
be entering the scene and then waiting in one spot, before
moving again and leaving the scene. The other person could
be moving around the camera view before leaving the scene.
Using only duration does not distinguish between these two
behavior. Likewise, trajectory of a person is not considered
either when only using the duration.

To distinguish between these movements we propose an
entropy model. For each CA, we construct a heatmap. We
map the location of a person on the camera view on this
heatmap. This way we get a rough indication of the trajectory
of a person in the camera view. In addition, we can iden-
tify if the person has been standing still or moving around.
The advantage of using this heatmap approach over a direct
tracking approach is that we do not need continuous views
of a person. It serves as an abstraction of tracking where
someone has been on a single or multiple cameras.

Figure 2: Heatmap examples showing the abstractions of
three different movements of a person: a) walk through
the area; b) keep waiting in the area; c) walk around,
likely loitering in the area.

Fig. 2 shows some heatmap examples. (a) is the heatmap
of a person that is walking through the camera view. We
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can see the person is walking in a straight line and does
not stop midway, as the distribution of the moving path
is spread out equally. (b) is an example of someone who
is waiting. There is a peak in the location the person is
waiting, resulting in a skewed distribution. (c) is an example
of someone who is loitering, by walking, stopping, changing
direction, and repeat. The person moves, stops, changes
direction and repeats, causing an uneven distribution with
multiple small peaks.

To obtain the latent movement information from these
heatmaps, we are inspired by the information entropy theory
[4]. We model movement by calculating the entropy over the
heatmap. First we determine the probability distribution of
the features on the heatmap. In Eq. 1, the probability pbi
of each bin bi on the heatmap is computed by dividing the
count of features (FC(bi)) located in bi by the total count of
features (FC(CAj)) located in the heatmap:

pbi =
FC(bi)

FC(CAj)
(1)

Then, we can compute the heatmap entropy (hej) as follows.

hej = −
∑
i=1

(pbi log(pbi)) (2)

Empty bins do not contribute to the entropy, so they are
excluded from the computation.

If someone is moving, the features are distributed over the
bins, causing the entropy to rise. In addition, if someone has
a non-straight trajectory, their path will go through multiple
bins, further increasing the entropy. However, if someone is
standing still, it skews the distribution over the heatmap,
causing the entropy to decrease.

Figure 3: hej of five persons over time. If someone is mov-
ing, the hej will increase, while standing still causes the
hej to decrease. The hej going up and down shows move,

stop, move, stop behavior. GT indicates the groundtruth

loiterer. The legend is associated with the id of a person
extracted from the dataset.

Fig. 3 shows the heatmap entropy hej over time for five
persons. Once someone enters the area, their entropy will
increase substantially, as only a few bins in the heatmap
will be filled. After a few seconds, the entropy will show
clear trends depending on the behavior. The ground truth
loiterer (blue, 0) starts by pacing through the area causing

Figure 4: An example selected from the dataset (PETS

S1) corresponding to Fig. 3. It shows frames at the times:

40s (a), 70s (b) and 110s (c). In addition, the path is
drawn that they will make until the next image. For the

last image, the path is drawn until they leave the scene.

their entropy to steadily increase. After 40 seconds the person
stands still. We see this in the figure as their entropy decreases
after that point. The potential loitering candidate (red, 18)
enters the area and then stops, changes direction and moves
again multiple times causing this person’s entropy to increase
over time. Note that their entropy is higher than those of
people that have been standing still. Someone who is walking
through the area (yellow, 27) will have a high entropy as they
are only moving, but they score lower than someone who
changes direction multiple times. If someone is pacing back
and forth (green, 31) in a small area, their entropy will stay
roughly the same over time. Finally, if a person is waiting
(magenta, 33), their entropy will steadily decrease.

If someone is moving through the surveilled scene, they will
pass through multiple cameras. For each camera they pass
through, we construct a heatmap and calculate its entropy.
Next we need to combine the entropy scores into one. Simply
adding them up is not a good idea, as this will cause the
entropy score of a person to be higher if they pass through
more cameras, which is not what we want to measure with the
entropy score. Therefore we assign weights to each heatmap,
based on their duration. We mainly aim to distinguish be-
tween moving and waiting people with this measure. As both
of those are associated with a high duration, we weight the
heatmaps of cameras the person appeared longer on higher.

We calculate the weight of each heatmap, which we call
the presence P (CAj), based on the duration of the CAj it
belongs to.

P (CAj) =
Dur(CAj)∑

j=1(Dur(CAj))
(3)

Finally, we combine all heatmap entropies of a person
together into the weighted entropy score WES.

WES =
∑
j=1

(hejP (CAj)) (4)

Definition 2 (WES: Weighted Entropy Score). Given
a sequence of CAs, each with their respective heatmap hj,
WES is the weighted combination of the entropy of each
hj . This is a measure for the amount of movement a person
shows across multiple cameras.

In this way, longer CAs are weighted more substantially.
Short CAs with high entropy, which will be someone walk-
ing through a camera view, will not contribute as much as
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longer CAs. Someone waiting for a longer time will have low
entropy, so while the duration is high, the entropy remains
low and therefore will not contribute much to the WES ei-
ther. Moving in one view for a long time however will have
high duration and high entropy, so this will create a high
contribution to the WES.

(2) Reappearance. The WES serves as a measure to
model the movement of a person. Next we want to model
the movement between camera views. Consider two different
people moving through the same surveilled area. Person 1
appears on five different cameras once, while person 2 appears
on one of the cameras three separate times, and appears once
on 2 other cameras. If their duration is the same. They both
appear for the same duration and after they leave the area
they have 5 CAs each. Using the duration or the entropy
is not enough to distinguish between these two behaviors.
To be able to model the difference we propose the following
definition.

Definition 3 (Reappearance). Given a camera Ci, we
define reappearance as the same person leaving a camera view
and entering it again.

To use the reappearance into a measure we consider the
skewness of reappearance across the cameras as well. For
example, someone who goes to do grocery shopping at a
nearby store will likely show up on a sequence of cameras
twice, once for going to the store and once for returning
home. If they appear 2 times on 3 different cameras, they
reappear the same amount of times as someone who appears
4 separate times on a single camera. To distinguish between
these scenarios, we count each reappearance on a camera as
more substantial than the previous one.

With that in mind, we can then calculate a camera reap-
pearance score for a person as follows:

RA(Ci) = 2a−1 (5)

where a is the amount of CAs for that person on camera i.
In this way, the more a person reappears on the same camera,
the more rapidly the RA(Ci) score increases in exponential
scale.

Finally, we need to normalize the RA(Ci) for the amount
of cameras. To do this, we add the RA(Ci)s together and
then divide by the amount of unique the person appeared
at least once on. Doing that we get our final ReAppearance
Score RAS:

RAS =

n∑
i=1

RA(Ci)/CC (6)

Definition 4 (RAS: ReAppearance Score). Given
all cameras Ci a person has appeared at least once on and
their respective RA(Ci), RAS is the weighted combination of
reappearances.

It is a measure of skewed appearance, showing that the
person is hanging around a certain area instead of merely
walking through it. Therefore, despite the same duration

of appearance, someone repeatedly entering and exiting the
view of the same camera can be distinguished from someone
who only appears once on each camera.

For example, a pickpocket may loiter around a popular
meeting spot. To not attract too much attention from by-
standers he moves around the area, but keeps returning to
look for victims, causing him to repeatedly leave and enter
the camera view. This behavior results in a high RAS.

(3) Duration. A person who is in an area for a longer
period of time is more likely to be loitering. Therefore, we
need to consider the duration as well. First we define the
duration of a CA as follows:

Definition 5 (Dur(CA): Duration of a CA). Given
the features fi in CA, we define Dur(CA) as the difference
in timestamp between the last and the first fi in the CA in
seconds.

Then, to calculate the duration measure, we add the du-
ration of all CAs of a person together. In the case that CA
durations overlap, we do not count the overlapping durations
multiple times. Finally, duration of people can vary substan-
tially, especially in larger surveillance systems. To reduce the
impact of these large difference, we scale the duration score
as follows by taking the logarithm over the final duration:

DS = log(
∑
j=1

(Dur(CAj)) + 1) (7)

Note that we add 1 to the duration before calculating the
logarithm to prevent negative values for durations less than
1.

(4) Loitering Score. Each of the measures above ac-
count for an aspect of loitering behavior. To provide a list of
candidates, we combine the measures above into one loitering
score. Depending on the situation, an operator might consider
one aspect of loitering more important than others. Therefore
we provide weights to each of the measures, so the total score
can be fine tuned based on the needs of the operator.

LS = αRAS + βWES + γDS (8)

Definition 6 (LS: Loitering Score). Given the RAS,
WES and DS, as well as the weights α, β and γ, we define
LS as the weighted combination of the three measures. A
higher score indicates that the person is more likely to be
loitering.

Each factor can be scaled by its associated weight α, β
and γ. As the score is a comparative value, these do not have
to add up to 1, only the ratio between the three should be
considered.

The LS is used to give a ranking of loitering candidates.
The score on its own is meaningless and serves mainly as a
comparison value between candidates. Likewise, the score is
bound to the system it was obtained in and should not be
used to compare to the score of another system.
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3.2 Implementation

Next we will go over how we create our candidate list. For
this we use Algorithm 2. After some pre-processing, it calcu-
lates the measures for entropy, reappearance and duration
for each person. The measures are then combined into the
loitering score. Finally, it outputs a list of candidates ordered
by loitering score. Below we will go over each part of the
algorithm.

Algorithm 1: GroupFeatures()

Input: Features list FLj containing features f j
i of

person j.
Output: List CALj containing CAj

i

1 begin
2 Sort FLj on timestamp ;

3 foreach Feature f j
i do

4 Find CAi for f
j
i .cameraID ;

5 if f j
i .timestamp - CAi.last.timestamp > Tca

then
6 CALj .push(CA) ;

7 Create new CA for f j
i .cameraID

8 Add f j
i to CA ;

9 foreach Open CAi do
10 CALj .push(CA) ;

11 return CALj ;

Pre-processing. Before we can calculate our measures,
we first need to do some pre-processing on our data. Each of
the features comes attached with the following metadata: a
person identifier, a camera identifier, a timestamp and the
position in the camera view. We need to group these features
into CAs. See Algorithm 1.

First the features are sorted by timestamp so they are in
chronological order (line 2). As people can appear simultane-
ously on multiple cameras, we keep track of open cameras.
For each feature we add to a CA, we compare the timestamp
of the last feature added to that CA (line 5). If the time
difference exceeds the Tca, we close the old CA and push
it to the list. The feature is then added to a new CA for
the same camera (line 6 and 7). Otherwise, we just add the
feature to the existing CA (line 8).

Finally, after we have added all features to a CA we push
the remaining CAs (line 9 and 10) and return the list (line
11). We then use this list of CAs for that person to calculate
the measures.

Measures. The construction of the candidate list can be
seen in Algorithm 2. For each person, we group the features
into CAs (line 3). Then we construct a heatmap for each of
the CAs. We split the heatmap into bins according to the hD
(line 5). For an hD of 16, we split the heatmap into 16x16
bins, for a total of 256 bins. Next we iterate over the features
in the CA. We map the center coordinates of the position

Algorithm 2: BuildCandidateList()

Input: Data set ds with features f j
i grouped by person

j, RAS scalar α, WES scalar β, Duration scalar
γ, heatmap Dimension hD

Output: List of candidates CL ordered by score.
1 begin
2 foreach Candidate j ∈ ds do
3 CALj ← GroupFeatures() ;

4 foreach CA in CAL do
5 Construct heatmap of CA with hD dims. ;

6 Compute hej by using Eq. (2) ;

7 Compute WES using Eq. (4) ;

8 Compute RAS using Eq. (6) ;

9 Compute DS using Eq. (7) ;

10 Compute LS using Eq. (8) ;

11 CL.push(j) ;

12 Sort CL by LS ;

13 return CL ;

metadata of the feature to the heatmap to the appropriate
bin in the heatmap. Next we calculate the entropy over each
heatmap (line 6).

After that, we have the information we need to calculate
the measures WES, RAS and DS (line 7, 8 and 9). We
then calculate the LS by scaling each measure with their
appropriate scalar (line 10), after which the processing for
that candidate is done. Finally, we push the candidate j to
the candidate list CL (line 11) and continue to next person.

After all people have scores assigned to them, we order
the candidate list on the LS (line 12).

4 EXPERIMENTS

The experiments were conducted on the Ubuntu 16.04 OS,
with an Intel® CoreTM i7-6700 CPU @ 3.40GHz and 11 GB
of memory. We evaluate our approach using two datasets.

• AntiLoiter Dataset1 [9, 10], and
• PETS 20072 Scenario 1 (PETS S1) and Scenario 3
(PETS S3).

AntiLoiter Dataset. Amulti-scene multi-camera dataset
containing groups of people walking in public areas. Videos
are high resolution (1920x1080). Faces are clearly visible and
timestamp information is provided. One designated person
acting as a real loiterer shows up repeatedly on multiple
cameras.

PETS2007 Dataset. Single-scene multi-camera footage
of an airport. The cameras have a resolution of 768x576,
which consist of multiple scenes for the detection of loitering
and abandoned luggage. To compare our approach to one
of the state of the art [12] and to show that we can use
our approach on single camera scenes we only use the third

1https://github.com/ryukenzen/antiloiter/
2http://www.cvg.reading.ac.uk/PETS2007/data.html
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camera of each scenario to extract the trajectories of persons.
To show that input can be provided by means of a tracking
method, we annotate the features semi-manually, by iterating
over a subset of the frames (every 4th frame) and selecting the
face of each candidate while they are visible on the footage.
We receive the features in a similar way as an accurate
tracking method that can deal with occlusions. We use the
datasets PETS S1 and PETS S3 for our comparison. PETS
S1 is a scene that shows one person loitering in the scene.
PETS S3 has 2 people waiting and 2 people entering the
scene, exchanging bags and leaving the scene. Loitering in
this dataset is explicitly defined as someone appearing longer
than 60 seconds (see Fig. 4).

4.1 Parameter Evaluation

Heatmap dimensions. One of the parameters in our sys-
tem is the heatmap bin dimensions. Changing the dimensions
will affect the calculation of the WES in a few ways. Using
a small amount of bins will make it difficult to distinguish
between those standing still and walking around a small
area. It also runs the risk of putting someone in a single bin
for their entire appearance duration, causing their entropy
value to be zero. On the other extreme end, having a bin for
each pixel makes it almost impossible to distinguish between
waiting and moving. Even the smallest of movements will
cause a waiting person to be split across a large amount of
bins. Additionally, a large amount of bins will require a lot
of processing time. Therefore, our bin count should be as low
as possible, without losing too much information about the
movement. We have conducted experiments on PETS S1 and
S3 by varying the bin dimensions in different sizes.

Figure 5: Effect of the heatmap dimensions on the WES

over time of a loitering candidate in PETS S1. The
WES increases with heatmap dimension size from 7x7

to 47x47.

Fig. 5 shows the WES over time of a loitering candidate
in PETS S1 for different heatmap dimensions. As shown in
the figure, the WES increases steadily with the dimension
size, such as from 7x7 to 47x47.

Fig. 6 shows the results of changing the heatmap dimen-
sions for a waiting person. As this person is mostly standing
still, using low heatmap dimensions such as 12x12 and below
will cause only one bin to be filled with features, which re-
sults in an entropy of 0. Therefore we want to take heatmap

Figure 6: Effect of the heatmap dimensions on the WES
over time of a waiting person in PETS S3. Low heatmap

dimensions will cause the WES to be 0.

dimensions above 12x12, to make sure that people that are
waiting still have a non-zero entropy value.

Scaling Parameters. We cover three different measures
that together provide a loitering score. However, depending
on the scene, each measure does not contribute equally to
the final score. For this we introduced the scaling parameters:
α for the RAS, β for the WES and γ for the DS. We
have tested several parameter configurations. For each of the
datasets, we took several candidates of interests, and plotted
their rank for each of the parameter settings. They can be
seen in Fig. 7, 8 and 9.

Figure 7: Effect of the scaling parameters on the ranking

of several candidates from PETS S1

Figure 8: Effect of the scaling parameters on the ranking

of several candidates from PETS S3

Using only the duration (0;0;1) like other methods do, we
already get reasonable results for PETS2007 and AntiLoiter.
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Figure 9: Effect of the scaling parameters on the ranking

of several candidates from the AntiLoiter dataset

If we only use the WES (0;1;0) the candidates are ordered
by the amount of their movement. Using this measure alone
decreases the ranking of the ground truths, as they also stand
still occasionally. While the measure does not appear to be
sensitive when used alone, it does score the people that move
a lot as more likely loitering candidates.

Only using the RAS (1;0;0) will score everyone in the
PETS2007 datasets equally, as there are no reappearing
candidates in that dataset. Therefore we removed this setting
from Fig. 7 and 8. For the AntiLoiter dataset we now focus
solely on people that reappear on cameras the most.

When all measures equally contribute (1;1;1) to the loiter-
ing score, we see that candidates that move around more are
scored higher than those that do not. However, as seen in Fig.
7, people that are just briefly walking through the area are
now scoring higher than those waiting for a very long time.
Therefore we increase the weight of the duration (1;1;1.5).
Finally, we decrease the weight of the RAS (0.5;1;1.5) to
decrease the effect of repeated appearance.

4.2 Comparison with Related Work

Figure 10: Top 10 candidates on the AntiLoiter Dataset

We compared our method to two states of the art [10, 12].
The following parameters were used: α = 0.5, β = 1.0,
γ = 1.5, heatmap dimensions: 16x16. Fig. 10, 11 and 12
show the top loitering candidates for each dataset. We pro-
vide all ground-truth loiterers as candidates ranked at 1st
place, without requiring a loitering time threshold to select
candidates.

We summarize our comparison with the related work in
Table 2 where P denotes the precision and R denotes the

recall. Our method accurately provides the list of ground
truth loiterers. In addition to this, it provides additional
interesting candidates.

Comparison with AntiLoiter is shown in Fig. 10. The
ground truth loiterer is given as the first loitering candidate.
Candidate with ID 50 reappears in the same scene at different
times. This causes the high RAS. It is worth noting that the
WES is relatively low, due to the people being grouped as
one candidate because they were in a similar area. However,
due to our chosen α we account for this, by making the RAS
contribute less to the total score. If Candidate 50 would
be one person however, (s)he would have very suspicious
behavior, repeatedly entering and exiting the same area in a
short amount of time. Our method shows other candidates
based on reappearance, such as candidate 11, who walks
through the area for a moderate duration, but also passes
one of the cameras twice.

Figure 11: Top 10 candidates on PETS S1

In the comparison on PETS S1 there is one person entering
the scene and moving around before leaving. This person
with ID 0 is the only ground truth in this scene. As shown
in Fig. 11, we provide the person as the top candidate. We
provide some other candidates as well. We examined the
video to confirm that candidate 18 enters the scene and has
very loiter-like behavior: Move, stop, look-around, repeat.
Candidate 31 enters the scene and paces around a small area.
While staying longer in the scene than candidate 18, this
person was staying in one area and therefore is scored lower.

Figure 12: Top 10 candidates on PETS S3

In the comparison on PETS S3 there are two people in
view, candidates 0 and 5, that remain in place for the full
duration of the footage, only moving slightly every now and
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Table 2: Comparison of the results

Datasets AntiLoiter PETS

Method S1 S3

MM16 [9],[10]
P 100% - -

R 100% - -

MTA15 [12]
P - 99.8% 100%

R - 96.22% 58.85%

Our method

Top 1
P 100% 100% -

R 100% 100% -

Top 4
P - - 100%

R - - 100%

then. Candidates 6 and 7 enter the scene a bit later, move
around and exchange bags, before leaving again. These 4
candidates are the ground truth of loiterers for this scene.
Despite candidate 6 and 7 having a lower appearance, they
score as higher loiterers because they move around a lot in
the scene. As shown in Fig. 12, we provide them as the top
candidates. We provide another candidate as well: Candidate
27 enters the scene, stops, walks, stops and then leaves the
scene, who would be in a high opportunity to be considered
as a potential loiterer.

5 DISCUSSION AND FUTURE WORK

We did not have an optimal dataset to test our approach
fully. For future work, we should create a dataset that shows
loitering, waiting and normal behavior (as well as providing
the ground truth for these behaviors) of pedestrians in a
multi-camera scene, across a large time period.

A formal definition of loitering should be considered as well.
The WES has been made with the assumption that someone
who moves around should be considered more suspicious
than someone that is standing still. This definition will differ
depending on the situation.

The system could be improved by allowing different param-
eter settings per camera. This could be useful if the system
operator has knowledge of the area. For example, a popular
meeting area could have a lower WES contribution, as there
are many people waiting in this area, but a higher RAS
contribution to detect pickpockets who reappear multiple
times in the same or multiple cameras

6 CONCLUSION

We proposed an entropy model and ranking measure that can
retrieve a list of loitering candidates. The features used for
input can either be obtained through tracking, or appearance
methods. The results are comparable to state of the art
and give additional candidates as potential loiterers. Our
approach scores moving people higher than waiting people,
despite their appearance being shorter.
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