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DIGITAL COMPUTERS FOR REAL-TIME SIMULATION* 

By MORRIS  R U I ~ I N O F F  

University of Pennsylvania, Philadelphia, Pc. 

Since digital computers can solve certain systems of equations faster 
than analog computers, the question arises whether a digital computer 
can be used for real-time simulation. The advantages of a digital simu- 
lator are its flexibility in transferring from one simulation to a second, 
its universal application without mechanical alteration, its greater pre- 
cision and accuracy, and its ability to simulate high frequency systems. 
The feasibili ty of digital simulation depends upon the speed permitted by 
numerical computational techniques, the existence of an ultra-high-speed 
digital computer, and very fast encoding and decoding equipment. The 
paper d iscusses  these problems and describes their solution, with par- 
ticular consideration to the simulation of airplane flight in connection 
with a digital operational flight trainer. 

Introduction. The recent advent of large-scale digital computing ma- 
chines has led to the study of the role of digital devices in real-time 
simulation and industrial process control. Several advantages appear to 
be attainable. Digital computers are capable of indefinite precision and 
hence are at least potentially capable of greater accuracy than analog de- 
vices.  More important, digital computers are universal machines, lending 
themselves to mass production; the end use of a digital computer c~ 
generally be decided at any time before or after its construction. This 
because digital computers are inherently flexible; in order to switch ov 
from the simulation of one device or process to a second, it is on 
necessary to read new numbers and instructions into the computer memory 
either from punched cards or magnetic tape or other input device. Fin 
ally, a digital computer can be used for the simultaneous actuation of 
several devices.  These relative advantages of digital computers have 
received detailed consideration previously I and they will not be pursued 
any further in the present paper. 

The expression "real-time simulation s is interpreted in a 
ways by a variety of groups interested in somewhat different 
Throughout this paper, real-time simulation refers to simulatic 
performance of a process or device at normal operating speed, 
responsibili ty resting on the digital simulator to keep pace with 
ulated process or device. For example, in an Operational Flight Tramer~ 
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it is required that the digital simulator sense  the p i lo t ' s  actions,  solve 
the flight equations,  and actuate the cockpit instruments sufficiently fast  
that the pilot cannot distinguish between simulator response and true air- 
plane response.  

A block diagram of such a digital Trainer is shown in FIGURS 1. The 
heart of the device is the real-time digital simulator consis t ing of a uni- 
versal  digital computer and auxiliary equipment common to all Trainers.  
Conversion from one airplane type to a second requires only (1) momen- 
tary transfer of the aerodynamic coeff icients ,  engine constants ,  etc. ,  from 
the appropriate tape in the tape library to the digital computer memory 
unit, and (2) connection of the simulator to the desired cockpit  through a 
conventional multiwire cable  connector. The  same real-time digital sim- 
ulator, without alteration, may be used to simulate any device or con- 
trol any process  as long as the assoc ia ted  computations do not tax the 
speed of the digital computer. 

The feas ibi l i ty  of real-time simulation using digital computers res ts  
on three requirements. The first of these is  ultrahigh speed of computa- 
tion. Digital computers are (currently) limited by s ize  and cost consid- 
erations to a single arithmetic unit capable  of performing only one prim- 
itive arithmetic operation at a time. All computations must, therefore, 
be performed sequential ly.  Thus,  even though a computer be megacycle 
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fast  at addition and multiplication, the effect of time-sharing the com- 
puter is to reduce its effective speed by several  orders of magnitude. In- i 
t r insical ly high speed is therefore a fundamental prerequisite.  

The second requirement for real-time simulation is  high-speed an- i 
coding and decoding equipment. In a digital OFT,  about 20 shaft posi- l 
t ions must be sensed and 30 instruments actuated at a rate of 20 or more 
samplings of each per second. This  imposes a conversion time of 1 
millisecond or better on the encoding and decoding equipment. 

The third prerequisite for real-time simulation is  an assurance of 
mathematical stabil i ty and "reasonable  * accuracy. A digital simulator / 
may he considered stable when (1) the simulator solution does not grow 
indefinitely for conditions under which the true solution remains bounded, 
and (2) the ratio of simulator solution to true solution remains close to 
unity whenever the true solution grows indefinitely. Accuracy is reason- 
able when the deviation of the simulator solution is small enough to be 
considered inconsequential;  for example, in an OFT, accuracy is reason- 
able when an experienced pilot is incapable of distinguishing the simu- 1 

lator solution from the corresponding "true flight ~. 
This paper  outlines a study conducted at the ~loore School of Elec- t 

trical Engineering which succeeded in meeting these  requirements. An / ~ 
ultrahigh-speed computer has been designed, capable of 5 microsecond i 
addition using conventional diode OR-AND-OR switching circuits (al- I 
though at reduced power)2; the improvement in speed is primarily the l 
result  of novel logical interconnection. Conventional Gray-coded commu- 
tator discs permit 5 microsecond encoding. A novel diode multiplexer 3 
yields 100 microsecond total decoding time per instrument, with only 5 
microseconds of computer time required for each decoding. 

The stabi l i ty-accuracy prerequisite was the most difficult to assure. 
The forces acting on a simulated system give rise to (ordinary) differen- 
tial equations with time as independent variable. The numerical solution 
of these differential equations requires the use of quadrature formulas 
in a step-by-step process,  where the steps must be kept small to insure 
accuracy and stability.  But in real-time simulation, the quadrature step 
is a real time-interval; it must therefore be long enough to permit compu- 
tation of all the arithmetic entering into the quadrature step. 

A method for displaying the maximum permissible quadrature step for 
any specif ied quadrature formula was developed. The method employs 
~stability charts ~ analogous to the Nyquist plot, and requires only that 
the natural (complex) frequencies of the simulated device be known. It 
is particularly noteworthy that the solutions to be encountered in any 
specif ic  simulation need not be known. The basis  for the stabil i ty chart 
method is described elsewhere 4 in greater detail  than is  given below. 

For the particular Operational Plight Trainer under study, the stabil- 
ity charts for several quadrature formulas permitted a quadrature step of 
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50 mill iseconds.  The longest possible routine needed to evaluate all 
the computations for one quadrature step required 11 milliseconds using 
the novel computer. Thus, available computer speed is four times greater 
than required. 

The sequential digital computer. A fundamental requirement for the 
digital computer actuating a real-time simulator is  extreme reliability. 
In an Operational Flight Trainer, for example, a computer error in the 
midst of a training flight can interrupt continuity and consequently des- 
troy the illusion of true flight. In order to attain the utmost assurance 
of reliability, novel switching circuits were ruled out. Ultrahigh speed 
was to be achieved only through logical rearrangement of circuits which 
have proved rel iable in exist ing digital computers. 

The first decision concerned the number of addresses per instruction. 
The flight equations for a particular airplane were programmed as a basis 

I 

for evaluation, and the result of the study showed one-address code 
i preferable to two-, three-, or four-address codes as regards both speed 

and cost.  The one-address code was therefore adopted. 
The second decision was to use separate memories for numbers and 

instructions. Independent memories gain a factor of two in speed, since 
1 they permit acces s  to an instruction I(k) simultaneously with access  to 

the number cal led for by the preceding instruction l(k-1). Thus, the 
t arithmetic unit operates at 100% duty factor to yield its maximum inher- 

ent speed. It is  noteworthy that the increased cost of separate memories 
I is offset by savings in the control unit, which no longer needs to dis- 

tinguish instructio'~s from numbers. 
A five-fold increase  in speed of multiplication was achieved through 

5 adoption of a whipple-tree multiplier and a serial computer. Although 
this demanded about 30% additional equipment, the time saving was es- 
sential for real-time simulation. The whipple-tree multiplier made pos- 

i sible an additional time saving. By employing the divisor register to 
t store a product temporarily, under command of a special ~multiply-add n 
I instruction, the output of the whipple-tree multiplier could be added and/  
I or stored within the arithmetic unit where it is immediately accessible .  
i This is espec ia l ly  attractive in computations of the form ab +cd+ef+gh ,  
/ which occur frequently in the solution of differential equations. 

Until this point in the study, it had appeared that the optimum simu- 
t later required a serial computer and a serial memory unit. The fastest  

switching circuit for the purpose was the diode pyramid, perhaps with 
I reduced power. 2 Reliability considerations limited the p u l s e  repetition 
• rate to about 1 megacycle (actually 1.2 megacycles at reduced power) 

with 5 clock phases per pulse time. It is important to observe that the 
time interval between success ive  clock phases is designed to be slightly 
longer that the maximum possible transmission delay through the "worst ~ 
diode pyramid, tube, and transformer. Thus, if a switching circuit is 
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timed at  i t s  input by a clock pulse  at time T, i t s  output pulse  is  certain 

to be ava i l ab le  one clock phase  (one-fifth of a pulse  time) later.  

It was decided to inves t iga te  the p o s s i b i l i t i e s  of a "pa ra l l e l "  com- 
puter using the synchronized ser ia l  t ransmiss ion  descr ibed  in the pre- 

ceding paragraph. The resul t  was a asequent ia l"  computer, which com- 
bined the bet ter  features  of ser ia l  and para l le l  techniques  to gain an 

addi t ional  factor of five in speed.  Since the sequent ia l  pr inciple  is ap- 
parent ly novel,  a brief descr ip t ion  will  be at tempted here 11. 

Numbers are transmitted to the accumulator on many wires ,  one wire 

per columnar posi t ion,  as in a para l le l  computer; but the  d ig i t s  in suc- 
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cessive columns appear in time sequence one clock phase apart, at just 
the right time to permit immediate columnar carry. Again, the serial 
synchronous transmission on each wire permits additions to follow each 
other at the 1.2 megacycle rate; success ive  "ripple r carries from right 
to left are clocked and kept distinct at all times. Thus, in multiplica- 
tion the partial products can be added in at the pulse rate of 1.2 inc. In 
the O.F.T. computer design, the accumulator loop is provided with two 
adders so that two partial products are accumulated at a time. 

F m oR E 2 shows the k-th column of the arithmetic unit. The circulating 
storage of the digit in the accumulator is outlined in heavy lines and is 
seen to include an adder and an adder-subtracter. In addition or sub- 
traction, the digit in column k arrives from the number memory and, if a 
one, sets  the augend flip-flop; since the dynamic flip-flop is "set  domi- 
nant", the reset control pulse 3 is ignored. The augend digit is trans- 
mitted by control pulse 1 to point c, where it is added or Sub- 
tracted under control of pulse 7 or 8. If carry is generated, it is trans- 

mitted to column (k+l) through output L C  k at just the right phase to be 
accepted in that column; in the same way, the carry pulse is received 
from the column (k-l) through input LCk.  1 just as the pulses reach c 

and d. 
In multiplication, the multiplier MP is read out of the accumulator 

into dispatcher lines 1 or 2 under control of pulse M; the least signifi- 
cant MP digit goes to line 1, the next to line 2, the third to line 1, etc. 
The multiplicand MC is stored by a single pulse at 3; pulse 3 is then 
turned off. If the least significant MP digit is unity, it appears as pulse 
1 and transmits the MC digit to point c to start accumulation as in addi- 
tion; at the same time, if the second MP digit is unity, it appears as  
pulse 2 and transmits the k-th MC digit through output A k in column 
(k+l) into the adder in column (k+ 1). Similarly, just one clock phase 
earlier, pulse 2 has allowed MC digit (k-l) to enter column k via input 
Ak. 1 and reach the adder at point a; carry propagation for this adder is 
through UCk. 1 and UC k. As a result, two partial products accumulate 
during the first pulse time. Two-columnar shift is accomplished via out- 
put U k to an input in column (k-2) to prepare for MP digits 3 and 4. The 
corresponding input in column k is U k+2 from column (k+2); the pulse 
enters the accumulator through control pulse 6, pulse 5 being absent. 

The accumulation of the product proceeds, two kip digits at a time, 
until multiplication is complete. All MP units in odd (even) columnar 
positions generate control pulses 1 (2) spaced one clock pulse apart; 
accumulation proceeds at a 1.2 megacycle rate in each column. Since 
ten pairs of additions are required for 20-binary digit numbers, multipli- 
cation takes ten clock-pulse times. 

FIGURE 3 shows a typical dispatcher line for transmitting the con- 
trol pulses 1, 2, 3, . . . ,  9, down the accumulator at clock phase inter- 
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vals .  Delay l ines are used for 5 phases  (one pulse time), after which 
the pulse is amplified and reshaped. Nine dispatcher ! ines  are of course 
required. 

Computing speeds  for the sequential  machine are as  follows: 
Addition or Subtraction 5 microseconds 
Multiplication 10 
Multiplication and Addition 10 " 
Division 105 

For example, the evaluation of the sixth degree polynomial 
a x  6 + b x  s + c x  4 + d x  3 + e x  2 + [ x + g  takes  65 microseconds. 

A sequential  computer is  about 70 t imes as fast  as  UNIVAC even 
though it u ses  less  than half  the pulse repetition rate. Nevertheless ,  
only 1750 tubes and 25000 diodes are required for the arithmetic unit, 
control, both memories, and all the encoding and decoding equipment for 
an O.F.T.  

Conversion equipment. A considerable amount of attention has been 
given to both encoding and decoding devices.  6 ' 7 ' s  These  devices  vary 
considerably in both speed and complexity, It was felt that for real- 
time simulation, rel iabil i ty dictated that the simplest  sa t i s fac tory  de- 
v ices  be adopted. 

Since only shaft posit ions needed to be encoded for the Trainer under 
study, it was  decided to use  mechanical commutator d iscs ,  coded in 
cycl ic  (reflected binary) to eliminate ambiguities.  Ten bit precision 
was considered adequate. Data can be read into the computer at machine 
speed, 5 microseconds per number. 

The decoder selected for the real-time simulator is shown in FIGURE 
4. A single 1000 volt supply serves  as a source for the required current 
generators (12 in the FIGURE). The binary number is stored in s ta t ic  
flip-flops (e.g. Eccles-Jordan)  which maintain cathode followers at  +6 v. 
or -6 v. according as  the digit in the corresponding column is 0 or 1, 
resp. Thus, a current proportional to 2 k flows through the summing re- 
s is tor  only when the bit in column k is a one; the total current through 
the summing res is tor  is proportional to the binary number. 

The precision of the decoder shown in FXGURE 4 is clearly one part 
in 4096. Precis ion must be high in real-time simulation to eliminate 
large discrete  s t eps  in instrument readings. On the other hand, accuracy 
need not be as  high. The 0.1% accuracy of this decoder was therefore 
acceptable .  Decoding time depends mainly on the speed of the flip-flop- 
cathode-follower combination, about 1 microsec. 

The output of the decoder ranges from zero to -1 v.,  and a proportional 
amplifier generates  the larger range, -5 v. to + 5 v. Since the decoder- 
amplifier combination is relat ively expensive,  only one such unit was 
provided. A multiplexer, shown in FIGURE 5, was designed to distribute 
the amplifier output to the various instruments. As with the decoder, 



194 

RESET PU LS~_ 

JOURNAL 

~ AI',IA~::>G OUTPUT 

[ 5~,~,#~ I ---'-1 
l ~ DECO'~ER I 

INl Z~SA 

I - - -4% r--:~:-v~ t 
.~B~,  l~l  

I ___~,~,~ I? I 

I , ~ i i  

I 
I 

I 

- - ~  -1-~,.,°~. I /~- '~"~ I I 
I 
l 

tS~ 0.o18~'n O~ 

,, i [  - - ~  o.  o59" r , ' ~  
~NI38A 

IN~38~ 
- - 4 %  ~ 

INI~BA 

lit- D ~ _ ~  
I o.  o ~ " ~  

D E C O D E R  

F I G U R E  4. D IG IT A L -T O -A N A L OG DECODER 

~o 

'I 
J 

~o 

iii~ 



ASSOCIATION FOR COMPUTING MACHINERY 195 

8 
i I  

I 

o 

o~ 

--I 

_1 X 

o 0+  5 - 0 ~ Z - o~  

~ ~_ =_,._ ~ °~ <,.,~ o~oo 

=_~<~ ~ - ~ °  A - ~  I 
I 

_J 

I 

1 
$ 

aJ J 

_ _  _ _  o ~ O  

F-O I J  

F I G U R E  5 .  D I O D E  M U L T I P L E X E R  

I 

i; 

~o 

I . - o  
-T.o. 

ii1. $ 



196 JOURNAL 

selection is made through cathode followers driven by static flip-flops. 
The amplifier output is connected to each diode bridge at the point hori- 
zontally opposite the condenser. Normally the bridges are cut off by the 
diodes held at +- 6 volts by the selection cathode follower; the conden- 
sers thus maintain their charge (except for the slight leakage through the 
silicon junction diodes3). In FXOURZ S, the top left multiplexer is 

shown turned on, i.e., the gating diodes are cut off by the cathode fol- 
lowers and current flows through the diode bridge from the + 150 v. sup- 

ply, Since the bridge diodes have only small voltage drops across them 
and are matched, and since the amplifier output has negligible resis- 
tance, the condenser charges (or discharges) to the amplifier output 
voltage. 

Note that this multiplexer allows diode gating of conventional type, 
which permits reduction of selection equipment. 

Mathemat i ca l  c o n s i d e r a t i o n s .  As mentioned in the introduction, real- 
time simulation using digital computers is essentially equivalent to t 
numerical solution of a set of simultaneous non-linear ordinary differen- / 
tial equations at a pace sufficient to keep up with real time. The numer- 
ical solution consists of evaluating the magnitudes of the parameters of 
motion at discrete instants in time through integration of the differential 
equations over short time intervals, called quadrature steps. Thus, the / 
state of the system at any time ~" + h is obtained in one step from the [/ 
state at time "1" and the differential equations of motion. In real-time 
simulation the quadrature steps are preferably all of equal duration h. 

The classical approach to the numerical solution of differential equa- 
tions is to select a quadrature formula which introduces negligible 
"truncation" or "curtailment" error at each step. For real-time simula- 
tion, this approach leads to the difficulty that, since the solution depends 
upon the external driving forces and since the latter are introduced in an 
unpred i c tab l e  manner, it is virtually impossible to determine the trunca- t] 
tion error at every step in the solution. 

The approach developed at the Moore School is based upon a priori 

evaluation of the natural (complex) frequencies of the simulated system 
in all its physically permissible (or conceivable) dynamic states. The 

iseffect of the inCUrtailment errOrchart sf°r anYwhichspecified quadrature formula, O, i 
displayed a astability shows, for any true frequency 

•, the incorrect frequency /~ which results from numerical solution using Q. 
More precisely, the system of differential equations can be displayed 

in the form: 

xi  -- gi (Xl' x2  . . . .  , x ,  t); i = 1,2 . . . . .  n (1) 
! 

where x i are the motion parameters (e.g., in the case of airplane flight, [ 
these are the linear velocities, angular velocities, direction cosines, and [ 

! 

i 
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height), t is real time, and the dot represents differentiation with respect 
to time. Questions of stability of these equations oan usually be an- 
swered by applying the Liapounoff criterion of stability 9'13 to the equa- 
tions of the first approximation: 

n 

xi = J~l au xI + li (t); i = 1, 2, .... n (2) 

att b x t 

The at] are evaluated of course in the vicinity of the motion con- 
sidereal; they are therefore different for different instantaneous states 
of motion. Bounded true solutions of the exact equations 1 are assured 
if the n eigenvalues )~k of the matrix A = (atj) all have negative real 
parts. The question of stability of numerical solutions may therefore be 
approached from a study of the solution of the equivalent linear equa- 
tions 2. 

Consider first the numerical solution x ' ( t )  of the single linear equa- 
tion 

= /~ x ; )~ a complex constant (3) 

* 
For simplicity, let us employ the primitive quadrature formula 011 

with quadrature interval h, thus 

x'(~" + h)  = x '  (7-) + h i '  ( r )  ; for all ~" (4) 

=(1 + hk) x' (z)  

Beginning at T = 0 and applying the formula m times, we obtain the 
numerical solution 

x '  (rnh) = x(O) (1 + h ~.)m 

= ~ 0 )  e h P  "m 

where the new complex number/1, is defined by 

e h# = 1 + h)~ 

(s) 

(6) 

*ONM is  a n  o p e n  f o r m u l a  ( p r e d i c t o r )  u s i n g  N o r d i n a t e s  a n d  M d e r i v a t i v e s .  S i m i -  

l a r l y  C R S  i s  a c l o s u r e  f o r m u l a  (eorrector)  u s i n g  R o r d i n a t e s  a n d  S d e r i v a t i v e s .  
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Now the true solution of equation 3 yields at time t = mh : 

x (mh) = x(O)e kmh (7) 

Comparing equations 5 and 7, the o n l y  effect of the quadrature solution 
is to replace the true frequency )~ by the incorrect frequency #. If  we 
write z = fi 4, w : h~, then equation 6 defining ~ in terms of Lmay 
be expressed as  a mapping of the d imensionless  frequencies  z and w in 
the complex plane. 

The  implicat ions of equation 6 form the bas i s  of the s tabi l i ty  chart. 
It can be shown that the solution of equation 3 using any quadrature 
formula can be expressed  as a mapping of vz onto the z-plane. Moreover, 
for any quadrature formula employing only ordinate-values and derivative- 
values, the mapping can always be expressed  in the form 

lV (e TM) 
z = , (8) 

D (e w) 

where N and D are polynomials whose coeff ic ients  depend only upon the 
quadrature formula in question. 

Now there is a fundamental theorem 10 in the theory of l inear differen- 
t ial  equations which s t a t e s  that  the solution of equations 2 contains two 
parts ,  a part icular  solution dependent upon the forcing functions t t (t) 
and a complementary ( transient)  solution, independent of t t (t). The 
complementary solution of equat ions 2 for ft (t) = 0 is  

n 

X(t) = E c k X k e kk t  
k= l  

(9) 

where X(t)  is the solution in vector form (Xl, x2, x3, ...Xn); X k are the 
e igenvectors  corresponding to Lk; and c k are constants  determined by 
the initial  conditions 

X(O) =~,c k X k (10) I 

f It  can be shown that the behavior  of the true solution is  strongly in- 
f luenced by the frequencies kk  in the t ransient  solution even when / 
[ i (t) = O. Moreover, it can be shown 11 that the behaviorof  thenumeri- 
ca1 solution of equat ions 2 using quadrature Q may be determined by ap- I 
plying equation 8 (for quadrature Q) separately to each  ~k" Conse- I 
quently~ the study of the single equation 3 and i ts  frequency mapping ] 
(equation 8) are bas ic  to determining the behavior of  equations 2 and [ 

I 
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hence, within the limitations of the Liapounoff criterion, the behavior of 
the numerical solution of the original equations 1.11' 12 

To display equation 8 in a more convenient manner, note that w is a 
multiple-valued function of z, but z is a single-valued function of w. In 
other words, for any single specified frequency ~. and quadrature interval 
h, the numerical solution will in general contain many frequencies /~1; on 
the other hand, any specified frequency in the numerical solution can 
result from only one true frequency. It follows that a single-valued 
mapping can be obtained only by mapping the w-plane onto the z-plane. 

Let  us first examine the many frequencies w.. = h #1 which result. 
from the single frequency z ° in the true solution. J Let the w] = u] + i v 1 
be arranged in order of decreasing damping terms, so that u 1 > u 2 > u 3 > 
... As time increases,  the subdominant frequencies decay more rapidly 
than the dorainantwl;  thus only w I is of any importance in the asymptotic 
solution. The s tab i l i t y  chart is a mapping of the dominant frequencies 

w 1 ( z ) o n t o  the z-plane. 
The derivation of a stability chart may be explained with the aid of 

FIGURE 6. Straight lines corresponding to constant damping ( u ) a n d  
constant frequency (v)  are shown on the w-plane, upper left. The map- 
pings of these lines onto the z-plane for a fictitious quadrature formula 
Q are shown upper right. The curvature of the mapped lines is a measure 
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of the  inaccuracy of Q; i t  wi l l  be shown tha t  the  ins tabi l i ty  of s o l u t i o n s  

u s ing  Q r e s u l t s  from the  excu r s ion  of  the mapping for u = 0 into the  left  

ha l f -p lane .  
L e t  us  f i r s t  in te rpre t  the  mapping  of the  poin t  u = 0, v = .5 in to  the 

point  x = - .03,  y = .48. C l e a r l y  t h i s  i n d i c a t e s  tha t  if t he  t rue so lu t ion  
has  d i m e n s i o n l e s s  f requency  z 1 - - .03 + i .48,  c o r r e s p o n d i n g  to a 
damped s i n u s o i d ,  t he  so lu t ion  u s i n g  formula Q wil l  con ta in  the  undamped 
f requency  w I -- i .5. Moreover,  if  the  true so lu t i on  i s  a damped s i n u s o i d  
r e p r e s e n t e d  by  a po in t  s l i g h t l y  to the  r ight  of  z 1, t he  numer ica l  so lu t ion  

wi l l  be  a s i n u s o i d  with e x p o n e n t i a l l y  i n c r e a s i n g  ampl i tude  and h e n c e  un- 
s t a b l e .  In fact ,  s t a b i l i t y  i s  a ch i eved  only when t h e  f r e q u e n c i e s  in the 

true so lu t i on  l i e  to the  lef t  of  and under  the  u = o curve .  
The  branch poin ts ,  a and b, may now be in te rp re ted .  At t h e s e  points ,  

one of  the  subdominan t  roo t s  of equa t ion  8 grows  to have  a r ea l  part 
equa l  to the  r ea l  par t  of the  dominant  root. T h u s ,  t he  same  true f requency 

z p roduces  two quadra ture  f r e q u e n c i e s  with equa l  damping.  Both frequen- t 
c i e s  a re  of c o n s e q u e n c e  s i n c e  they  wi l l  p e r s i s t  for an e q u a l l y  long  time l 

in the  numer ica l  so lu t ion .  
C o n s i d e r  now the  lower  i n t e r s e c t i o n  c of the  l i n e s  u -- - .2,  u = -.3. 

Here t he  loop of  t he  l a t t e r  i n t e r s e c t s  the r i s i ng  por t ion  of the  former at  a 
point  co r r e spond ing  to the  same  t rue  f requency .  However ,  s i n c e  u = -.2 
is  dominant  over  u ~ - .3,  only  the  former i s  to  be  r e t a ined .  By s imi lar  i 

argument ,  i t  i s  conc luded  tha t  t he  u -- -.3 curve  is  subdominaa t  a t  the  up- 1 
per  i n t e r s e c t i o n  d and in fac t  at every poin t  on i t s  loop.  T h e  en t i r e  loo~ed 
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portion of the u - -.3 curve is subdominant at the upper intersection d 
and in fact at every point on i ts  loop. The entire looped portion of the 
u -- -.3 curve may therefore be erased. Similarly the loop on u = -.2 and 
all such loops may be erased. Note the resulting discontinuity at each 
branch point. 

The final stability chart is shown bottom right in FIGURE 6. The 
locus of the branch points, called a branch contour, is  shown as a heavy 
line passing through a and b. The accuracy of formula Q is directly re- 
lated to the squareness of the stability chart; in this case, the accuracy 
is only fair underneath the branch contour and very poor above the branch 
contour. Stable solution using this quadrature formula can be obtained 
only by choice of a quadrature interval small enough to locate all true 
dimensionless frequencies z inside the curve u = 0. 

FIGURE 7 displays the stability chart for quadrature formula 041 , 
C41 (~Method AS), specified by the equations 

1 
041 : x'(12)---~-[-x(O)+ 18x(-h)-Sx(-2h)+ x(-3h)] + 4h .~(0) 

1 12 (11) 
c41:  x (h) --2-s [48x(0) - 36x(-h)+ 16x(-2~)-3x(-3h)] +~-h,~'(h) 

Note that this formula is very accurate below the branch contour and that 
the u -- 0 line never reaches as high as v = .4. 

F m U R E  8 displays the stability chart for O l l ,  C41 ("Method N~), 
specified by the equations 

011: x'(h) = x(O) + h k ( o )  

C41 : as in equations 11 

Note that this formula is not too accurate below the lower branch con- 
tour but the u = 0 line reaches nearly to v = 1. 

The circled dots on FmUICES 7 and 8 correspond to the highest nat- 
ural frequency (about 0.7 cyc l e / s ec )  of a typical airplane in a rather 
violent dive maneuver. The maneuver was computed accurately using a 
very small interval and then recomputed using first Method A and then 
Method N, both with quadrature interval of 1/8 second. Note that the 
stability chart for Method A predicts an unstable solution with u = + .2; 
on the other hand, Method N predicts a stable solation, somewhat inac- 
curate during transients where the highest frequency is excited but rather 
good for steady flight where only the lower frequencies participate. 

The computed results for pitching velocity, q, are shown in FIGURE 
9. The instability of Method A is demonstrated within 5 seconds of 
flight. The stabil i ty and essent ial  correctness of Method N is also ap- 
parent, and the erro; during fast transients is clear, It is interesting to 
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o b s e r v e  t h a t  t h e  c h a n g e  from maximum a c h i e v a b l e  q to  z e r o  q, w h i c h  oc.  

c u r s  n e a r  t = 22 s e c o n d s ,  t a k e s  p l a c e s  in o n l y  t h r e e  q u a d r a t u r e  s t e p s .  
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