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DIGITAL COMPUTERS FOR REAL-TIME SIMULATION*

By MORRIS RUBINOFF
University of Pennsylvania, Philadelphia, Pa.

Since digital computers can solve certain systems of equations faster
than analog computers, the question arises whether a digital computer
can be used for real-time simulation. The advantages of a digital simu-
lator are its flexibility in transferring from one simulation to a second,
its universal application without mechanical alteration, its greater pre-
cision and accuracy, and its ability to simulate high frequency systems.
The feasibility of digital simulation depends upon the speed permitted by
numerical computational techniques, the existence of an ultra-high-speed
digital computer, and very fast encoding and decoding equipment. The
paper discusses these problems and describes their solution, with par-
ticular consideration to the simulation of airplane flight in connection
with a digital operational flight trainer.

Introduction. The recent advent of large-scale digital computing ma-
chines has led to the study of the role of digital devices in real-time
simulation and industrial process control. Several advantages appear to
be attainable. Digital computers are capable of indefinite precision and
hence are at least potentially capable of greater accuracy than analog de-
vices. More important, digital computers are universal machines, lending
themselves to mass production; the end use of a digital computer can
generally be decided at any time befote or after its construction. This is
because digital computers are inhetrently flexible; in order to switch over
from the simulation of one device or process to a second, it is only
necessatry to read new numbers and instructions into the computer memory
either from punched cards or magnetic tape or other input device. Fin-
ally, a digital computer can be used for the simultaneous actuation of
several devices. These relative advantages of digital computers have
received detailed consideration previously1 and they will not be pursued
any further in the present paper.

The expression “real-time simulation” is interpreted in a number of
ways by a variety of groups interested in somewhat different problems.
Throughout this paper, real-time simulation refers to simulation of the
performance of a process or device at normal operating speed, with the
responsibility resting on the digital simulator to keep pace with the sim-
ulated process or device. For example, in an Operational Flight Trainer;
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it is required that the digital simulator sense the pilot’s actions, solve
the flight equations, and actuate the cockpit instruments sufficiently fast
that the pilot cannot distinguish between simulator response and true air-
plane response.

A block diagram of such a digital Trainer is shown in ricure 1. The
heart of the device is the real-time digital simulator consisting of a uni-
versal digital computer and auxiliary equipment common to all Trainers.
Conversion from one airplane type to a second requires only (1) momen-
tary transfer of the aerodynamic coefficients, engine constants, etc., from
the appropriate tape in the tape library to the digital computer memory
unit, and (2) connection of the simulator to the desired cockpit through a
conventional multiwire cable connector. The same real-time digital sim-
ulator, without alteration, may be used to simulate any device or con-
trol any process as long as the associated computations do mot tax the
speed of the digital computer.

The feasibility of real-time simulation using digital computers rests
on three requirements. The first of these is ultrahigh speed of computa-
tion, Digital computers are (currently) limited by size and cost consid-
erations to a single arithmetic unit capable of performing only one prim-
itive arithmetic operation at a time. All computations must, therefore,
be performed sequentially. Thus, even though a computer be megacycle
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fast at addition and multiplication, the effect of time-sharing the com-
puter is to reduce its effective speed by several orders of magnitude. In-
trinsically high speed is therefore a fundamental prerequisite.

The second requirement for real-time simulation is high-speed en-
coding and decoding equipment. In a digital OFT, about 20 shaft posi-
tions must be sensed and 30 instruments actuated at a rate of 20 or more
samplings of each per second. This imposes a conversion time of 1
millisecond or better on the encoding and decoding equipment.

The third prerequisite for real-time simulation is an assurance of
mathematical stability and “reasonable” accuracy. A digital simulator
may be considered stable when (1) the simulator solution does not grow
indefinitely for conditions under which the true solution remains bounded,
and (2) the ratio of simulator solution to true solution remains close to
unity whenever the true solution grows indefinitely. Accuracy is reason-
able when the deviation of the simulator solution is small enough to be
considered inconsequential; for example, in an OFT, accuracy is reason-
able when an experienced pilot is incapable of distinguishing the simu-
lator solution from the corresponding “true flight”.

This paper. outlines a study conducted at the Moore School of Elec-
trical Engineering which succeeded in meeting these requirements. An
ultrahigh-speed computer has been designed, capable of 5 microsecond
addition using conventional diode OR-AND-OR switching circuits (al-
though at reduced power)z; the improvement in speed is primarily the
result of novel logical interconnection. Conventional Gray-coded commu-
tator discs permit 5 microsecond encoding. A novel diode multiplexer3
yields 100 microsecond total decoding time per instrument, with only 5
microseconds of computer time required for each decoding.

The stability-accuracy prerequisite was the most difficult to assure.
The forces acting on a simulated system give rise to (ordinary) differen-
tial equations with time as independent variable. The numerical solution
of these differential equations requires the use of quadrature formulas
in a step-by-step process, where the steps must be kept small to insure
accuracy and stability. But in real-time simulation, the quadrature step
is a real time-interval; it must therefore be long enough to permit compu-
tation of all the arithmetic entering into the quadrature step.

A method for displaying the maximum permissible quadrature step for
any specified quadrature formula was developed. The method employs
“stability charts” analogous to the Nyquist plot, and requires only that
the natural (complex) frequencies of the simulated device be known. It
is particularly noteworthy that the solutions to be encountered in any
specific simulation need not be known. The basis for the stability chart.
method is described elsewhere? in greater detail than is given below.

For the particular Operational Plight Trainer under study, the stabil-
ity charts for several quadrature formulas permitted a quadrature step of
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50 milliseconds. The longest possible routine needed to evaluate all
the computations for one quadrature step required 11 milliseconds using
the novel computer. Thus, available computer speed is four times greater
than required.

The sequential digital computer. A fundamental requirement for the
digital computer actuating a real-time simulator is extreme reliability.
In an Operational Flight Trainer, for example, a computer error in the
midst of a training flight can interrupt continuity and consequently des-
troy the illusion of true flight. In order to attain the utmost assurance
of reliability, novel switching circuits were ruled out. Ultrahigh speed
was to be achieved only through logical rearrangement of circuits which
have proved reliable in existing digital computers.

The first decision concerned the number of addresses per instruction.
The flight equations for a particular airplane were programmed as a basis
for evaluation, and the result of the study showed one-address code
preferable to two-, three-, or four-address codes as regards both speed
and cost. The one-address code was therefore adopted.

The second decision was to use separate memories for numbers and
instructions. Independent memories gain a factor of two in speed, since
they permit access to an instruction I(k) simultaneously with access to
the number called for by the preceding instruction I(k-1). Thus, the
arithmetic unit operates at 100% duty factor to yield its maximum inher-
ent speed. It is noteworthy that the increased cost of separate memories
is offset by savings in the control unit, which no longer needs to dis-
tinguish instructio s from numbers.

A five-fold increase in speed of multiplication was achieved through
adoption of a whipple-tree multiplier and a serial computer.5 Although
this demanded about 30% additional equipment, the time saving was es-
sential for real-time simulation. The whipple-tree multiplier made pos-
sible an additional time saving. By employing the divisor register to
store a product temporarily, under command of a special “multiply-add”
instruction, the output of the whipple-tree multiplier could be added and/
ot stored within the arithmetic unit where it is immediately accessible.
This is especially attractive in computations of the form ab tcd +ef tgh,
which occur frequently in the solution of differential equations,

Until this point in the study, it had appeared that the optimum simu-
lator required a serial computer and a serial memory unit. The fastest
switching circuit for the purpose was the diode pyramid, pe;haps' with
reduced power.2 Reliability considerations limited the pulse repetition
rate to about 1 megacycle (actually 1.2 megacycles at reduced power)
with 5 clock phases per pulse time. It is important to observe that the
time interval between successive clock phases is designed to be slightly
longer that the maximum possible transmission delay through the “worst”
diode pyramid, tube,and transformer. Thus, if a switching circuit is
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timed at its input by a clock pulse at time T, its output pulse is certain
to be available one clock phase (one-fifth of a pulse time) later.

It was decided to investigate the possibilities of a “parallel” com-
puter using the synchronized serial transmission described in the pre-
ceding paragraph. The result was a “sequential” computer, which com-
bined the better features of serial and parallei techniques to gain an
additional factor of five in speed. Since the sequential principle is ap-
parently novel, a brief description will be attempted here 1.

Numbers are transmitted to the accumulator on many wires, one wire
per columnar position, as in a parallel computer; but the digits in suc:
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cessive columns appear in time sequence one clock phase apart, at just
the right time to permit immediate columnar carry. Again, the serial
synchronous transmission on each wire permits additions to follow each
other at the 1.2 megacycle rate; successive “ripple” carries from right
to left are clocked and kept distinct at all times. Thus, in multiplica-
tion the partial products can be added in at the pulse rate of 1.2 mec. In
the O.F.T. computer design, the accumulator loop is provided with two
adders so that two partial products are accumulated at a time.

Fi1cUure 2 shows the k-th column of the arithmetic unit. The circulating
storage of the digit inthe accumulator is outlined in heavy lines and is
seen to include an adder and an adder-subtractor. In addition or sub-
traction, the digit in column k arrives from the number memory and, if a
one, sets the augend flip-flop; since the dynamic flip-flop is “set domi-
nant”, the reset control pulse 3 is ignored. The augend digit is trans-
mitted by control pulse 1 to point ¢, where it is added or sub-
tracted under control of pulse 7 or 8. If carry is generated, it istrans.
mitted to column (k11) through output LC, at just the right phase to be
accepted in that column; in the same way, the camy pulse is received
from the column (k-1) through input LC, ., just as the pulses reach ¢
and d.

In multiplication, the multiplier MP is read out of the accumulator
into dispatcher lines 1 or 2 under control of pulse M; the least signifi-
cant MP digit goes to line 1, the next to line 2, the third to line 1, etc.
The multiplicand MC is stored by a single pulse at 3; pulse 3 is then
turned off. If the least significant MP digit is unity, it appears as pulse
1 and transmits the MC digit to point c to start accumulation as in addi-
tion; at the same time, if the second MP digit is unity, it appears as
pulse 2 and transmits the k-th MC digit through output A, in column
(k+1) into the adder in column (k+ 1). Similarly, just one clock phase
earlier, pulse 2 has allowed MC digit (k-1) to enter column k via input
Ak_1 and reach the adder at point a; carry propagation for this adder is
through UC, .q and UC,. As a result, two partial products accumulate
during the first pulse time. Two-columnar shift is accomplished via out-
put U, to an input in column (%-2) to prepare for MP digits 3 and 4. The
corresponding input in column k is U, ,, from column (k+2); the pulse
enters the accumulator through control pulse 6, pulse 5 being absent.

The accumulation of the product proceeds, two MP digits at a time,
until multiplication is complete. All MP units in odd (even) columnar
positions generate control pulses 1 (2) spaced one clock pulse apart;
accumulation proceeds at a 1.2 megacycle rate in each column. Since
ten pairs of additions are required for 20-binary digit numbers, multipli-
cation takes ten clock-pulse times. ~

FicureE 3 shows a typical dispatcher line for transmitting the con-
trol pulses 1, 2, 3, . . ., 9, down the accumulater at clock phase inter-
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vals. Delay lines are used for 5 phases (one pulse time), after which
the pulse is amplified and reshaped. Nine dispatcher lines are of course

required.

Computing speeds for the sequential machine are as follows:
Addition or Subtraction 5 microseconds
Multiplication 10 »
Multiplication and Addition 10 »
Division 105 »

For example, the evaluation of the sixth degree polynomial
axb+bx3+cxt+dx®+ex?+ fx+g takes 65 microseconds.

A sequential computer is about 70 times as fast as UNIVAC even
though it uses less than half the pulse repetition rate. Nevertheless,
only 1750 tubes and 25000 diodes are requited for the arithmetic unit,
control, both memories, and all the encoding and decoding equipment for
an O.F.T. :

Conversion equipment. A considerable amount of attention has been
given to both encoding and decoding devices. 6:7,8 These devices vary
considerably in both speed and complexity. It was felt that for real-
time simulation, reliability dictated that the simplest satisfactory de-
vices be adopted.

Since only shaft positions needed to be encoded for the Trainer under
study, it was decided to use mechanical commutator discs, coded in
cyclic (reflected binary) to eliminate ambiguities. Ten bit precision
was considered adequate. Data can be read into the computer at machine
speed, 5 microseconds per number.

The decoder selected for the real-time simulator is shown in FIGURE
4. A single 1000 volt supply serves as a source for the required current
generators (12 in the FIGURE). The binary number is stored in static
flip-flops (e.g. Eccles-Jordan) which maintain cathode followers at +6 v.
or -6 v. according as the digit in the corresponding column is 0 or 1,
resp. Thus, a current proportional to 2¥ flows through the summing re-
sistor only when the bit in column k is a one; the total current through
the summing resistor is proportional to the binary number.

The precision of the decoder shown in FiIGURE 4 is clearly one part
in 4096, Precision must be high in real-time simulation to eliminate
large discrete steps in instrument readings. On the other hand, accuracy
need not be as high. The 0.1% accuracy of this decoder was therefore
acceptable. Decoding time depends mainly on the speed of the flip-flop-
cathode-follower combination, about 1 microsec.

The output of the decoder ranges from zetro to -1 v., and a proportional
amplifiet generates the larger range, -5 v. to + 5 v. Since the decoder-
amplifier combination is relatively expensive, only one such unit was
provided. A multiplexer, shown in FicURE 5, was designed to distribute
the amplifier output to the various instruments. As with the decoder,
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selection is made through cathode followers driven by static flip-flops.
The amplifier output is connected to each diode bridge at the point hori-
zontally opposite the condenser. Normally the bridges are cut off by the
diodes held at t 6 volts by the selection cathode follower; the conden-
sers thus maintain their charge (except for the slight leakage through the
silicon junction diodes?). In FlourE 5, the top left multiplexer is
shown turned on, i.e., the gating diodes are cut off by the cathode fol-
lowers and current flows through the diode bridge from the + 150 v. sup-
ply. Since the bridge diodes have only small voltage drops across them
and are matched, and since the amplifier output has negligible resis-
tance, the condenser charges (or discharges) to the amplifier output
voltage.

Note that this multiplexer allows diode gating of conventional type,
which permits reduction of selection equipment.

Mathematical considerations. As mentioned in the introduction, real-
time simulation using digital computers is essentially equivalent to
numerical solution of a set of simultaneous non-linear ordinary differen-
tial equations at a pace sufficient to keep up with real time. The numer-
ical solutiou consists of evaluating the magnitudes of the parameters of
motion at discrete instants in time through integration of the differential
equations over short time intervals, called quadrature steps. Thus, the
state of the system at any time 7 + h is obtained in one step from the
state at time 7 and the differential equations of motion. In real-time
simulation the quadrature steps are preferably all of equal duration A.

The classical approach to the numerical solution of differential equa-
tions is to select a quadrature formula which introduces negligible
“truncation” or “curtailment” error at each step. For real-time simula-
tion, this approach leads to the difficulty that, since the solution depends
upon the external driving forces and since the latter are introduced in an
unpredictable manner, it is virtually impossible to determine the trunca-
tion error at every step in the solution.

The approach developed at the Moore School is based upon a priori
evaluation of the natural (complex) frequencies of the simulated system
in all its physically permissible (or conceivable) dynamic states. The
effect of the curtailment error for any specified quadrature formula, 0O,
is displayed in a “stability chart” which shows, for any true frequency
A, the incorrect frequency u which results from numerical solution using Q.

More precisely, the system of differential equations can be displayed
in the form:

X, =8; (Xyy Xgp ooy X, thi=1,2, .00 1)

- where x, are the motion parametets (e.g., in the case of airplane flight,
these are the linear velocities, angular velocities, direction cosines, and
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height), t is real time, and the dot represents differentiation with respect
to time. Questions of stability of these equations can usually be an-
swered by applying the Liapounoff criterion of stabilityg'13 to the equa-
tions of the first approximation:

n
X = j§1 a,, X tf@yi=1,2,.,n 3]
.
U3y

The a, are evaluated of course in the vicinity of the motion con-
sidered; t(xey are therefore different for different instantaneous states
of motion. Bounded true solutions of the exact equations 1 are assured
if the n eigenvalues hk of the matrix A = (ai}) all have negative real
parts. The question of stability of numerical solutions may therefore be
approached from a study of the solution of the equivalent linear equa-
tions 2.

Consider first the numerical solution x'(¢) of the single linear equa-
tion

£ = A x; A acomplex constant 3

*
For simplicity, let us employ the primitive quadrature formula 0,,
with quadrature interval h, thus

' lr+a)=x'"{1) + Ax'(7); forall 7 )

a +a\) x'(™M

Beginning at 7 = 0 and applying the formula m times, we obtain the
numerical solution

x'(mh) = x(0) (1 +AN)™ 6}
= x(0) ehMm

where the new complex number u is defined by

efH =1 + AN 6)

'ONM is an open formula (predictor) using N ordinates and M derivatives. Simi~

larly CRS is a closure formula (corrector) using R ordinates and $ derivatives.
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Now the true solution of equation 3 yields at time ¢ = mh :
x (mh) = x(0)e\mh %

Comparing equations 5 and 7, the onlybeffect of the quadrature solution
is to replace the true frequency A by the incotrect frequency . If we
write z = A A, w = hu, then equation 6 defining y in terms of A may
be expressed as a mapping of the dimensionless frequencies z and w in
the complex plane.

The implications of equation 6 form the basis of the stability chart.
It can be shown that the solution of equation 3 using any quadrature
formula can be expressed as a mapping of w onto the z-plane. Moreover,
for any quadrature formula employing only ordinate-values and derivative-
values, the mapping can always be expressed in the form

e @®

D (e¥)
where N aad D are polynomials whose coefficients depend only upon the
quadrature formula in question.

Now there is a fundamental theorem1© in the theoty of linear differen-
tial equations which states that the solution of equations 2 contains two
parts, a particular solution dependent upon the forcing functions fi t)
and a complementary (transient) solution, independent of fi (t). The
complementary solution of equations 2 for fi (t) = 0is

1

A

n
X(t) =% ¢, X, e Kkt ')

k Tk
k=1

where X(t) is the solution in vector form (Xl’ Xy X3 ...xn); Xk are the
eigenvectors corresponding to }\k; and ¢, are constants determined by
the initial conditions

X(©0 =ZXc, X, (10)

It can be shown that the behavior of the true solution is strongly in-
fluenced by the frequencies 7\k in the transient solution even when
ii (t) = 0. Moreover, it can be shown ! that the behaviorof the numeri-
cal solution of equations 2 using quadrature Q may be determined by ap-
plying equation 8 (for quadrature Q) separately to each )\k. Conse-
quently, the study of the single equation 3 and its frequency mapping
(equation 8) are basic to determining the behavior of equations 2 and
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hence, within the limitations of the Liapounoff criterion, the behavior of
. the numerical solution of the original equations 1,11 12

To display equation 8 in a more convenient manner, note that w is a
multiple-valued function of z, but z is a single-valued function of w. In
other words, for any single specified frequency A and quadrature interval
h, the numerical solution will in general contain many frequencies . ; on
the other hand, any specified frequency in the numerical solution can
result from only one true frequency. It follows that a single-valued
mapping can be obtained only by mapping the w-plane onto the z-plane.

Let us first examine the many frequencies w, = h u, which result,
from the single frequency z_ in the true solution.. Let the w; = 4+ i v;
be arranged in order of decreasing damping terms, so that u, > u, > u3 >

As time increases, the subdominant frequencies decay more rapidly
than the dominant w; thus only w, is of any importance in the asymptotic
solution. The stability chart is a mapping of the dominant frequencies

(z) onto the z-plane.

The derivation of a stability chart may be explamed with: the aid of
FIGURE 6. Straight lines corresponding to constant damping (u) and -
constant frequency (v) are shown on the w-plane, upper left. The map-
pings of these lines onto the z-plane for a fictitious quadrature formula
Q are shown upper right. The curvature: of the mapped lines is a measure



200 JOURNAL

of the inaccuracy of Q; it will be shown that the instability of solutions
using Q results from the excursion of the mapping for v = 0 into the left
half-plane.

Let us first interpret the mapping of the point u = 0, v =.5 into the
point x = -.03, y = .48. Clearly this indicates that if the true solution
has dimensionless frequency z, = -.03 4 i .48, corresponding to a
damped sinusoid, the solution using formula Q will contain the undamped
frequency w, =i .5. Moreover, if the true solution is a damped sinusoid
represented by a point slightly to the right of z,, the numerical solution
will be a sinusoid with exponentially increasing amplitude and hence un-
stable. In fact, stability is achieved only when the frequencies in the
true solution lie to the left of and under the u = o curve.

The branch points, a and b, may now be interpreted. At these points,
one of the subdominant roots of equation 8 grows to have a real part
equal to the real part of the dominant root. Thus, the same true frequency
z produces two quadrature frequencies with equal damping. Both frequen-
cies are of consequence since they will persist for an equally long time
in the numerical solution.

Consider now the lower intersection c of the lines u = -2, u = -.3.
Here the loop of the latter intersects the rising portion of the former at a
point corresponding to the same true frequency. However, since u = -2
is dominant over u = -.3, only the former is to be retained. By similar
argument, it is concluded that the u = -.3 curve is subdominant at the up-
perintersection dand in fact at every point on its loop. The entire looped
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portion of the u = -.3 curve is subdominant at the upper intersection d
and in fact at every point on its loop. The entire looped portion of the
u = -.3 curve may therefore be erased. Similarly the loop on u = -.2 and
all such loops may be erased. Note the resulting discontinuity at each
branch point.

The final stability chart is shown bottom right in FicurE 6. The
locus of the branch points, called a branch contour, is shown as aheavy
line passing through a and b. The accutacy of formula Q is directly re-
lated to the squareness of the stability chart; in this case, the accuracy
is only fair underneath the branch contour and very poor above the branch
contour. Stable solution using this quadrature formula can be obtained
only by choice of a quadrature interval small enough to locate all true
dimensionless frequencies z inside the curve u=0.

Ficure 7 displays the stability chart for quadrature formula 0 a1
Cs1 (“Method A "), specified by the equations

1
04y xh) =§—[-x(0) + 18x(-h)}-6x(-2h) + x(-3h)] + 4h x(0)

1 12 an
Cyr’ x ()= 148x(0) - 36x(-1) +16x(-20)3x(30] +-_h h)

Note that this formula is very accurate below the branch contour and that
the u = 0 line never reaches as high as v = .4.

Ficure 8 displays the stability chart for 0,4, C,, (“Method N7),
specified by the equations

0,,: xTh) = x(0) + h x (0)

C as in equations 11

41’
Note that this formula is not too accurate below the lower branch con-
tour but the u = 0 line reaches nearly to v =1.

The citcled dots on FicUrRES 7 and 8 correspond to the highest nat-
ural frequency (about 0.7 cycle/sec) of a typical airplane in a rather
violent dive maneuver. The maneuver was computed accurately using a
very small interval and then recomputed using first Method A and then
Method N, both with quadrature interval of 1/8 second. Note that the
stability chart for Method A predicts an unstable solution with u = + .2;
on the other hand, Method N predicts a stable solation, somewhat inac-
curate during transients where the highest frequency is excited but rather
good for steady flight where only the lower frequencies participate.

The computed results for pitching velocity, ¢, are shown in FIGURE
9. The instability of Method A is demonstrated within 5 seconds of
flight. The stability and essential correctness of Method N is also ap-
parent, and the erro: during fast transients is clear, It is interesting to
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observe that the change from maximum achievable g to zero q, which oc-
curs near t = 22 seconds, takes places in only three quadrature steps.
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