
A n O p t i m i z i n g P r o g r a m f o r t h e I B M 650*

BARRY GORDON

Equitable Life As~uranea Society, New Yorl¢, N. Y.

The IBM Type 650 is a stored-program magnetic drum calculator, with input
and output on (separate) punch cards. The memory capacity is 1000 or 2000
words, but the program under discussion was written for a 2000-word machine;
word length is ten decimal digits plus sign. The 650 uses a one-plus-one-address
full-word instruction, consisting of a two-digit Operation Code, a four-digit
"Data Address", and a four-digit "Instruction Address". Addresses run from
0000 through 1999 for the 2000-word drum, plus four addresses (8000 through
8003) for the Control Console and Arithmetic Registers. The ability to address
these rapid-access " 8 0 0 X " locations permits an increase in calculating speed;
however, the primary factor in determining this speed is the latency time arising
from the use of the magnetic drum memory.

When locating information on the drum, certain items (e.g. input and output
data) must occupy specific locations, due to the nature of the 650. The remaining
words--comprising the bulk of the data and instructions--can be located at
will, by virtue of the 650's one-plus-one-address instruction. A complex se t of
rules, relating instruction and data locations and Operation Codes, enables the
programmer to choose locations which minimize latency time.

Due, in part, to the complexity of these rules, a minimum-latency program
is a very trying thing to write. An abridged set of rules will yield a low-latency
program, with somewhat less effort; such a low-latency program will be called
"optimum", as the improvement-per-unit-effort almost Vanishes beyond this
point. However, even optimum programming is a tedious job; in its very simplest
form, it requires something like this for each instruction:

Given (N) ~ the Instruction at Location N:
1. Find the optimum location for the Data Address of (N), based on N and the Opera-

tion Code;
2. Find a free location as near as possible (in timing) to the optimum found in Step !;
3. Place data at location D, found in Step 2;
4. Find the optimum location for the Instruction Address of (N), based on N and/or D

and the Operation Code;
5. Find a free location as near as possible (in timing) to the optimum found in Step 4;
6. Place the next instruction at location I, found in Step 5.

This procedure is quite an over-simplification. For one thing, an accurate record
must be kept, showing which words (data and instructions) have already been
located, so that references to them may be made correctly (skipping Steps 1-3
and/or 4-6). Another record must show, as the ~
locations have been used. Ia addition, those item~
must be given those locations before the optimizing

* Presented at the meeting of the Association, Septem

3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320815.320817&domain=pdf&date_stamp=1956-01-01

4 B. GORDON

the 800X addresses receive special treatment, not included iu the skeletal pro-
cedure shown, All in all, the writing of all optimum program involves several
times the effort of sequential coding, and is subject to many more errors. But,
optimizing can triple calculating speeds.

With optimizing being both tedious and valuable, it was only natural to ask :
"Can the 650 be programmed to optimize its own programs?" The answer to
this is: Yes--but certain compromises are necessary. One approach restricts
the size of the program which can be optimized, e.g. a limit of 500 words (one-
fourth of the machine's memory capacity). Another approach calls for the writ-
ing of programs with pseudo-addresses (unintelligible to the 650 itself) by means
of which all cross-referencing is done by the programmer. We are thus led to a
second question, "How much will we demand of an optimizing program, and
where are we willing to compromise?" A general answer is: With a minimum
of help from the programmer, an optimizing program should substantially :
reduce the latency of any program the 650 can execute. Specifically: {

1. The latency reduction had to be substantial, but not necessarily the best possible, or
even competitive witt: the work of a programmer;

2. All programs up to 2000 words had to be handled, and in the same way;
3. All cross-referencing lind to be done automatically by the machine;
4. Actual 650 instructions had to be input and output, so that programs could be de-

bugged, optimized, and modified any number of times and in any order.

These requirements have been met by the optimizing program now in use at
the Equitable Life Assurance Society.

In use, our program makes but one demand:for each D and I, the programmer
must say whether it is actually an address or not; then, for each actual address
(including N), he must say whether it is an absolute address which already
refers to a location, or a symbolic address to which the machine will assign a
location. For example, if 70 0001 0642 says "Read a card into Locations 0001-:,
0010 and get next Instruction from Location 0642", D and I are absolute and
symbolic, respectively; if 70 0001 0642 is a table value for csc 70 ° = 1.0642,
D and I are not addresses. We show this by means of indices associated with
N, D, and I : 0 for no-address, 8 for absolute, and 9 for symbolic. Beyond this,
the programmer simply writes a sequential 650 program, after which the ma-
chine takes over, paralleling the manual optimizing procedure on each instruc-
tion in turn--with less ingenuity than a human, but with greater accuracy.
With the optimizing program loaded, the program to be optimized is run through
the machine, one word per card; at this time, all absolute addresses are assigned
their proper drum locations. On re-running the same program deck, as each (,
symbol is used for the first time, the machine will assign optimum locations
and punch a new card for each card read. Note that the new cards will have the i:

. ' t same form as the onganals, including the address-mdmes, so that today s outpu
can be tomorrow's input.

To record the use of the machine's 2000 memory locations, and the assign-
ments (for cross-referencing) of the 2000 address-symbols written by the p r o -
grammer, two tables are used. These occupy 1200 memory locations, as follows:

OPTIMIZING PROGRAM FOR THE 650 5

A Symbol Tabie occupies locations 0000 through 0999, two entries per location. The
table entry in the upper half of location A refers to the symbol A; the table entry in the
lower half of location A refers to the symbol 1000+A. If the entry for the symbol A is
8,0000 (its initial value), the symbol has not yet been assigned a location. A symbol as-
signed to location Y has a table entry of 9,Y where 0000_~Y_~1999. For example, if
(0927) = 8000090519, the symbol 0927 has not yet been used, but the symbol 1927 has been
assigned location 0519.

A Location Table occupies locations 1000 through 1199, ten entries per location. The
table entry in digit P of location M refers to location

where

500Q + 50(10 - P) + R,

M - 1000 /~
50 Q + ~ "

The table entry for location A is digit 10-Q '1 of location

1000 + 50Q I + R '1,

where A/500 = Q' + R'/500 and RI/50 .~ QI~ + R"/50. A table entry of 8 shows a free loca-
tion; 9 shows a location which is already used (or otherwise unavailable, as the optimized
program can be restricted to any portion of the memory). For example, if (1052) =
8888888899, then 0502, 0552, 0602, --- , 0852 are free locations, but 0902 and 0952 are not.
Note that these locations are all equivalent for optimizing purposes,

These tables are the heart of the program, the rest of which fits easily into the
remaining 800 words of memory.

In practice, the program has proven extremely simple to use, even where it
was necessary to add address-indices to programs wri t ten some t ime ago. Al-
though much of our work is input-output- l imited, we have obtained some figures
on the program's effectiveness. Originally writ ten sequentially, the optimizing
program optimized itself in about 13½ minutes; the optimized version then re-did
the job in about 8½ minutes. The punching operation went from 53 to 90 cards
per minute; a search of the entire 200-word Location Table (requiring over 4000
operations) went f rom about 20 to about 8½ seconds; the sett ing u,p of the
1000-word Symbol Table went f rom over 30 to slightly under 8 seconds. Another
program optimized by machine was a 50-word sub-routine, which was restricted
to 50 consecutive m em ory locations; in this case, calculating speeds went from
180 to 333 operations per second. In a third application, a lengthy actuarial
calculation (involving several table searches) w e n t - - o n the ave rage- - f rom 14~
to less than 8 seconds. Finally, a sequentially-coded Monte Carlo program wen t
f rom 163 to 403 operations per second.

Of course, m a n y factors will affect the results in a given case, notably the
amoun t of input and output involved. In certain programs, e.g. some distribu-
tion jobs, no amoun t of instruction-juggling will change the operating speeds;
the examples cited above show program operating speeds multiplied by factors
of 1.5, 1.8, and 2.5, with sub-routine speeds multiplied b y 1.7, 1.9, 2.4, and 3.8.
Results such as these---and the ease with which these results were ob ta ined - -
have led us a t the Equitable Life to the belief t ha t manual optimizing is now

an obsolete procedure.

