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When integrating mlmerically systems of ordinary differential equations of 
the standard form 

y'  = f ( x ,  y), y(xo) = Yo (1) 

by difference methods, probably the simplest stable procedure that can be used 
is Euler's method [1]: 

y.,+l = Y,, -4- hy ' , , ,  h = x ~ 1  - x , , .  (2) 

This method requires only one substitution into the differential equation, and 
has a truncation error of the order O(h~). 

A prooedure of slightly higher accuracy is due to Heun [2]: 

~,,+1 = y,, -4- hy',, 

~'~+1 = f (z~+l ,  ~.+1) (3) 
lh(  .t -t y~+1 = y~-4-~ ~ y , + y ~ + l ) .  

Its application requires two substitutions into eq. (1), but  its truncation error is 
O(h3). 

An alternate method of great simplicity, namely the "midpoint" method, 
which seems to be in favor in some places, makes use of the following relation- 
ships: 

y~+~ = y~ + ½(y~ -- y~_~) (4) 

y ' ,+i  = f(z, ,+~, y,~+i) (5) 

Y~+I = Y~ + hy ' ,+~.  (6) 

Thus it necessitates only one substitution into eq. (1), and consequently re- 
quires essentially the same amount of computational labor that is involved in 
Euler's method. However, it has an accuracy that is comparable with that of 
Heun's method. 

To substantiate this claim, we assume that the numerical information available 
at x.-1, x~ is correct. Let us denote the exact solution by y(x ) .  Then we put 

y,,+~ = y(x,,  + l h )  "b TI  

y',,+~ = f(x , ,  "4- ½h, y(x,, + ½h)) z~ T~ 

y~+l = y(x ,+l)  "4- T M . 
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Now, by (4), 

and since 

it follows tha t  
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y,,+{ = y(x,,) Jr- ½[y(x.) -- y(x._,)], 

y(x,,) -- y(x._~) = hy'(x,,)  --  ½h2y"(x,,) --k O,(h~), 

~___ 1 ! 1 ~ 2  ; l [ . .  "~ y,,+i y(x,,) -k  ~hy (x,,) - -  ~n y ~,x,,, q-- 02(h3). 

On the other hand, the exact expansion is 

y(x,,  -b ½h) = y(x.) -{- ½hy'(z,,) -k lh2y"(x, ,)  "4- Oa(h3). 

Thus ,~:~::~ 

T1 3 2 ,, = - -~h  y (x , )  + O,(h3). (7) 

Consequently, by (5), 

Y'-+t = f(x, ,  q- ½h, y(x,, "k ½h) -'k T1) 

= f(x,, q- ½h, y(x,, Jr" ½h)) q- f~T~ Jc 06(h~), 

with the partial derivative f~ to be evaluated at  x,, 4- Zh2 , y(x,, -b ½h). Finally, 
then, by (6), 

y,,+~ = y(x,,) -4- hy'(x,,  -k ½h) -'k hf~T~ q- 06(h5), 

However, 

lh  " ' -  " "-k }h~y'"(x,,) -b O,(h~). y '(x, ,  -k ½h) = y'(x, ,)  -+- ~ y kx,,) 

Therefore, 

y,,+l = y ( z . )  -P hy'(z , , )  --k ½h~y'(x,,) + th3Y'"(x, ,)  Jr" hfvT1 "t- 06(h~). 

This is to be compared with the exact expansion 

= ~h y (x,,) -4- ~n y ~x,,~ q- 07(h4). y(x,,+l) y(x,,) -b hy ' ( x . )  -[- x ~ ,, 1,8 ,,,~- 

It  follows that  

I 1,,3ro,,'l! TM = --~ZT,, t~ q- 9y'%]. -b OM(h4). (8) 

A similar discussion of Heun's method (3) shows that  

TH = --:~-4:h3[-2y ' ' '  q- 6y'%]. -b O ~ ( h %  (9) 

Thus both methods are exact for differential equations (1) whose solutions are 
polynomials of degree not exceeding two. 

It  is not too difficult to think of cases where the midpoint method is more 
accurate than Heun's method. Such a case is 

y' = (1 q- y2)-,, y(0) = 0, (10) 
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in the interval 0 < x =< 1.0. The integrations, carried out  for h = 0.1, are shown 
in Table 1. Results due to Euler's, Heun's, and the midpoint method are 
in columns (1), (2), (3), respectively. The exact solution g3 + 3y - 3z = 0 
tabulated in the next column. The resulting errors E ~  = y~, - y ( x ) ,  E ~  

y~r - y ( x ) ,  and E ~  = y ~  - g ( x )  are exhibited in columns (5), (6), (7); th, 
bear out the claim made above. 

Of interest is also the closeness of the leading terms in the expressions (8) 
and (9). In the case of equation (10) it turns out that  

T,,  4 

1 3 / 4 TM ~-~ - ~ z h  (y)  [--1 ~- 24y2y'], 

Int}grations starting with y(1.0) yead to the values at x = 1.1 shown in Table 1 
beiow the line. Therefore, 

TR ~ --2.1 X 10 -~, T~ ~ - 9 . 5  X 10 -5, 

while the exact values for truncation (and rounding) are 

T~ = - 1 . 8  X 10 -s, T~ = - 9 . 1  X 10 -5. 

The truncation expressions in (8) and (9) are thus sufficiently close to be of 
practical utility. 

In conclusion it might be stated that  the midpoint method defined by  equa- 
tions (4), (5), (6) is only a special case of a whole class of such methods: 

Y,+e = Y~ A- O(y~ - -  yn-1), 0 < O < 1 

Y',,+e = f (x , ,+e  , Y,,+e) 

Yn+l - - - -  Y,, + o&y ' , ,+e ,  

TABLE 1 

Comparison of Methods 

(o) 
x 

0 
.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 

1.1 

.000 
• 1O0 
.199 
.295 
• 387 
.474 
.555 
.632 
• 703 
.770 
• 833 

O0 
O0 

Ol i ̧  
2O 
18 
15 
79 
19 
64 
52 
27 

n(2) e u n  

.00000 

.099 50 

.197 12 

.291 29 

.380 97 

.465 64 
,545 18 
.619 77 
.689 70 
.755 35 
:817 12 

• 875 940 

(3) 
Midpoint 

.000 00 

.099 75 

.197 56 

.291 84 
• 381 53 
• 466 15 
.545 60 
.62OO9 
.68992 
.755 47 
.817 15 

• 875 867 

I (4) 
E x a c t  S o l .  

.00000 
• 099 67 
• 197 44 
.291 72 
• 381 49 
.466 22 
.54580 

i , 6 2 0 4 0  
.690 33 
.755 97 

(S) 

0 . 1 0  - s  
33 

157 
348 
569 
793 
999 

1179 
1331 
1455 

(0 
E ~  

0 . 1 0  - i  
--17 
--32 
--43 
--52 
--58 
--62 
--63 
--63 
--62 

(7) 

.817 

• 875 

73 1554 

958 I 

--61 

0.10 -6 
8 

12 
12 
4 

--  7 
- 2 o  
- 3 1  
- 4 1  
- -  50 
"58 

i i~!i 
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with a and 0 denoting constants. For ~ = 1 and e = ½ this method has a t runca-  
tion error of the order O(h 8); for other values of ~ or e the truncation error is of 
lower order. 

REFERENCES 

1. See, for example, F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw Hill, 
New York, 1956, Chapter 6. 

2. See HILDEBRAND, 1OC. eit .  1. 


