
A n A u t o m a t i c P r o g r a m m i n g R o u t i n e f o r t h e E l l i o t t 401"

F. YATES AND S. LIPTON

Rothamsted Experimental Station, England

Introd~ction

In a recent paper [1] Gordon has outlined a routine for the IBM type 650
calculator, which recodes the addresses of a programme written without consid-
erations of optimum coding, so as to produce a final programme which is reason-
ably optimal as regards timing. A similar automatic programming routine has
been constructed for the Elliott 401 computer. This is a prototype machine
which was built by Elliott Brothers under a development contract with the
National Research Development Corporation. I t is at present operated by the
Statistics Department of Rothamsted Experimental Station and is mainly used
for statistical work in agricultural and biological research.

The two routines, which were developed independently, use similar methods
for recoding the addresses so as to obtain satisfactory timing. The 401, however,
has a considerably more complex order code than the 650, and the 401 routine
is designed to perform a number of operations which are not required in pro-
gramlning for the 650.

Programming for the 401

The 401 ~ has a one-plus-one address system with a word time of 100 ps and a
word length of 32 binary digits. The 10 most significant digits of an order specify
the address (termed the "A~" address) of the next order to be obeyed. The ten
least significant digits specify the address (the "Ai" address) that gives the
store location when there is reference to the store, or the address of the alterna-
tive next order in a discrimination order. The address in the store at which the
order is located is termed the A0 address. All these addresses have timing sig-
nificance. The central 12 digits of an order are the operational digits; they are
split into four groups of 3, termed the source (S), function (F), destination (D),
and control (K).

The main store is a magnetic disc of 23 tracks numbered 0 to 6 and 7/0 to
7/15, each of 128 words. Orders are read directly from the disc. Switching
between tracks 7/0 to 7/15 is by relays, with change from one relay track to
another being effected by a relay switching order. Reference to any relay track
has its track number coded 7. Switching between tracks 0 to 6 and the particular
relay track in circuit at the time is electronic. Writing on track 0 is inhibited, as
this track is used for a set of permanent input routines and a division routine.
The only immediate access storage consists of five single word registers, of which

*Received August, 1956.
'A note on this computer is given in [2].

151

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320868.320874&domain=pdf&date_stamp=1957-04-01

152 F. Y A T E S AND S. L I P T O N

one (R~) is used as the accumula to r , the second (R2) is used in doub le length
work ing , a n d the r e m a i n i n g th ree (R3, R4 and Rs) are used for t e m p o r a r y s torage
and modi f i ca t ion (B modi f ica t ion) of orders. I n mu l t i p l i ca t i on the factors are
p laced in R2 a n d R3.

C l ea r l y i t is essent ia l , if s a t i s f ac to ry opera t ing speeds are to be a t t a ined , to
m a k e the t im ing of p r o g r a m m e s opt imal . Moreover , the coding is fu r the r compli-
ca t ed b y a n u m b e r of cond i t ions which mus t be sat isf ied by the va r ious addresses
of ce r t a in t y p e s of orders . F o r example , in a mu l t i p l i ca t i on o rde r A: mus t be
e xac t l y 31 word t imes a f te r A1, in shift orders A2-A1 de t e rmine s the n u m b e r of
p laces shi f ted , whi le in ope ra t ions involving R2 the p a r i t y of all three addresses
inf luences the ope ra t ion . Such condi t ions , a l t hough i nd iv idua l l y s imple, make
in the agg rega t e cons ide rab le d e m a n d s on the p r o g r a m m e r and consequen t ly
l ead to m a n y errors .

Main points of the routine

T h e rou t ine has been cons t ruc ted with two ma in ob jec t s in v iew: F i r s t ly , t h a t
the p r o g r a m m e r should be f reed from having to give a t t e n t i o n to the cond i t ions
t h a t the addres ses have to sa t i s fy , and, secondly, t h a t the addresses should be
a l loca ted so t h a t t he t iming is r easonab ly op t imal . In add i t i on , eve ry effort has
been m a d e to c o n s t r u c t a rou t ine t h a t is s imple to use and t h a t will d i rec t the
p r o g r a m m e r ' s a t t e n t i o n to a n y de tec tab le errors while st i l l con t inu ing to opera te
in the face of such errors .

T h e fo l lowing s u m m a r y l is ts the main po in ts of the rou t ine and of the s implif ied
coding as soc ia t ed wi th it.

(1) In so far as orders are to be obeyed in the sequence in which they are written, no
indication of the next order to be obeyed is required.

(2) Apart from sets of numbers, such as a set of constants referred to by B modification,
the locations of orders and numbers in the store need not be specified.

(3) Conditions that are part of the general rules of programming are imposed by the
machine.

(4) Additional items of information not inherent in the order (e.g., number of places of a
shift) can be entered in simple form at any time during the writing of the provisional pro-
gramme.

(5) Provision is made for inserting any real ("final") address (such as an entry point to a
sub-routine) into an order, or assigning an order or number to a definite location in the store.
I t is thus possible to programme part of any routine--such as an inner loop for which the
timing is v i ta l - -by hand.

(6) The programmer has control over the order in which the routine assigns final ad-
dresses to the orders and over the track or tracks on which each sequence of orders is to be
placed. Inner loops can thus be dealt with while there are plenty of free locations ; this also
ensures that addresses which are optimal for the loops are allocated to numbers required in
them. The assignment of addresses can be started at the A1 of the first order of a sequence
and/or stopped at the A~ of the last order.

(7) Printed indication is given of the type and location of any definite or probable errors
• which can be deduced from internal evidence of the programme under construction.

(8) A final programme is constructed in which the timing is reasonably optimal and all

AN AUTOMATIC PROGRAMMING ROUTINE 153

required conditions are satisfied. This programme is punched out in standard form as an
order tape.

(9) A record of occupied addresses is printed in suitable form.

Coding for the routine

The key to the whole procedure is the use of "provisional addresses", which the
machine later replaces by final addresses. The standard form in which an order is
written is

A0: A2 SFDK A1

This form is retained in the simplified coding of the routine, but A0 represents the
provisional address, and A~ and A1, if they are written at all, also normally
represent provisional addresses. The provisional addresses are obtained by
numbering the orders consecutively. This is normally done when the programme
is complete. Numbers can be given provisional addresses at the outset or as
encountered. Orders or numbers to which final A0 addresses are assigned before
the programme is processed can still be referred to by provisional addresses in
A2 or A1, thus permitting any necessary orgauisation of the store to be made
after the programme is written without alteration of any A: or A1.

As, in general, orders are written down in the sequence in which they are
obeyed it follows that the provisional address that would be in the A: position
will in most cases be the provisional address of the succeeding order. In this event
A2 is left blank. The few exceptions occur at ends of loops, etc.; here the pro-
visional address of the next order to be obeyed is written in A2. A1 is left blank
unless the order involves a reference to store or a discriminatiofi.

To carry additional information, such as the final A0 address (if assigned),
number of places in a shift, indication that an A2 or A~ address is final, etc., each
provisional order has an "auxiliary" associated with it. The auxiliary is written
alongside the provisional order and punched with it. In most cases all or most of
the auxiliary will be blank. Provision is made to reduce the punching of zeros
(representing blanks) to a minimum. The provisional orders and auxiliaries are
modified by the routine as the construction of the final programme proceeds.

Other facilities

(a) Sets of numbers which are referred to by B modification of an A1 address. Since
a set of numbers of this type must occupy a set of appropriately spaced (usually
consecutive) store locations, the locations must be assigned before the programme
is processed. This, however, can be done when the programme is otherwise
complete, and the set can still be referred to by a single (or if required, more than
one) provisional address. The routine checks that all references to such sets are
B modified, and that all B modified orders refer to such a set. (This check is
particularly necessary in the 401 since the B modification instruction for an

154 F. Y A T E $ AND S. L I P T O N

order is contained in the preceding order or orders.) In addition, the range of the
set is taken into account when assigning the corresponding A~.

(b) Arrangements for setting up programmes on the relay tracks. In long pro-
grammes it is often necessary or advantageous to locate parts of the programme
on relay tracks. This involves additional complications since every change of
relay track involves a relay switching order, and care must be taken that no
reference is made to a relay track not in circuit. Provisions to deal with this are
as follows. For each sequence of orders that is to be set up on one or more relay
tracks the track number on which setting up is to commence is specified in the
sequence control. Whenever a relay switching order is encountered the number
of the set up track is automatically changed. In addition, any orders or numbers
whose provisional A0 is coded 0.01 will be placed on a non-relay track whose
number is specified in the sequence control. Such orders and numbers can thus
be referred to by orders appearing on different relay tracks. If desired the set up
of a relay track sequence can commence on this specified non-relay track and
so continue until a relay switching order is encountered. In addition, whenever a
reference to an order or number already located on a relay track is encountered
a test is made tha t the track number agrees with the relay track number (ff any)
determined by the current sequence control or last relay switching order of the
current sequence.

(c) Track V programmes. Certain programmes such as library sub-routines
have to be placed on different tracks according to the contexts in which they are
used. To allow for this, these programmes have their track numbers punched
V (V = 14 and therefore does not in itself correspond to any track). During
input, the permanent routine on track 0 replaces the V by the track number
designated on the hand switches. Such programmes are constructed by the
automatic routine in the same manner as ordinary programmes, setting up on
track V being controlled by the sequence controls. In relay track sequences
track V acts as the specified non-relay track, and numbers and orders which
have the A0 of their auxiliaries coded 0.01 are always placed on track V.

(d) Segregation on a single track of store locations in which writing is required. In
the Elliott 401 it is possible to inhibit the writing on any of the tracks 1 to 6, and
on the relay tracks as a group. This enables the orders and constants of a pro-
gramme to be protected from mutilation by overwriting. Orders and numbers
which are changed in the course of the programme must of course be placed on a
track on which writing is not inhibited. This can be done in programmes con-
structed by the routine by coding the relevant auxiliaries A0 = 0.02. All such
orders and numbers will then be placed on track 6.

(e) The use of repeated constants. To speed up a programme, constants which
are required in a number of contexts can be repeated in more than one initially
assigned store location. The machine will select the most advantageous location
for each reference.

Outline of machine operations

The routine is divided into five sections: Input , A, B, C, and Output.

AN AUTOMATIC PROGRAMMING ROUTINE 155

Input. The provisional orders and auxiliaries are read into the store by a special input
routine.

Section A. Each order is examined in turn and any additional information which is de-
ducible from the order itself and its relation to other orders is planted in the auxiliary.
Various tests for definite or probable errors and inconsistencies are applied at this stage.

Section B. The parity conditions planted in Section A and those (if any) imposed by the
programmer are collated, and definite parities are assigned. If any inconsistency arises, an
indication of this is given.

Section C. Final addresses are assigned to the A0, A~, and A: of each order so as to conform
with the conditions now contained in the auxiliary, with due regard to the requirements of
optimum programming and the positions still vacant in the store.

Output. A register of occupied store positions is printed and an order tape produced in
standard form. The latter can be read back to check for punching errors.

General Remarks

The routine now has two forms. The short form can handle programmes
requiring up to 371 store locations. The long form can deal with programmes
requiring up to 1023 store locations. In either form the orders and numbers can
be distr ibuted over any desired tracks by means of the sequence controls, and
parts of any t rack can be reserved for data, sub-routines, etc.

The routine is inevitably of considerable complexity. I t occupies about 1800
locations (including constants and working store positions), and contains 245
discrimination orders. In the short form the routine itself is placed on fourteen
of the relay tracks, and the provisional orders and auxiliaries are stored on the
non-relay tracks. In the long form, the provisional orders and auxiliaries are
stored in the relay tracks and the p~'ocessing is carried out by stages, with the
relevant pa r t of the routine on tracks 1 to 6.

In order to avoid parts of a t rack or t racks being packed too t ight early in a
programme, in which case the timing of later par ts would suffer, provision is
made for introducing a spacing parameter k ' , which has the effect of passing over
the first), ' vacan t positions during the allocation of each address in section C.
~,' is specified by the programmer at the same t ime tha t he indicates the sequences
in which the programme is to be processed. I t can have a different value for each
sequence.

A register of occupied store posi t ions-- the analogue of the t rack diagrams used
in hand programming to mark off used locat ions-- is kept for the 22 tracks
(excluding t rack 0) and track V separately. The register is held in 92 consecutive
store positions, four words representing one track.

Performance of the routine

The performance of automatic programming routines is sometimes assessed by
comparing the speed of programmes constructed by the machine ~yith that of the
corresponding programmes written serially (that is, with A2 of each order equal
to A0 W 1). The increase in computing t ime resulting from the latter procedure
depends very much on the type of programme as well as on the machine; for the
401 an increase of five to ten times can easily result. This, however, does not in

156 F. YATF.~ AND S. LIPTON

our opinion give a meaningful comparison, since no competent programmer would
use a non-serial machine in this manner. In any event for many machines, of
which the 401 is one, parity conditions prevent strictly serial arrangement. Our
aim in writing the automatic programming routine was that it should construct
programmes whose timing would be no worse than that which a reasonably
competent programmer would produce by hand. This object it is believed has
been achieved.

For example, detailed examination of two programmes constructed by the
machine---one for analysing the data of randomized block experiments and the
other for probit analyses, each occupying three tracks--showed that in all the
inner loops the timing was as good as that which hand programming would have
produced. In another three-track programme for calculating the means, var-
iances, covariances and correlations of multivariate data, the timing was
actually better than a similar programme previously hand-written. In this latter
case, the saving in time was mainly due to the insertion of timing delays which
had been omitted in the original programme between the A2 and A~ of certain
types of orders. We have found that even the most experienced programmers
make occasional slips of this type, which of course are not revealed by machine
tests.

In addition to producing programmes which are adequately speedy in opera-
tion it has been found that the routine substantially reduces the amount of
machine time required for testing programmes. Even allowing for the machine
time consumed in the actual construction of programmes, there is a very sub-
stantial net saving.

Conclusion

The short form of the routine was originally written early in 1955 without the
special facilities (b), (c) and (d) above. Experience in its use indicated the need
for greater capacity, so that programmes of more than three tracks could be
dealt with in one operation, and for the above facilities. In its original form the
routine has proved very successful and has substantially reduced the labour of
writing long programmes. Equally important, it has been found that the finished
programmes contain far fewer errors. This relative freedom from error is partly
attributable to the elimination of certain types of error entirely (for example,
overwriting) and to the indications provided by the routine of other probable
errors, but it is also a reflection of the fact that the programmer is freed from
having to attend simultaneously to a mass of troublesome detail and can conse-
quently give more adequate attention to matters of real substance.

R E F E R E N C E S
1. GoimoN, B. An optimizing program for the I B M 650. Journal of the Association for

Computing Machinery 3, (1956) 3-5.
2. LIPTOn, S. A note on the electronic computer a t Rothamsted. . Math. Tables and Other

Aids to Computation 9, (1955) 69.

