
Segmenting Residential Smart Meter Data for Short-Term Load
Forecasting

Alexander Kell
School of Computing

Newcastle upon Tyne, UK
a.kell2@newcastle.ac.uk

A. Stephen McGough
School of Computing

Newcastle upon Tyne, UK
stephen.mcgough@ncl.ac.uk

Matthew Forshaw
School of Computing

Newcastle upon Tyne, UK
matthew.forshaw@ncl.ac.uk

ABSTRACT
In order to reliably generate electricity to meet the demands of
the customer base, it is essential to match supply with demand.
Short-term load forecasting is utilised in both real-time scheduling
of electricity, and load-frequency control. This paper aims to im-
prove the accuracy of load-forecasting by using machine learning
techniques to predict 30 minutes ahead using smart meter data. We
utilised the k-means clustering algorithm to cluster similar individ-
ual consumers and fit distinct models per cluster. Public holidays
were taken into consideration for changing customer behaviour, as
was periodicity of the day, week and year. We evaluated a number
of approaches for predicting future energy demands including; Ran-
dom Forests, Neural Networks, Long Short-Term Memory Neural
Networks and Support Vector Regression models. We found that
Random Forests performed best at each clustering level, and that
clustering similar consumers and aggregating their predictions out-
performed a single model in each case. These findings suggest that
clustering smart meter data prior to forecasting is an important step
in improving accuracy when using machine learning techniques.
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1 INTRODUCTION
The energy markets have undergone significant changes in recent
years. The liberalisation of the energy industry, technological ad-
vancements and policy changes have had numerous effects [34].
These include a rise in both competition and data [6, 28].

Accurate load forecasting is essential for control and planning
of electricity generation in electrical grids as supply must meet
demand [20]. Accurate estimates of demand are required so that the
correct amount of electricity is purchased on the wholesale market
[8]. Failure to accurately forecast electricity demand can lead to
financial loss or system-wide blackouts [13].

The introduction of smart meters in many countries (USA, Eu-
rope and South Korea) has led to an influx of high granularity
electricity consumption data that can be used for load forecasting
[7]. 800 million smart meters are projected to be installed worldwide
by 2020 [30].

This paper explores short-term load-forecasting at an interval of
30 minutes ahead and clusters similar users based on their electric-
ity consumption. A variety of different forecasting techniques were

evaluated such as Random Forests [32], Long Short-Term Mem-
ory Neural Networks (LSTM) [14], Artificial Neural Networks [33]
(ANN) and Support Vector Regression (SVR) [9].

Random Forests are an ensemble-based learning method for clas-
sification and regression, and are made up of many decision trees.
LSTMs are recurrent Neural Networks which remember values over
arbitrary time intervals. Multilayer Perceptrons are a popular type
of neural network which consist of a minimum of three layers and
can be used to make non-linear predictions. SVRs are supervised
learning models which analyse data for regression analysis.

To improve forecasting results, k-means clustering of smart me-
ter data was evaluated. An average 24-hour electricity load profile
per customer was calculated, and the result used for clustering.
The clustered sub-system is then aggregated and separate models
trained on these aggregates. The yearly, weekly and daily period-
icity of electricity load is accounted for by feature vectors. Once
forecasts for each cluster are made using the individual models, the
results are aggregated for the final predictions. These predictions
are compared to the actual results and the accuracy measured using
mean absolute percentage error (MAPE) and mean absolute scaled
error (MASE).

This paper provides researchers and utilities with methods to
maximise forecasting accuracy through the selection of machine
learning and clustering algorithms.

This paper is structured as follows. In Section 2 we explore re-
latedwork of load forecasting. The experiments and their evaluation
are discussed in Section 3. The results are discussed in Section 4. In
Section 5 we conclude and consider future directions for this work.

2 RELATEDWORK
The forecasting of aggregated and clustered electricity demand has
been the focus of a considerable amount of research in recent years.
The research can generally be classified into two classes, Artificial
Intelligence (AI) techniques [19, 22, 25] and classical time series
approaches [16, 23, 24]. For the purposes of our paper we have
reviewed artificial intelligence techniques. Please refer to appendix
A to explore the literature related to classical time series approaches.

Singh et al. produced a review of load forecasting techniques and
methodologies and reported that hybrid methods, which combine
two or more different techniques, are gaining traction, as well as
soft computing approaches (AI) such as genetic algorithms [27].

2.1 Artificial Intelligence Techniques
Dillon et al. presented a Neural Network for short-term load fore-
casting. Their Neural Network consisted of three-layers and used
adaptive learning for training [8]. They proposed the use of weather



information to augment their electricity load data. They found bet-
ter results with the Adaptive Neural Network than with a linear
model, or Non-Adaptive Neural Network. In contrast to Dillon our
paper focuses on a Non-Adaptive Neural Network and does not
take into account weather information.

Chen et al. used an Artificial Neural Network to predict elec-
tricity demand of three substations in Taiwan. They integrated
temperature data into the model, and showed a higher degree of
accuracy when forecasting demand in residential and commercial
substations as opposed to industrial. This was due to the ability to
model the high usage of air-conditioners in residential and com-
mercial substations using temperature data [5]. In contrast to the
work by Chen et al., we focus on client-side prediction using smart
meter data. We were, therefore, able to cluster the data based on
load profile, as opposed to grouping based on geographical location.

2.2 Clustering
Multiple techniques have been proposed for the clustering of elec-
tricity load data prior to forecasting. Shu et al. and Nagi et al. pro-
pose a hybrid approach in which self-organizing maps are used to
cluster the data, and Support Vector Regression is used for predic-
tion [22, 26]. This technique proved robust for different data types.
Shu showed that this hybrid approach out-performed a single SVR
technique, whilst Nagi showed superior results to a traditional
ANN system. In contrast to both Nagi et al. and Shu et al. our paper
utilises k-means as the clustering algorithm.

Wijaya et al. demonstrated that implementing a certain number
of clusters improved load-forecasting accuracy [35]. However, a
study by Ilić et al., showed that increasing the number of clusters
did not improve accuracy [17].

3 METHODOLOGY
The work in this paper was run on a MacBook Pro with a quad-core
3.1GHz Intel Core i7 processor with 16 GB 1867 MHz DDR3 of RAM
and a 500GB solid state drive (SSD).

3.1 Data Collection
Smartmeter data obtained from the Irish Social ScienceData Archive
(ISSDA) was used in this study [11]. The Commission for Energy
Regulation released a public dataset of anonymised smart meter
data from the "Electricity Smart Metering Customer Behaviour Trials"
[1]. This dataset is made up of over 5000 Irish homes and businesses
and is sampled at 30-minute intervals.

The data was recorded between the 14th July 2009 and 31st
December 2010. For the purposes of cross-validation this data was
split into a training, validation, and testing set. The training set
consisted of the first 9 months of data and used to train the models,
the validation set consisted of the following 2 months of data and
used to tune the hyperparameters, and the test set included the
remaining 6 months and used for measuring error. These splits
were chosen to balance the training data with the test data and
give the models a chance to learn the periodicity inherent in a one
year period. Due to the long training times for these algorithms,
we worked with a sample of 709 individual Irish homes. However,
due to the infrequent requirement to train these models, we believe
our technique would be suited for the real life application.

Figure 1 displays four residential customer daily load profiles. It
can be seen that whilst Customer 1 and Customer 2 have similar load
profiles, Customer 3 and Customer 4 have significantly different
load profiles. This demonstrates that, whilst electricity consumption
changes per-person, it is possible to cluster similar customers by
their load profiles.

3.2 Clustering
We propose that clustering similar customer load profiles and aggre-
gating each cluster’s electricity consumption improves the accuracy
of the models. This is due to the fact that aggregated clustered loads
decrease the stochasticity of the demand of the system, and there-
fore increase the predictive ability of the models.

The Euclidean distance andwavelet metrics were evaluated using
hierarchical clustering [21]. However, k-means demonstrated to
be the most robust and best-performing algorithm, and thus was
chosen for use in this paper [12].

To cluster the data, each user’s nine month electricity consump-
tion in the training set was reduced to a single averaged 24 hour
load profile (48 data points per customer). This was achieved by
taking the average electricity consumed for each half hourly point
of the day (eg. taking the mean of every 12-12:30pm point in the
training set). We did not take into account the difference between
weekend and weekdays for clustering. The data was then scaled
so that different sized households, but with similar usage profiles
were clustered together.

To select the optimum number of clusters (k) the test set was
used for cross-validation. This allowed us to compare the results of
each of the models and select k with the highest accuracy exhibited
by mean absolute percentage error (MAPE) and mean absolute
scaled error (MASE). In this paper k was varied between 1 and 7,
which was chosen due to the fact that the error did not vary greatly
past seven clusters. Multiple models were fit per cluster and used
to predict the testing data.

To overcome local minima the k-means algorithm was run 1000
times and the most accurate partition chosen [18].

Figure 1: Figure showing daily load profiles for four differ-
ent customers on the 22nd July 2009.
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3.3 Aggregating Demand
Once each customer is assigned to their respective cluster, the total
electricity consumed by each cluster is calculated. This is achieved
by summing the electricity consumed at every time interval per
cluster. This creates a partial system load. A model is trained on
each of the different partial system loads, and the resultant forecasts
are aggregated to generate the total load forecast. This forecast is
then evaluated by calculating the MAPE and MASE for each model.

3.4 Feature Selection
3.4.1 Calendar Attributes. Due to the daily, weekly and annual

periodicity of the electricity consumption, daily calendar attributes
were deemed important to accurately model the problem. The cal-
endar attributes included are: hour of the day, day of the month,
day of the week, month, and public holidays.

Public holidays were used as features for the model due to the
change in electricity consumption exhibited on these days.

We evaluate the increase in performance due to the modelling
of calendar attributes in the results section.

3.4.2 Time Series Data. The time-series element was modelled
using lagged data inputs. This was achieved using the previous
3 hours, the equivalent 3 hours from the previous day, and the
equivalent 3 hours from the previous week.

Long Short-Term Memory neural networks remember values
over arbitrary time intervals. And thus can remember short-term
memory over a long period of time, for this reason, 5 lagged inputs
of the previous two and a half hours were used as features to the
Long Short-Term Memory network.

3.4.3 Data Representation. Numerical representationswere used
for the lagged data input. A single binary was used for public hol-
idays. One hot encoding is a method which allows categorical
variables to be distinguished from ordinal data. One hot encoding
was used to encode day of the week and month of the year. Table
1 displays the input data for SVR, Neural Network and Random
Forest.

3.5 Experiments
This section explores the experiments made to design the models.
Cross-validation was used on the validation set of each of the mod-
els to tune the hyperparameters. Each of the models were then
created five times per cluster to explore the variance of the results.

3.5.1 Support Vector Regression. The validation set was used to
tune the hyperparameters and select the kernel of the SVR model.

The kernels compared were polynomial, radial basis function
(RBF) and the linear kernel [4, 31]. They were chosen due to their
popularity, support and speed of computation.

The parameter values are shown in Table 2. The linear kernel
produced the best results, and therefore chosen as the final model.

3.5.2 Random Forest. The number of variables sampled as can-
didates at each split was tuned using the validation set.

The optimum number for this was 23. It is proposed that the
value 23 was found to be optimum due to the 21 lagged inputs,
which are crucial to learn the underlying nature of the time series.

Table 1: List of Input Data for Models

Input Variable Detail description

1 Hour Single numeric input representing
hour of the day

2 Day of month Single numeric input representing day
of the month

3-9 Day of week Seven binary digits representing calen-
dar information regarding day of the
week

10-21 Month Twelve binary digits representing cal-
endar information regarding month

22-42 Lagged inputs Twenty one numeric inputs represent-
ing lagged inputs of previous 3 hours,
previous 3 hours of previous day in-
cluding hour to be predicted, and pre-
vious 3 hours of previous week includ-
ing hour to be predicted

43 Holiday Single binary digit representing
whether the day was a public holiday

Table 2: Prediction Accuracy Based on Type of Kernel

Kernel Type Kernel Parameters RMSE

Linear No values 0.02102779
RBF C=2, γ = 0.016 0.02444950

Polynomial C=2, d = 2, r = 2 0.03145719

3.5.3 Artificial Neural Network. The first step when creating
an Artificial Neural Network is to design the architecture. In our
case, the number of input neurons is set to 43 (see Table 1). Only
one output neuron is required, due to the fact that we are only
forecasting one step (30 minutes) ahead.

To design the number of hidden layers the Levenberg-Marquardt
technique was used. An optimal architecture with three hidden
layers was obtained. The first layer contained two neurons, the
second contained five, and the third contained four.

3.5.4 LSTM. The Levenberg-Marquardt techniques was once
again used to select number of layers and number of memory units.
Using this technique, the optimum number of layers was found to
be 2 with 50 memory units each.

4 RESULTS
To determine the optimal number of clusters a range of values for
k were explored, thus, k was varied between one and seven. 28
forecasting models were therefore constructed per type of model.
The models were fit five times to explore the variation in the output.
The model accuracy was evaluated using both MAPE and MASE.

The results are shown in figure 2. These show that clustering
similar users improves accuracy. The optimum value for k for every
model was shown to be four. After this, the accuracy diminishes
slightly. The error bars shown in Figure 2 display a slight variance
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Figure 2: Comparison of accuracy ofmodels forecasting elec-
tricity with varying number of clusters.

Figure 3: Real electricity consumption versus predicted elec-
tricity consumption between June 16th and June 18th 2010.

in MAPE for SVRs, ANNs and Random Forests. However, the MAPE
of the LSTMs seem to vary by up to 11%.

The MASE metric also demonstrated that four clusters were
optimal for SVR, Neural Networks and Random Forests.

The impact of using calendar attributes improves prediction
accuracy by 6% for neural networks, 4% for Random Forests and
1% for SVR. For these results please see figure 6 in appendix D.

It is proposed that the optimum value for k cluster centres was
four due to the distinct patterns observed in each of the clusters. At
k = 5 one of the distinct clusters is split, and leads to an increase
in stochasticity. At k = 3 the stochasticity is also increased by the
aggregation of load profiles which are dissimilar.

However, the optimum number of clusters will vary for different
datasets. Differing geographies may display varying usage charac-
teristics due to culture, weather or social norms.

The results demonstrate that SVR, Random Forests and the ANN
have similar accuracy, and adequately predict electricity consump-
tion. The LSTM shows a similar pattern in increasing accuracy with
number of clusters, but performs worse than the other models. The
Random Forest seems to outperform each of the other models. This
may be due to the internal operation of the Random Forest which
undertakes its own cross-validation using out-of-bag samples.

Figure 3 displays actual electricity consumption versus predicted
results. It shows that the LSTM model predicts a similar value in
the next time step as the previous time step, which would explain
its inferior results to the other models.

The training times were tested by timing how long the models
took to fit for four clusters. The Support Vector Regression took
less time than all of the other methods, whereas the LSTM took the
longest. The Support Vector Regression model required 3 minutes
and 18 seconds to run. The Random Forest required 14 minutes and
58 seconds. The Artificial Neural Network required 17 minutes and
48 seconds, whilst the LSTM took 21 minutes 11 seconds to run.

The time to make a single prediction was recorded at sub mi-
croseconds and therefore deemed negligible for our use-case.

5 CONCLUSION
The availability of data produced by smart meters enables network
operators to gain greater insights into their customer behaviour
and electricity usage. We demonstrated that implementing the k-
means clustering algorithm to group similar customers improved
the accuracy of the models tested. Distinct models were trained for
each cluster and the individual forecasts aggregated for the total ag-
gregated forecast. It was found that Random Forests outperformed
all other models at each level of clustering. The optimum number
of clusters was found to be four. Whilst the dataset used focused
on residential data it is expected that applying a similar clustering
technique on commercial properties would have a similar effect.

It is considered that monthly retraining of the models would
be required to ensure continued accuracy. However, this is not
expected to be a problem due to the short time time required for
model training. Once trained, the prediction times are negligible.

In future work, we will look into the features that best aid in the
forecasting of electricity consumption, try a wider variety of models
in an ensemble manner and try different clustering techniques such
as self-organizing maps (SOM) to obtain better accuracy results.
We will also compare a greater variety of forecasting metrics.
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Appendices

A TIME SERIES RELATEDWORK
This section explores the work done in the literature for a classical
time series approach.

Al-Musaylh et al. proposed the use of Support Vector Regression
(SVR), an autoregressive integratedmoving average (ARIMA)model
and a multivariate adaptive regression spline (MARS) in their short
term electricity demand forecasting system [3]. They found that
for a half, and one-hour forecasting horizons, that the MARS model
outperformed both the ARIMA and SVR.

Taylor evaluates different statistical methods including ARIMA,
an adaptation of Holt-Winters’ exponential smoothing [15], and an
exponential smoothing method which focuses on the evolution of
the intra-day cycle [29]. He found that the double seasonal adap-
tation of the Holt-Winters’ exponential smoothing method was
the most accurate method for short lead times between 10 and 30
minutes.

In contrast to Taylor, Fard et al. proposed a novel hybrid forecast-
ing method based on both artificial intelligence and classical time
series approaches. They utilised the wavelet transform, ARIMA and
ANNs for short term load forecasting [10]. The ARIMA model is
created by finding the appropriate order using the Akaike informa-
tion criterion [2]. The ARIMA model models the linear component
of the load time series, and the residuals contain the non-linear
components. These residuals are then decomposed by the discrete
wavelet transform into its sub-frequencies. ANNs are then applied
to these sub-frequencies and the outputs of both the ANN and
ARIMA models are summed to make the final prediction. They
found that this hybrid technique outperformed traditional methods.
Our paper, however, does not integrate artificial intelligence and
classical time series techniques.
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B METHEDOLOGY
B.1 Levenberg-Marquardt Technique
The Levenberg-Marquardt is a technique suitable for trainingmedium-
sized Artificial Neural Networks with a low mean-squared error.

The fundamental rule is to select the minimum number of neu-
rons in the hidden layer so as to capture the complexity of the
model, but not too many as to introduce over-fitting, which results
in a loss in generalization of the algorithm.

The method begins by choosing a small number of neurons and
gradually increasing the number each time the model is trained and
the forecast error obtained. The forecast error is monitored until an
optimum value is found, to which no further improvement is noted.
Once the optimum number of neurons in the layer is obtained an
additional layer is added, and the same technique is used.

C EXPERIMENTS
C.1 Parameter Tuning of Random Forest
Figure 4 displays the tuning of the random forest hyperparameter
"number of variables randomly sampled as candidates at each split."

Figure 4: RMSE vs Number of variables randomly sampled
as candidates at each split in the Random Forest model.

D RESULTS
Figure 5 displays the average load profile for each of the cluster
centres. Here, distinct load profiles can be seen in each cluster. High
night time use is exhibited in Cluster 1, a typical residential load
profile in Cluster 2, a spread of usage in Cluster 3, and high daytime
usage in Cluster 4.

Figure 6 displays the improvement in accuracy attained by in-
cluding calendar attributes into the training of the model. It shows
a clear improvement in training accuracy for all three models when
calendar attributes are taken into account.

Figure 5: Average load profile for each cluster.

Figure 6: Comparison of accuracy of models with and with-
out calendar attributes.
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