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ABSTRACT
Smart grids technologies are enablers of new business models for
domestic consumers with local flexibility (generation, loads, stor-
age) and where access to data is a key requirement in the value
stream. However, legislation on personal data privacy and pro-
tection imposes the need to develop local models for flexibility
modeling and forecasting and exchange models instead of personal
data. This paper describes the functional architecture of an home
energy management system (HEMS) and its optimization functions.
A set of data-driven models, embedded in the HEMS, are discussed
for improving renewable energy forecasting skill and modeling
multi-period flexibility of distributed energy resources.

CCS CONCEPTS
• Computing methodologies → Learning paradigms; • Ap-
plied computing→ Forecasting; • Hardware→ Smart grid;
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1 INTRODUCTION
The deployment of smart meters at the domestic prosumer level
is enabling emergent regulated and non-regulated data-based ser-
vices that can help to boost distributed energy resources (DER)
integration and promote customer empowerment [22].

At the regulated level, the ongoing discussion about the future
roles of Distribution SystemOperators (DSO) is focused in smartme-
tering data management (data manager role) and electricity market
facilitation (neutral market facilitator role) [19, 24]. In this context,
the following paragraphs discuss examples of recent initiatives
within the smart grid ecosystem.

The European Union (EU) project UPGRID developed and demon-
strated a Neutral Market Access Platform (NMAP) and a Retailer
Platform (RP). The NMAP is hosted by a DSO and encompasses the
exchange of information, including consumption profiles from the
DSO and flexibility profiles from the Home Energy Management
System (HEMS) [3]. The RP is responsible for receiving informa-
tion or requests from the UPGRID platform, process and send this
information to its HEMS. The EU project FLEXICIENCY developed
and demonstrated a pan-European Market Place that aims at deliv-
ering services and exchange of data, tools, methodologies, in a stan-
dardized way across Europe [28]. The platform receives/submits
data/service request and readdresses requests to the DSO and ser-
vice providers platforms where the data, services, software and
tools are located [6]. Green Button (U.S.A.) is an industry-led work
that provides a common format for electrical energy metering data
so that electricity consumers can access their data in an easily
readable and secure format via a “Green Button” on their electric
utilities’ website. Once customers access their data, they can share
it as they choose, by independent choice and action, with those they
trust. Third parties (e.g., energy retailer, energy services company)
services are also emerging with this initiative, e.g. a solar developer
could use customer-metering data to determine optimal system size
with a more accurate cost-benefit analysis [12]. A review of data
management models in eight European countries can be found in
[24].

In terms of non-regulated services or third-party services, several
works in the literature describe data-driven services and business
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cases to boost demand response potential and promote energy
efficiency. Smart meter data can be used by a third-party for seg-
mentation of customers and identification of temporal consumption
patterns [10], predicting customer response to price signals [17],
estimating the price elasticity of customers [13] and derive optimal
bidding strategies under dynamic electricity tariffs [27]. In fact, to-
tal energy consumption at the residential level is enough to derive a
ranking of thermal-load flexibility and sub-metering is not required
[2].

Smart meter and HEMS data can also be used to induce behav-
ioral changes in energy consumption [30], for instance through
gamification techniques [14] or broadcast of information (e.g., price
signal) [11]. In [23], a detailed analysis of the requirements for
different applications of smart meter data (e.g., balancing, demand
response, network planning) is conducted considering the European
legislation about personal data protection.

The General Data Protection Regulation (GDPR) approved by
the EU Parliament on 14 April 2016, harmonizes data privacy laws
across Europe, protect and empower all EU citizens data privacy
[31]. The new regulation introduces a new fine (i.e., up to 4% of
annual global turnover or 20 Me), intelligible and easily accessible
form for data access consent, right to access data and be forgotten
(erase personal data and cease further dissemination of the data).
Moreover, it requires “privacy by design”, which means inclusion
of data protection from the start in systems designing, rather than
an addition. Therefore, in order to build data economy or data
marketplaces focused on electrical energy consumption data, it is
necessary to design knowledge extraction methods that ensure data
privacy from the beginning.

Presently, some researchers are starting to design demand re-
sponse algorithms that avoid sharing and transfer of personal data.
For instance, data-driven pricing schemes for load shifting without
access to personal load requirements [34] or information exchange
models where consumers keep their load levels private and partici-
pate in a real-time price scheme [11].

In this context, the present paper presents the Horizon 2020
InteGrid project’s vision for the HEMS and its embedded intelligent
functions. The core goal is to design forecasting algorithms (load,
solar, flexibility) keeping data local and private and at the same time
create economic value for stakeholders such as retailers and aggre-
gators. The paper starts by describing the functional architecture,
hardware and software integration of the HEMS in section 2. Then,
proposes distributed forecasting services in section 3 and flexibility
forecast and modeling of behind the meter energy resources in
section 4. The potential for future work is discussed in section 5.

2 HOME ENERGY MANAGEMENT SYSTEM
The HEMS concept was initially introduced as a central unit located
within a domestic building with the capability of performing an
optimized control of behind the meter energy resources [18]. This
optimization was loosely defined as a cost reduction procedure,
typically achieved through a lower cost use of energy considering
internal factors (e.g., devices and system that are able to provide
energy use flexibility) and external factors (e.g. weather conditions,
discriminated energy prices). HEMS can be exploited as a platform

that is able to support demand side management schemes allowing
a generalized participation of consumers in such services [32].

The main characteristic of current HEMS implementations is the
ability to allow the monitoring of energy consumption by means
of existing metering devices and a user interface that allows the
representation of data in a user-oriented way (e.g. dashboards).
Another characteristic is the ability to automate existing resources
and by using very simple control mechanisms allow the operation
of devices and systems at more convenient hours (e.g. pre-program
load activation to hours in which the energy costs are lower). The
use of sensor technology for remote control of appliances based
on a threshold or an user-defined activations allows exploiting
energy savings potential. Optimization schemes are currently be-
ing sought to allow the optimization of existing flexible energy
resources according to multiple criteria and multiple restrictions.

To enhance the capability of fully optimizing the energy use
in households, HEMS have been incorporating energy models of
devices, systems and spaces so that their specific characteristics
along with user preferences can in fact be properly considered
when defining their optimal activation [25]. Users are thus able
to insert configurations and preferences and take advantage of
local flexibility to activate their energy resource at an optimal time.
This involves a planning stage and a time-ahead operation, being
an example the case where the end-user sets the preferences and
configurations, an optimal operation schedule is determined, and
in the next day the existing resources are activated according to
the schedule.

2.1 Functional Architecture
HEMS are currently flexible and modular HW and SW platforms,
capable of supporting a wide variety of features and functionali-
ties the allow end-users to take advantage of existing incentives
and define a customizable operation schedule. In Fig. 1 there is a
representation of the architecture of the HEMS under design for
InteGrid project.

HEMS

Core

User Interface

Data Storage

Data Analytics

Device 
Automation

Energy 
Optimization

Noti�cations

External 
Services

Mobile 
Devices

Systems, 
Devices, 
Meters, 
Sensors

Mobile 
Devices

Figure 1: HEMS functional architecture.

The functionalities of a HEMS are typically grouped into: user
interface, energy optimization and automation. User interface (UI)
is responsible for presenting data and relevant information to the
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user and allow the insertion of configurations and preferences. The
energy optimization creates an energy representation of the house-
hold, through the parameterization of the energy models of devices
and systems according to their configuration, and according to the
selected criteria establish a time-ahead operation schedule. The
automation takes care of the communication between the HEMS
central system and the associated devices and systems to retrieve
monitoring and operation state data and to set remote configura-
tions or actions that allow an optimal schedule to be implemented.

Other groups can be defined to provide additional features to
HEMS: data analytics, data storage and event notifications. Data
analytics provides data handling functions related to forecasting
and machine learning to extract context information about the
availability of energy resources and likelihood of specific energy
consumption patterns. Section 3 describes in detail the forecasting
features. Data storage functionalities ensure secure data storage and
availability to mobile terminals that interact with the HEMS both
locally and remotely. Event notification manages alarms and an-
nounces unexpected events according to different priority schemes,
allowing end-users to received filtered information. They also al-
low end-users to use non-smart loads, optimally, by receiving that
information with a configurable time-ahead.

2.2 Optimization Strategies
One of the distinguishable feature that an HEMS must provide is
the capability of computing optimal (or suboptimal) energy use
schedules that provide added-value to the end-users. There are
different optimization strategies that can be exploited through a
HEMS and they largely depend on the criterion (or set of criteria)
that might be established. Typically, a cost reduction benefit is
sough, and that can be achieved either through energy consumption
reduction or through an optimal load allocation considering energy
consumption prices. While the former is associated to behavioral
changes the latter is more related to the technical aspects of the
energy management. In [1], an HEMS implementation, based on
the work carried out in the AnyPLACE project, is presented, with
the mathematical formulation of optimization strategies for cost
reduction considering the variable and fixed components of the
energy consumption costs.

The HEMS being designed for InteGrid project is able to opti-
mize the energy use considering variable price tariffs or the local
production of PV. As presented in Fig. 2 loads can be allocated to
time periods in which the price is lower to allow a reduction on
energy expenditures.

When considering PV microgeneration, controllable appliances
are shifted toward PV production (according to the forecast gener-
ated in the previous day), as portrayed in Fig. 3.

Thermal loads such as air conditioners (AC) and Electric Water
Heaters (EWH) have specific energy models whereas dishwashers
(DW), washing machines (WM) and cloths dryers (CD) are modeled
as shiftable loads. These are modeled as average power and average
operating time either input by the end-user or based on estimated
load consumption profiles.

One of the objectives of InteGrid is to make use of a fully rep-
resentable energy model for devices, systems and spaces to allow
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Figure 2: Example of price-based optimization.

a HEMS a higher observability and controllability with positive
impact in the quality of the optimization process.
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Figure 3: Example of PV self-consumption optimization.

2.3 Hardware Integration
One key aspect of a HEMS is the ability to integrate existing hard-
ware as well as new devices and systems upon which it can leverage
to produce more and more complex energy optimization schemes
that exploit conveniently their specific technical characteristic and
the users’ preferences.

The support of these existing or new systems provide a sig-
nificant improvement on the user experience and comfort by the
reduction of manual inputs needed that can be directly obtained
through these systems. Also, since the accuracy of those inputs
tend to be higher, the quality of the results is improved.

This underlying modular and interoperable nature addresses also
the fact that not all the devices and systems that the HEMS may
manage are smart or automated, considering means of integrat-
ing older devices through user engagement, by means of friendly
notifications (email or other) inviting the users to actively control
the devices at home, or through the use of other devices like smart
plugs that can be integrated to provide some sort of automation.

In order to keep implementation costs low and at the same time
ensure a robust computational solution a Raspberry Pi 3 single
board computer is used. The use of Linux allows the use of Open-
HAB as an open automation support platform that makes use of
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binding implementations to exchange information with different
devices and systems. Despite there is a considerable number of
manufacturers providing bindings for building automated devices
it is possible to develop binding implementations to support specific
devices, which means that virtually any device can be integrated
within the HEMS platform.

3 FORECASTING SERVICES
3.1 Concept
The works in [5, 9, 29] showed that geographically distributed
time series data can improve the renewable energy forecasting
skill up to six lead-times ahead. Time series data from different
sources or owners are combined in a vector autoregression (VAR)
model and the LASSO penalty structure is used to uncover sparse
structures in the coefficients matrix. The VAR process captures
linear interdependencies among multiple time series, enabling each
HEMS to model its PV time series evolution based not only on its
own lagged values but also in the lagged values collected by other
HEMS. Themain challenge is on how to combine data frommultiple
HEMS owners and maintain data privacy, which is analyzed from
the mathematical point of view in subsection 3.3.

Furthermore, information from a spatial grid of NumericalWeather
Predictions (NWP) is valuable to improve renewable energy fore-
cast accuracy for multiple days [4]. Here, the challenge is to process
the NWP grid data and run the statistical forecasting algorithms
locally at the HEMS level. Subsection 3.2 presents computational
results of forecasting algorithms (section 2) running in the HEMS
hardware.

Figure 4 illustrates the models hub concept that serves two goals:
(a) central node in a collaborative forecasting scheme (i.e. VAR
model) where each HEMS exchanges the matrices from the B and
H-update steps of the Alternating Direction Method of Multipliers
(ADMM) method [7]; (b) apply feature engineering techniques that
extract information from the NWP grid and send the post-processed
variables to the HEMS where a embedded gradient boosting tree
algorithm is used to produce solar power forecasts.

Features 
extracted 
from NWP 
grid 

[B,H]

data 
remains 
local

HEMS

HEMS

HEMS

HEMS

HEMS

HEMS

HEMS

HEMS

Models Hub

Figure 4: Models hub concept for renewable energy forecast-
ing.

3.2 Embedded Forecasting
Gradient boosting trees (GBT) algorithm combined with feature
engineering techniques capable of extracting information from a
spatial grid of NWP and resuming it in a new smaller subset of
variables can led to substantial improvements on point and proba-
bilistic forecasts for short-term horizons (i.e., up to 72 hours ahead)
[4]. However, the high quantity of information to process repre-
sents a major constraint and makes it prohibitive to deploy in small
computational units such as HEMS. Table 1 presents a comparison
between the technical specifications of the HEMS and a conven-
tional desktop computer.

Table 1: Computational resources comparison between the
HEMS and a conventional desktop computer.

Comp. Raspberry Pi 3 Desktop

CPU
Broadcom BCM2837 Intel(R) Core(TM)

ARM Cortex-A53, 1.2GHz i7-6700, 3.4GHz
4 cores, 4 threads 4 cores, 8 threads

RAM 1GB LPDDR2@900MHz 12 GB DDR4@2133MHz
OS Linux-Raspbian Windows 10

Table 1 reveals that the RAM size and processing power of the
HEMS are a clear limitation when trying to process large quantities
of NWP data in an acceptable computational time. For this reason,
the envisioned solution uses a centralized distributed computing
framework, nested in the Models Hub platform, to process the
raw NWP grid data and create relevant features from the NWP
grid. These variables, combined with NWP forecasts for the client
location, feed a GBT model that runs locally in each HEMS.

For the HEMS, the challenge of embedded forecasting is summa-
rized in four phases:

• Initial request to retrieve historical post-processed NWP grid
variables from the Models Hub platform, for the timespan of
historical observed PV data.

• Apply feature engineering techniques to extract temporal
information from NWP variables for the HEMS location.

• Fit the GBT model using the historical of observed PV gen-
eration values and respective NWP variables. The model is
updated on a daily or weekly basis.

• Generate PV forecasts based on the NWP variables for an
horizon up to 48 hours ahead and the post-processed opera-
tional forecasts requested to the Models Hub platform.

3.2.1 Accuracy Results Analysis. In this subsection, improve-
ments on the PV forecasting skill resulting from the introduction of
spatial-temporal features extracted from the NWP grid are demon-
strated. The metrics Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are considered to assess the point forecast
quality. The Continuous Ranked Probability Score (CRPS) is used
to evaluate the quality of probabilistic forecasts. An extended de-
scription of the feature engineering process can be found in [4].

The importance of variables extracted from the NWP grid is here
evaluated by comparing two models that contain extra temporal
and spatial information with a base reference model exclusively
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composed by seasonal and NWP variables for the grid central point.
Table 2 describes the input information of the base model.

Table 2: Base model input variables.

Type Variables

Seasonal Month of the year
Hour of the day

NWP

swflx [W/m2] - shortwave flux
temp [K] - ambient temperature (2 meters)
cfl [0,1] - cloud cover at low levels
cfm [0,1] - cloud cover at mid levels
cfh [0,1] - cloud cover at high levels
cft [0,1] - cloud cover at low and mid levels

The following two models accommodate the new information.
Model T is representative of the information that can be extracted
from the NWP series for the HEMS location, and Model F comprises
a selection of the best spatial and temporal variables that were able
to maximize the forecast skill.

• Model T - Temporal information extracted from the NWP
series to the HEMS location:
– Lags and leads.
– Temporal variance with centered windows of 3h, 7h, 11h.
– Information from different NWP runs.

• Model F - Spatial information extracted from the NWP grid:
– Hourly spatial standard deviation of NWP grid variables.
– Hourly spatial weighted average of NWP grid variables.
– Principal components applied individually to the grid in-
formation of each NWP variable mentioned in Table 2.

The performance of these models is evaluated over a timespan
of two years (from May 1st 2015 to 28th June 2016) with a slid-
ing window of 12 months. Considering ϵ as a metric score, and
base as a the base model, the improvement of a model is given by(
1 − ϵm

ϵbase

)
× 100 (%).

Figure 5 depicts the average improvements of every aforemen-
tioned model over the reference base model for forecasts within an
horizon of 24 hours ahead. The evaluation is computed on out-of-
sample datasets, guaranteeing that in each fold the training data is
not contaminated by test samples. The night periods were removed
for the PV generation.

An analysis of the figure shows that the two new models greatly
outperform the base model in every month of the evaluation period.
By itself, the collection of temporal variables (Model T) already
provides great average improvements of 13.73%, 10.35%, 11.33%
on MAE, RMSE and CRPS that peak in November 2015 at 34.48%,
24.67%, 23.32%. However, the maximum forecast skill is only ob-
tained by including the spatial information (Model F), which led
to average improvements of 16.09%, 12.85%, 13.11% for the same
metrics, that peak at 37.75%, 28.43%, 27.97% in January 2015.

As final remark, it is important to underline that a good fore-
cast quality can be achieved by solely depending on the temporal
information extracted from the NWP runs for the HEMS location.
However, to maximize point and specially probabilistic forecasts
quality, the NWP grid information is necessary.

Figure 5: Monthly relative improvements of models T and F
over the base model.

3.2.2 Computational Times Evaluation. Although the forecast-
ing algorithms successfully run in the Raspberry Pi 3, a significant
impact on the computational time of each model run is verified
when compared to a conventional desktop computer. It is important
to underline that the GBT regression model requires a separated
training for each quantile of the probabilistic forecast. Table 3 shows
the total computational times necessary to train all the regression
models and to compute forecasts for the two systems described in
Table 1.

Table 3: Comparison of computational time results.

Device GBT Fitting Operational Forecast
Desktop 42s 0.03s

Raspberry Pi 3 320s 0.49s

3.3 Collaborative Forecasting
3.3.1 VAR-LASSO model and ADMM. Here, a brief review of the

VAR-LASSO model is presented, as well as the ADMM formulation
for distributed parameter estimation.

Letyi,t be the time series of an i–th HEMS, in time t , and {Yt } =
{(y1,t , . . . ,yn,t )} a n-dimensional vector time series. Then, a VAR
model of order p describes the trajectory of Yt as

Yt = η +
p∑
ℓ=1

B(ℓ)Yt−l + εt , (1)

where (B(ℓ))i, j represents the parameters for time series i , associ-
ated with lag ℓ of time series j; η = (µ1, . . . , µn )T is the vector of
constant terms, and εt = (ε1,t , . . . , εn,t )T is a white noise term. By
simplification, Yt is assumed to be a centered process, i.e., η = 0.

In order to formulate a matrix representation of VAR(p) model,
let Y = (Y1, . . . ,YT ) ∈ R(n×T ) the response matrix, B = (B(1),
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. . . ,B(p)) ∈ R(n×np), the coefficient matrix, Z = (Z1, . . . ,ZT ) ∈

R(np×T ) the explanatory variables matrix, with Zt = (Yt−1, . . . ,
Yt−p ) ∈ R(n×T ), and E = (ε1, . . . , εT ) ∈ R

(n×T ) the error matrix.
Then,

Y = BZ + E. (2)

Commonly, the system (2) is solved computing the coefficients
that minimize ∥Y − BZ∥22 , where ∥.∥r will represent both vector
and matrix Lr norms. However, high-dimensional data can intro-
duce irrelevant or redundant information making convenient the
application of the LASSO framework, which is a regularized version
of least squares that introduces an L1 penalty on the coefficients. In
standard VAR-LASSO approach, the coefficients are estimated by

argmin
B

( 1
2
∥Y − BZ∥22 + λ∥B∥1

)
, (3)

where λ > 0 is a scalar penalty parameter.
Since the cost function in (3) is non-differentiable, the ADMM

constitutes a powerful algorithm to solve this problem, making it
possible to perform a parallel optimization. Summarily, the ADMM
rewrites the VAR-LASSO objective function (3) replicating the B
variable using the H variable ( 12 ∥Y − BZ∥22 + λ∥H∥1) and adding
an equality constraint imposing B = H. Then, based in the aug-
mented Lagrangian of this reformulated minimization problem
(with penalty parameter ρ > 0), the ADMM formulation of (3)
consists in the following iterations [9]:

Bk+1 := argminB
(
1
2 ∥Y − BZ∥22 +

ρ
2 ∥B − Hk + Uk ∥22

)
Hk+1 := argminH

(
λ∥H∥1 +

ρ
2 ∥B

k+1 − H + Uk ∥22
)

Uk+1 := Uk + Bk+1 − Hk+1.

(4)

Given that ∥Y − BZ∥22 and ∥H∥1 are decomposable, the minimiza-
tion problem over B and H can be separately solved for distributed
data. Therefore, the ADMM provides a desirable formulation for
parallel computing.

Figure 6 illustrates the two most commonly used approaches to
split the optimization problem, in which Z is partitioned into N row
blocks (splitting across predictors) or N column blocks (splitting
across examples). Conventionally, this two generic formulations are
called Consensus Optimization and Sharing Optimization, respec-
tively. The corresponding ADMM formulation using (4) is presented
in the systems of equations (5) and (6),

Bk+1i := argminBi
(
ρ
2 ∥Bki Zi + H

k
− BZ

k
− Uk − BiZi ∥22+

λ ∥Bi ∥
)

H
k+1 := 1

N+ρ

(
Y + ρBZ

k+1
+ ρUk

)
Uk+1 := Uk + BZ

k+1
− H

k+1

(5)


Bk+1i := argminBi

(
1
2 ∥Yi + BiZi ∥

2
2 +

ρ
2 ∥Bi − Hk + Uki ∥

2
2

)
Hk+1 := S1

(
B
k+1
+ U

k
, λ
N ρ

)
Uk+1i := Uki + B

k+1
i − Hk+1

(6)

where BZk = 1
N

∑N
j=1 B

k
j Zj , B

k
= 1

N
∑N
j=1 B

k
j and S1 is the scalar

soft thresholding operator, defined as S1(x ,a) = x
|x | max{0, |x | −a}.

B Z

Main formulation B1 . . . BN

Z1

. . .

ZN

Splitting across predictors – equation system (5)

B1
. . .

BN
Z1. . .ZN

Splitting across examples – equation system (6)

Figure 6: Two main scenarios for distributed computation.

3.3.2 Can ADMM ensure data privacy in collaborative forecast-
ing? The main challenge is to investigate the potential of these
iterative systems of equations to develop a collaborative forecast-
ing with data privacy preserved. However, as will be concluded,
the direct application of these two alternatives cannot fulfill the
privacy requirement.

If the problem is divided across predictors, then Ŷ =
∑
i BiZi and

each HEMS will estimate Bi using Zi , which is composed uniquely
by the lags of its own time series. Hence, each HEMS computes the
corresponding Bi without share data. The problem is the update
of H where each HEMS should share its BiZi + (0,Yi , 0), allowing
the more curious HEMS to recover Y.

On the other hand, if the problem is divided across examples, then
each Bi (computed in parallel) is estimated using Zi , which in this
case consists of specific lags of all time series, meaning data is shared
between all participants. Nevertheless, this division by examples
can be interesting for single-output problems in the energy sector,
where private data from multiple consumers is needed.

Notice that in both situations, the existence of a neutral element
may be imposed, through which all HEMS communicate, i.e., as-
suming a centralized process so that HEMS do not exchange results
directly. However, this would imply that the neutral element can
reconstruct the original data. Furthermore, if in equation (5) the
neutral element provides the i–th HEMSHk ,BZk and Uk , then i–th
HEMS can reconstruct Y.

Ideally, the algorithmwould be adapted in a way that nobody can
reconstruct the original data, be they HEMS or the neutral element.
Even better, the algorithm should be decentralized (i.e. peer-to-peer),
asynchronous (to cope with delays or communication failures) and
time-adaptive (enabling the assimilation of new samples as they
become available in order to improve the model with time, updating
the coefficients of the model, without starting from scratch).

In the literature, related works may be found. A decentralized
structure with asynchrony and delays was proposed in [33], in
which the workers can communicate independently with their
neighbors, at different times and for different durations. In terms
of online ADMM, a general approach may be explored in [16].
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Latter work proposed an asynchronous time-adaptive ADMM for
consensus optimization [20].

With respect to algorithms that take into account data privacy:
the authors of [35] proposed a privacy-preserving decentralized
(but neither asynchronous nor online) optimization method, intro-
ducing time-varying penalty matrices on ADMMmethod and using
partially homomorphic cryptography.

4 SURROGATE MODELS FOR ENERGY
FLEXIBILITY

This section describes three surrogate representations of behind the
meter energy resources flexibility. The main idea is to exchange flex-
ibility models estimated in the HEMS, instead of behind-the-meter
data, which can be take the form of: set of flexibility trajectories,
machine learning model or dynamic virtual batteries. It is important
to stress that other representations are possible, such as simplified
models to quantity thermal-based demand response potential and
the HEMS only sends upstream the estimated model and not the
consumption data [2].

4.1 Set of Flexibility Trajectories
HEMS can include diverse equipment such as electric water heaters
(EWH), domestic small-scale batteries, photovoltaic (PV) panels,
and HVAC systems. The flexibility that HEMS can offer relates to
deviations from the net-load profiles that were expected to occur,
and has its explanation based on the flexible nature of the previously
enumerated HEMS equipment.

The concept of flexibility trajectory embraces the multi-period
HEMS flexibility potential instead of independent single-periods
formulation [26] . A feasible flexibility trajectory represents the
HEMS potential of reshaping its expected net-load profile while
guaranteeing technical operation viability of all equipment and
internal constraints such as EWH water temperature, battery state-
of-charge, or even room air-temperature. Additionally, user-defined
constraint regarding the use of the battery can be also implemented
(e.g., aiming at minimizing the energy spilling during PV gener-
ation surplus). The uncertainty in the net-load profile was also
modeled, namely by considering different PV generation scenarios.
Ultimately, a feasible trajectory must comply with the defined con-
straints for a pre-establish percentage of PV generation scenarios
(e.g. feasible in 90% of the PV scenarios).

Defining the feasible domain for the HEMS flexibility potential
is a complex task. An Evolutionary Particle Swarm Optimization
(EPS) based algorithm was proposed in [26] to search and sample
the mentioned feasible domain. The final output is a set of feasible
trajectories that can be used to describe the HEMS multi-temporal
flexibility potential. Figure 7 depicts a set of 20 feasible flexibility
trajectories encompassing a period where PV generation surplus
occurs.

4.2 Machine Learning Model
The set of flexibility trajectories described in the previous section
can be learned (or presented) by a support vector data description
(SVDD) algorithm [8, 26]. SVDD is a machine learning one-class
support vector machine that can be used to classify “feasible” or

Figure 7: Illustrative set of 20 EPSO-generated feasible flexi-
bility trajectories.

“unfeasible” HEMS operating trajectories upon request from an
optimization or control algorithm.

In SVDD, the flexibility trajectories set (X ) is summarized with
a combination of support vector (xi ) and respective coefficients
(βi ). This describes a high-dimension sphere delimiting the feasible
domain. A new trajectory (x ) is classified by comparing the sphere
radius with its radius calculated as follows:

R2(x) = 1 − 2
∑
i

β ik(x i,x) +
∑
i, j

β iβ jk(x i,x j) (7)

where R2 is the square of the radius being calculated, xi and x j
are support vectors, k is the kernel function. For this problem, it
was found that sigmoid kernel is the most suitable type [26]. To be
classified as feasible, a trajectory must present a radius lower or
equal to the sphere’s radius. The results for the test case described
in [26] are presented in Table 4.

The main limitation of this representation is that it only allows
to classify trajectories as feasible or unfeasible and interpretability
(in terms of energy flexibility) is low. However, Eq. 7 can be eas-
ily integrated in optimization or control problems and maintain
personal data private.

4.3 Dynamic Virtual Battery
An alternative to the SVDD representation for the set of flexibility
trajectories is a virtual battery model (similar to the one used in
[15]). The virtual battery representation might be seen as a linear
system resembling the operation of a battery parameterized by
power limits for charge (Ptmax) and discharge (Ptmin) cycles, by
maximum (SOCtmax) and minimum (SOCtmin) limits for the state
of charge (SOC), and also by the initial SOC level (SOCini).

The power and SOC limits modeled in this work are dynamic
throughout the time horizon that is being considered, instead of
using a fixed value for all the periods considered. This way, the
feasible domain represented by the virtual battery will be more
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Table 4: Performance: SVDD vs. Virtual Battery.

Feasible traj. Unfeasible traj.
SVDD 95 % 80 %

Virtual Battery 100 % 70 %

adapted regarding the period-based information coming from the
set of feasible flexibility trajectories.

The problem formulation for the virtual battery model aims
at minimizing the battery size (SOC), as well as minimizing, for
each period, the power amplitude represented by the difference
between the charge and discharge limits. Equations 8-10 summarize
the problem formulation, where trajk, ti refers to the power value
represented by the trajectory k from the flexibility set for the time
period ti, and T refers to the number of periods considered.

min
T∑
t=1

SOCt
max +

T∑
t=1

SOCt
min +

T∑
t=1

P t
max −

T∑
t=1

P t
min (8)

SOCti
min <= SOC ini+

t i∑
t=1

trajk, tt <= SOCti
max, ∀t i ∈ [1,T ] , ∀k

(9)

P ti
min <= trajk, ti <= P ti

max, ∀t i ∈ [1,T ] and ∀k (10)

Compared to the SVDD representation, the virtual battery model
can be easily integrated in a optimal power flow formulation, in-
terpreted by an end-user in terms of available flexibility and it is
scalable for prosumers aggregation algorithms.

Regarding the performance on correctly classifying trajectories,
the virtual battery model shows a better performance compared
to the SVDD model when classifying feasible trajectories. On the
other hand, for unfeasible trajectories the virtual battery presents a
higher number of wrongly classified trajectories. Table 4 presents
the percentage of correctly classified trajectories for both models
on two different sets: feasible and unfeasible trajectories. Results
refer to an 8-hours time horizon.

5 CONCLUSIONS
The increasing awareness of prosumers about data protection and
business value of their smart meter data demands for a revision of
the current data management paradigms and business use cases.
Platforms like HEMS allow consumers to implement energy effi-
ciency actions through automation based on optimal scheduling of
existing energy resources. The HEMS are a source of a considerable
amount of data and it can include several modules and support
different functionalities (e.g., data analytics) to deal with complex
data structures.

Forecasting algorithms of renewable energy and net-load benefit
from exchange of information between peers (e.g., geographically
distributed observations), which shows significant challenges in
maintaining data private. A recent trend for mobile devices is the
Federated Learning concept1 that keeps all training data on the
1https://research.googleblog.com/2017/04/federated-learning-collaborative.html (ac-
cess on February 2018)

device and only the statistical or machine learning model is shared.
Only the updated model is sent to the cloud, using encrypted com-
munication. Furthermore, technologies like TensorFlow Lite for
mobile and embedded device developers will enable machine learn-
ing tasks in data that does not leave the device and with faster local
computation. The advantages are clear, no dependency on network
connection and training with less data. However, collaborative
forecasting with data privacy remains an open area of research.

The aggregation of flexibility from prosumers also demands for
a model-based approach with local computations to extract flexi-
bility parameters. In this context, the interpretability of the virtual
battery model is appealing . However, several challenges arise for
model-driven representation: inclusion of forecast uncertainty in
the flexibility quantification; multi-temporal nature of the flexibility
activation; combination of different flexible resources. This type of
models have relevant information to implement economic demand
response schemes and it is possible to create a marketplace for
such models. For instance, virtual batteries flexibility can be traded
through the combination of blockchain and smart contracts [21] or
integrated in a distributed optimal power flow (OPF) problem.

An interesting initiative is the OpenMined2 deep learning mar-
ketplace that combines federated machine learning, blockchain,
multi-party computation, and homomorphic encryption. In this
ecosystem, deep learning algorithms fitted in distributed data blocks
are traded through smart contracts. The SVDD parameters of a flex-
ibility set or the virtual batteries parameters can be traded in a
similar platform.

The future research directions are: (a) a non-linear peer-to-peer
vector autoregression model with data fully private and that can be
applied to different collaborative forecasting problems; (b) aggrega-
tion of virtual battery models that combine prosumer’s flexibility
and forecast uncertainty and its integration with the HEMS hard-
ware.

In the framework of the InteGrid project, the HEMS and its
intelligent functions will be installed in real prosumers in Portugal
and Sweden and the value of the proposed approaches will be
assessed in a real-world scenario.
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