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ABSTRACT

It is well known that for a first order system of linear difference

equationswith rational function coefficients, a solution that is holo-

morphic in some le� half plane can be analytically continued to a

meromorphic solution in the whole complex plane. �e poles stem

from the singularities of the rational function coefficients of the

system. Just as for differential equations, not all of these singular-

ities necessarily lead to poles in solutions, as they might be what

is called removable. In our work, we show how to detect and re-

move these singularities and further study the connection between

poles of solutions and removable singularities. We describe two al-

gorithms to (partially) desingularize a given difference system and

present a characterization of removable singularities in terms of

shi�s of the original system.
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1 INTRODUCTION

First order linear difference systems are a class of pseudo-linear

systems [5, 9, 15] of the form ϕ(Y ) = AY , where ϕ is the forward-

or backward shi� operator and A an invertible matrix with, in our

case, rational function coefficients. To study properties of possi-

ble solutions Y , it is not always necessary to explicitly compute

the solution space, but one can rather obtain the information from

the system itself. Properties that can be derived in this fashion
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comprise, among others, the asymptotic behavior [6, 7, 13], posi-

tive/negative (semi-) definiteness [1, 22], holomorphicity, and clo-

sure properties of (a class of) solutions [18].

In the center of a�ention when analyzing difference and differ-

ential systems lie the poles of the rational function coefficients. It

is well known that, like in the case of differential equations and

systems, not all poles of the coefficients of a difference system

lead to singularities for solutions. �ese apparent singularities can

therefore distort the properties of solutions and should be circum-

vented in the analysis. One technique to do so is desingularization—

transforming a given system (or operator) in a way that removes as

many poles of the system as possible to discard apparent singular-

ities. In this paper we describe the first algorithm to desingularize

first order linear difference systems with rational function coeffi-

cients. Our main tool in the treatment of these systems are polyno-

mial basis transformations. We show how to achieve desingular-

ization by composing several basic and easy to compute transfor-

mations, and our procedure results in the provably “smallest pos-

sible” such desingularizing transformation in the sense that any

other desingularizing transformation can be obtained as a right

multiple.

�e main contributions of this paper are:

(1) �e first algorithm to desingularize—partially, or, if possi-

ble, completely—first order linear difference systems with

rational function coefficients.

(2) A non-trivial necessary and sufficient condition for a given

system to be desingularizable at a given singularity.

(3) With the help of (2), an analysis of the connection be-

tween removable and apparent singularities of difference

systems and their meromorphic function solutions.

(4) An algorithm for reducing the rank of the leading matrix

at a singularity of a linear difference system.

In the context of single linear difference equations [1, 2], linear

differential equations [21] and, more general, Ore operators [10,

11, 17], desingularization and the effects of removable singular-

ities have been extensively studied in recent years. In [22], the

author presents an extension of the idea of desingularization that

also takes into account the leading number coefficients of Ore op-

erators. For first order differential equations, a first algorithm for

desingularization was given in [3].

It is possible to convert any first order linear difference system

to a difference operator of higher order and vice versa [4, 6–8].

Desingularization of systems could therefore be done by comput-

ing for a given system the corresponding operator, use existing
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techniques to desingularize the operator and then constructing the

desingularized system from the new operator. While this is possi-

ble, the procedure comes with at least two caveats:

(1) It can be observed that the coefficients grow very large in

the conversion process which has severe negative impact

on the computation time.

(2) Desingularization on operator level is done by finding a

suitable le�-multiple of the given operator. In general, this

leads to an increase in order, and thus to an increase in the

dimension of the solution space.

Both problems are avoided when dealing directly with systems in-

stead of operators, making the results presented in this paper an

essential tool for analyzing difference systems.

�e paper is organized as follows. In Section 2 we remind the

reader of the formal definition of linear difference systems with

rational function coefficients, well known results about meromor-

phic function solutions and the notion of apparent singularities. In

Section 3, we present an algorithm to remove poles of difference

systems and give a necessary and sufficient condition for a singu-

larity to be removable. Lastly, the connection between removable

poles and apparent singularities is established in Section 4 before

concluding the paper in Section 5.

2 DIFFERENCE SYSTEMS AND REMOVABLE

SINGULARITIES

Let C be a subfield of the field C of complex numbers, C(z) the

field of rational functions over C and ϕ the C-automorphism of

C(z) defined by ϕ(z) = z + 1. A homogeneous system of first-order

linear difference equations with rational function coefficients is a

system of the form

ϕ(Y ) = AY , (1)

where Y is an unknown d-dimensional column vector, ϕ(Y ) is de-

fined component-wise, andA is an element ofGLd (C(z)), the group

of invertible matrices of size d ×d with entries in C(z). We denote

the set ofmatrices of sized×d with entries in C[z] asMatd (C[z]). A

(block) diagonal matrixwith entries (respectively blocks)a1, . . . , ad
is denoted by diag(a1, . . . ,ad ). We will refer to system (1) as [A]ϕ .

Given a matrix T ∈ GLd (C(z)), we can apply a basis transfor-

mation

Y = TX ,

and substituteTX into system (1) to arrive at an equivalent system

ϕ(X ) = T [A]ϕX ,

where T [A]ϕ is defined as

T [A]ϕ := ϕ(T−1)AT .

A difference system [A]ϕ can be rewri�en as

ϕ−1(Y ) = A∗Y , (2)

where A∗ := ϕ−1(A−1). We will refer to system (2) as [A∗]ϕ−1 . A

transformation Y = TX yields the equivalent system

ϕ−1(X ) = T [A∗]ϕ−1X ,

with

T [A∗]ϕ−1 := ϕ
−1(T−1)A∗T .

�e set of meromorphic solutions of [A]ϕ form a vector space of

dimension d over the field of 1-periodic meromorphic functions. It

is well known [19] that any difference system [A]ϕ possesses a fun-

damental matrix of meromorphic solutions. If F is a holomorphic

solution of (1) in some le� half plane (Rez < λ for some λ ∈ R),

then it can be analytically continued to a meromorphic solution in

the whole complex plane C using the relations:

F (z) = ϕ−1(A)ϕ−2(A) · · ·ϕ−n (A)ϕ−n(F )(z)

= A(z − 1)A(z − 2) · · ·A(z − n)F (z − n),

which are valid everywhere except at the points of the form ζ + n

where ζ is a pole ofA and n is a positive integer (n = 1, 2, . . . ). If F

is a holomorphic solution of (1) in some right half plane (Rez > λ),

then it can be analytically continued to a meromorphic solution in

the whole complex plane C using the relations:

F (z) = ϕ(A∗)ϕ2(A∗) · · ·ϕn (A∗)ϕnF (z)

= A∗(z + 1)A∗(z + 2) · · ·A∗(z + n)F (z + n),

which are valid everywhere except at the points of the form ζ − n

where ζ is a pole of A∗ and n is a positive integer (n = 1, 2, . . . ).

We will denote by Pr (A) (respectively Pl (A)) the set of poles

of A (respectively A∗). �e elements of Pr (A) (respectively Pl (A))

will be called the r- (respectively l-) singularities of the system (1).

A point ζ ∈ C is said to be congruent to a given r- (respectively l-)

singularity ζ0 of [A]ϕ if ζ = ζ0 + k (respectively ζ = ζ0 − k) for

some positive integer k .

�e finite singularities of the solutions of [A]ϕ are among the

points that are congruent to the singularities of the system.

Definition 2.1. Let ζ be a pole of A (respectively pole of A∗). It

is called

(1) a removable r- (respectively l-) singularity if any solution

of [A]ϕ which is holomorphic in some le� (respectively

right) half-plane can be analytically continued to a mero-

morphic solution which is holomorphic at ζ + 1 (respec-

tively ζ − 1).

(2) an apparent r- (respectively l-) singularity if any solution

of [A]ϕ which is holomorphic in some le� (respectively

right) half-plane can be analytically continued to a mero-

morphic solution which is holomorphic at each point of

ζ + N∗ (respectively ζ − N∗).

Example 2.2. A 2 × 2 system of linear difference equations is

given by

Y (z + 1) = AY =

(
0 1

−2(z+1)
z−2

3(z−1)
z−2

)
Y (z), A∗ =

(
3(z−2)
2z

3−z
2z

1 0

)
.

Here Pr (A) = {2} and the points that are congruent to ζ = 2 are

3, 4, 5, . . . . We have Pl (A) = {0} and the corresponding congruent

points are −1,−2,−3, . . . . It can be easily verified that a fundamen-

tal matrix of solutions of this system is given by

F (z) =

(
2z z3 + 5z + 6

2z+1 z3 + 3z2 + 8z + 12

)
.

We focus on studying r-singularities. L-singularities can be re-

moved in the same way by considering A∗ and ϕ−1 instead of A

and ϕ.



We give an algebraic characterization of removable singularities.

Let q ∈ C[z] be an irreducible polynomial. For f ∈ C(z) \ {0}, we

define ordq (f ) to be the integer n such that f = qn a
b
, with a,b ∈

C[z] \ {0}, q ∤ a and q ∤ b . We put ordq (0) = +∞. Let Oq = { f ∈

C(z) : ordq (f ) ≥ 0} be the local ring at q and Oq/qOq the residue

field of C(z) atq. Let πq denote the canonical homomorphism from

C[z] onto C[z]/〈q〉. It can be extended to a ring-homomorphism

from Oq onto C[z]/〈q〉 as follows: let f ∈ Oq ; by definition of

Oq , f can be wri�en f = a/b where a,b ∈ C[z] and q ∤ b . We

can find u,v ∈ C[z] such that ub + vq = 1, the value of f at q,

denoted by πq (f ), is then defined as πq (ua). Sometimes we write

f modq for πq (f ). It is clear that πq is well-defined on Oq and

is a surjective ring-homomorphism. �e kernel of πq is qOq , so

Oq/qOq and C[z]/〈q〉 are isomorphic.

If A = (ai, j ) is a finite-dimensional matrix with entries in C(z),

we define the order at q of A by ordq(A) := mini, j (ordq (ai, j )).We

say that A has a pole at q if ordq (A) < 0. We define the leading

matrix ofA at q (notation lcq (A)) as the leading coefficient A0,q in

the q-adic expansion of A:

A = qordq (A)(A0,q + qA1,q + q
2A2,q + . . . ).

Here the coefficients Ai,q are matrices with entries in the field

C[z]/〈q〉. Note that the matrix A0,q is the value of the matrix

q−ordq (A)A at q.

For a rational function r = p/q with p monic and gcd(p,q) = 1,

we write num(r ) := p and den(r ) := q. Similarly, for a matrix M ∈

Matd (C(z)) we denote by den(M) the common denominator of all

the entries of M and denote by num(M) the polynomial matrix

num(M) := den(M)M .

Definition 2.3. LetA ∈ GLd (C(z)) andq ∈ C[z] be an irreducible

polynomial. We say that q is a ϕ-minimal pole of A if q | den(A)

and for all j ∈ N∗, ϕ j (q) ∤ den(A).

We can now give an algebraic definition of desingularizability

of difference systems in an inductive fashion.

Definition 2.4. Let A ∈ GLd (C(z)) and let q ∈ C[z] be an irre-

ducible pole of A.

(1) If q is ϕ-minimal, we say that the system [A]ϕ is partially

desingularizable at q if there exists a polynomial transfor-

mationT ∈ GLd (C(z))∩Matd (C[z]) such that ordq (T [A]ϕ ) >

ordq (A) and ordp (T [A]ϕ ) ≥ ordp (A) for any other irre-

ducible polynomial p ∈ C[z]. If moreover, ordq (T [A]ϕ ) ≥

0 then we say that [A]ϕ is desingularizable at q and we

call T a desingularizing transformation for [A]ϕ at q.

(2) If q is not ϕ-minimal, then we call [A]ϕ (partially) desin-

gularizable at q if there exists a desingularizing transfor-

mation T for all poles of A of the form ϕk (q), k ≥ 1, and

T [A]ϕ is either (partially) desingularized at q or (partially)

desingularizable at q.

While it is immediate that, for a ϕ-minimal pole q, the algebraic

notion of desingularization implies that the roots of q are remov-

able in the sense of Definition 2.1, the converse is not obvious and

is proven later in Section 4. Consequently, the roots of q are appar-

ent singularities if (and only if) the system A is desingularizable

at all poles of A of the form ϕ−k (q), k ≥ 0. In practice, in order

to desingularize a system at a non-ϕ-minimal pole q, one first re-

moves the ϕ-minimal pole congruent to q. �e resulting system

then has a new ϕ-minimal pole ’closer’ to q. One can repeat this

process untilq itself isϕ-minimal and eventually removed. A desin-

gularizing transformation for q is then given by the product of all

the transformations obtained during this process.

Let us illustrate in the next example why we require removing

all singularities le� of a given pole, thus making it ϕ-minimal, be-

fore considering it eligible for desingularization.

Example 2.5. �e system [A]ϕ given by

A = diag

(
(z + 1)2

z
,

1

z + 1

)
,

can be transformed via T = diag(z, 1) to T [A]ϕ = diag(z + 1, 1
z+1 ).

�e transformed systems still does not enable analytic continua-

tion at 0 of solutions that are holomorphic in the le� half-plane

with Re(z) < 0.

3 REMOVING R-SINGULARITIES

3.1 ϕ-Minimal Desingularization

We begin our discussion of removing r-singularities by deriving a

method for shi�ing a factor in the denominator of a given system

in a way that allows, if possible, cancellation with zeroes of the

system. For this we bring the leading matrix of A into a specific

form.

Lemma 3.1. Let A be a d × d matrix with entries in C(z) and let

q ∈ C[z] be an irreducible pole of A. Set n := −ordq(A) and r :=

rank(lcq (A)), the rank of the leading matrix of A at q. �ere exists

a unimodular polynomial transformation S such that S[A]ϕ is of the

form (
1
qnA1

1
qn−1

A2,
)
, (3)

whereA1,A2 are matrices with entries in Oq of sized×r andd×d−r

respectively with rank(A1) = r .

Proof. �e leading matrix lcq (A) of A at q is a matrix with en-

tries in the residue field C[z]/〈q〉. �ere exists a non-singular ma-

trixQ with entries in C[z]/〈q〉 such that lcq (A) ·Q is in a column-

reduced form, i.e. the lastd−r columns of lcq (A) ·Q are zero, andQ

is of the formQ = C · (Id +U ), where C is a non-singular constant

matrix, Id the identity matrix of dimension d ×d , andU is a strictly

upper triangular matrix. Taking S = Q as a matrix in Matd (C[z])

will result in S[A]ϕ as desired. �

Example 3.2 (Example 2.2 continued). If we set q = z − 2, then

the leading matrix of the system in Example 2.2 at q is

lcq(A) = (qA)modq =

(
0 0

−6 3

)
.

Asuitable transformation to bring thismatrix into a column-reduced

form is

S =

(
1 1

2
0 1

)
.

Applying S to A gives

S[A]ϕ =

(
z+1
z−2 0
−2z−2
z−2 2

)
.



Lemma 3.3. Let A ∈ GLd (C(z)) and q ∈ C[z] be a ϕ-minimal

pole of A. Suppose that A is of the form (3) and let r = rank(lcq (A)).

If [A]ϕ is partially desingularizable at q then any desingularizing

transformation T for [A]ϕ can be wri�en as

T = D · T̃ , where

D = diag(q, . . . ,q︸   ︷︷   ︸
r times

, 1, . . . , 1︸  ︷︷  ︸
d−r times

) and T̃ ∈ GLd (C(z)) ∩Matd (C[z]).

Proof. Let n = −ordq(A). Suppose we are given a desingular-

izing transformation T ∈ GLd (C(z)) and let B = T [A]ϕ . �en we

have that ϕ(T )B = AT and hence

ϕ(T )(qnB) = (qnA)T .

Since ordq (q
nB) > 0 and the orders at q of the other matrices

involved in the equality are non-negative, we get

πq (q
nA)πq (T ) = 0.

By assumption, the matrix πq (q
nA) is of the form

πq (q
nA) =

(
A1 0

)
,

whereA1 is ad×r matrix with linearly independent columns. �us,

the first r rows of πq (T )must be zero, i.e the first r rows ofT have

to be divisible by q. �is yields the claim. �

Remark 1. Note that the determinant of any desingularizing trans-

formationT of A at q, not necessarily ϕ-minimal, is divisible by q; in

fact qr | det(T ). It then follows that ϕ(q) divides det(ϕ(T )); in fact

ϕ(q)r | det(ϕ(T )).

Lemma 3.4. Let A ∈ GLd (C(z)) and let q ∈ C[z] with q | den(A)

be an irreducible pole. If [A]ϕ is (partially) desingularizable at q then

there exists amaximal positive integer ℓ such thatϕℓ (q) | num(det(A)).

Proof. First, suppose q is ϕ-minimal. �ere are only finitely

many factors of num(det(A)) of positive degree because A is non-

singular. �us it suffices to show that there exists a positive integer

ℓ0 such that ϕ
ℓ0 (q) | num(det(A)). LetT be a desingularizing trans-

formation of A at q. Put B := T [A]ϕ and denote det(T ) by t . �en,

due to the desingularization property, we have that

ϕ(T )−1num(A)T =
den(A)

den(B)
num(B) ∈ Matd (C[z]).

Hence
det(num(A))t

ϕ(t)
∈ C[z].

Let ℓ0 be the largest integer such that ϕℓ0 (q) | ϕ(t). By Remark 1,

ℓ0 is strictly positive. Since ϕℓ0 (q) ∤ t , it follows that ϕℓ0 (q) |

det(num(A)). Now from the relation det(num(A)) = den(A)d det(A)

and since we assumed that den(A) has no factor of the form ϕ j (q)

with j ∈ N∗ we can conclude that ϕℓ0 (q) | num(det(A)). To see

that the theorem holds for non-ϕ-minimal poles, let q̃ be a non-ϕ-

minimal pole congruent to q, i.e. there exists a positive integer k

such that ϕk (q̃) = q. �en ϕk+ℓ0 (q̃) = ϕℓ0 (q) | num(det(A)). �

Definition 3.5. LetA ∈ GLd (C(z)) andq ∈ C[z] be an irreducible

pole of A. We define the ϕ-dispersion of A at q as :

ϕ-dispersion(A,q) = max {ℓ ∈ N∗ s.t. ϕℓ (q) | num(det(A))}.

When the la�er set is empty we put ϕ-dispersion(A,q) = 0.

Note that a necessary condition that [A]ϕ can be (partially) desin-

gularized at q is that ϕ-dispersion(A, q) > 0.

Example 3.6 (Example 3.2 continued). �e determinant of S[A]ϕ

in Example 3.2 is
2(z+1)
z−2 . �erefore the ϕ-dispersion of S[A]ϕ at

q = z − 2 is equal to 3.

We will now describe an algorithm for desingularizing a given

system [A]ϕ at a ϕ-minimal pole q. By repeatedly applying the

algorithm to [A]ϕ , it is then possible to desingularize the system at

all removable singularities. It is sufficient to treat the case where

q is a single and simple pole of A (i.e. qA has polynomial entries).

�is is stated in the following lemma.

Lemma 3.7. Let A ∈ GLd (C(z)) and let q ∈ C[z] be a ϕ-minimal

pole of A. Set h =
den(A)

q so that the matrix hA = q−1num(A) has a

single and simple pole at q. �en the system [A]ϕ is (partially) desin-

gularizable at q if and only if the system [hA]ϕ is desingularizable

at q. More precisely, a polynomial matrixT ∈ GLd (C(z)) is a desin-

gularizing transformation for [hA]ϕ at q if and only if T (partially)

desingularizes [A]ϕ at q.

Proof. It is a direct consequence of the following (trivial but

interesting) property: for all T ∈ GLd (C(z)) and h ∈ C[z] \ {0},

one has T [(hA)]ϕ = h · (T [A]ϕ ). �

Remark 2. With the notation of the above lemma, theϕ-dispersion

of [hA]ϕ at q is greater than or equal to the ϕ-dispersion of [A]ϕ at q,

and equality holds if q is ϕ-minimal. It follows from the fact that

det(hA) = hd · det(A).

Lemma 3.8. Let A ∈ GLd (C(z)). Suppose that A has a single,

simple, irreducible pole at q. If [A]ϕ is desingularizable at q with

ϕ-dispersion ℓ, then there exist a unimodular polynomial matrix S

and a diagonal polynomial matrix D such that (S · D)[A]ϕ is either

desingularized (with respect to q) or desingularizable at ϕ(q) with

ϕ-dispersion ℓ − 1.

Proof. We first take S as in Lemma 3.1 so that S[A]ϕ has the

form

S[A]ϕ =
©
«
Ã1,1

q Ã1,2

Ã2,1

q Ã2,2

ª®
¬
,

where the Ãi, j are blocks with polynomial entries, the diagonal

blocks are of size r = rank(lcq (A)) and d −r respectively. TakeD =

diag(qIr , Id−r ) as in Lemma 3.3. �en the matrix B := (S · D)[A]ϕ
has the form

B =

(
Ã1,1

ϕ (q)

Ã1,2

ϕ (q)

Ã2,1 Ã2,2

)
.

�e resulting system [B]ϕ has at worst a simple and single pole at

ϕ(q) with ϕ-dispersion ℓ − 1. �

Example 3.9 (Example 3.6 continued). �e rank of the leading

matrix in Example 3.2 is 1. We apply the transformation

D1 =

(
z − 2 0

0 1

)
,



to S[A]ϕ of Example 3.6 and arrive at the system

(S · D1)[A]ϕ =

(
z+1
z−1 0

−2z − 2 2

)
.

�e determinant of (S · D1)[A]ϕ is
2(z+1)
z−1 . �e new ϕ-dispersion

is 2.

Theorem 3.10. Let A be desingularizable at a single, simple, irre-

ducible pole q. �en there exists an integern, unimodular polynomial

matrices S1, . . . , Sn and diagonal polynomial matrices D1, . . . ,Dn

such that

T = S1 · D1 · · · Sn · Dn ,

is a desingularizing transformation for A at q. Furthermore, any

other desingularizing transformation T ′ for A at q can be wri�en

as

T ′ = T · T̃ with T̃ ∈ GLd (C(z)) ∩Matd (C[z]). (4)

Proof. By Lemma 3.4, a desingularizable system [A]ϕ has strictly

positive ϕ-dispersion ℓ. Applying the transformation S · D as in

Lemma 3.8 gives a system equivalent to [A]ϕ having at worst a

pole at ϕ(q) (instead of q) but with reduced ϕ-dispersion. A�er

at most ℓ such transformations, the resulting matrix T [A]ϕ has to

be desingularized at q. �is shows that T can be chosen as in the

statement of the theorem. To see that any other desingularizing

transformation T ′ of [A]ϕ at q can be wri�en as in (4), we first

note that since S1 is unimodular, for any suchT ′ we have

T ′ = S1 · (S
−1
1 ·T

′)︸     ︷︷     ︸
=:T ′′∈GLd (C(z))∩Matd (C[z])

,

and therefore we can assume thatA is of the form (3). �en, as was

shown in Lemma 3.3, we can write

T ′′ = D1 · T̃ ,

with T̃ ∈ GLd (C(z)) ∩ Matd (C[z])). Again, we can repeat this

reasoning n times until we arrive at the desired form. �

Example 3.11 (Example 3.9 continued). �e leading matrix of (S ·

D1)[A]ϕ as in Example 3.9 at ϕ(q) = z − 1 is already in column-

reduced form and of rank 1. We apply the transformation D2 =

diag(z − 1, 1), and get

(S · D1 · D2)[A]ϕ =

(
z+1
z 0

−2z2 + 2 2

)
.

Again, the leading matrix of this system at ϕ2(q) = z is column-

reduced and of rank 1. Finally, a�er applying the transformation

D3 = diag(z, 1), we get the desingularized system

(S · D1 · D2 · D3)[A]ϕ =

(
1 0

−2z3 + 2z 2

)
.

Collecting all the transformations, we see that a desingularizing

transformation for A at q = z − 2 is given by

T = S · D1 · D2 · D3 =

(
z3 − 3z2 + 2z 1

2
0 1

)
.

As was already shown in Lemma 3.4, a positive ϕ-dispersion

is a necessary condition for a removable singularity. For a given

system [A]ϕ and an irreducible polynomial q, the ϕ-dispersion can

be obtained by computing the largest integer root of the resultant

resz (q(z + k), num(det(A))). �is, together with �eorem 3.10 and

its proof gives rise to Algorithm 1.

Algorithm 1: desingularize A(A,q)

Input: A with entries in C(z) and a single, simple, ir-

reducible pole q ∈ C[z].

Output: (T ,T [A]ϕ ) s.t. T [A]ϕ is desingularized at q, or

(Id ,A) if desingularization is not possible.

1 T ← Id
2 WHILE (ϕ-dispersion(A,q) > 0 AND den(A) =

0 mod q) DO

2.1 A0 ← lcq (A)

2.2 S ← as in the proof of Lemma 3.1.

2.3 D ← diag(q, . . . ,q, 1, . . . , 1) with rank(A0)

many elements equal to q.

2.4 A← ϕ(S · D)−1 · A · (S · D)

2.5 T ← T · S · D

2.6 q ← ϕ(q)

3 IF (den(A) = 0 mod q) RETURN (Id ,A)

4 ELSE RETURN (T ,A)

3.2 Characterization of Desingularizable Poles

We can give a necessary and sufficient condition for a pole to be

desingularizable. It can be seen as the shi� analogue of the nilpo-

tency of the leading matrix at the considered pole of the system,

which is a necessary condition for an apparent singularity in the

differential se�ing [3].

Proposition 3.12. Let q ∈ C[z] be a ϕ-minimal pole of the sys-

tem [A]ϕ . Let Ã = qnA, so that ordq(Ã) = 0 and πq (Ã) = lcq (A).

If A is (partially) desingularizable at q then there exists a positive

integer k such that

πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã)) = 0. (5)

Proof. Let T be a desingularizing transformation for [A]ϕ at q

and B = T [A]ϕ . �en for all non-negative integers k one has

ϕ(T )Bϕ−1(B) . . .ϕ−k (B) = Aϕ−1(A) . . .ϕ−k (A)ϕ−k (T ),

and hence

ϕ(T )(qnB)ϕ−1(qnB) . . .ϕ−k (qnB) = Ãϕ−1(Ã) . . .ϕ−k (Ã)ϕ−k (T ).

As ordq(q
nB) > 0 and

ordq (ϕ
−j (qnB)) = ordϕ j (q)(B) ≥ ordϕ j (q)(A) ≥ 0, for all j ∈ N∗,

we get that

πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã)ϕ−k (T )) = 0.

Nowwe conclude by remarking that fork large enough πq (T (z−k))

is invertible. �

We will now show that the factorial relation (5) is a sufficient

condition for a matrix A to be partially desingularizable at q.

Proposition 3.13. Let q ∈ C[z] be a ϕ-minimal pole of [A]ϕ . Let

Ã = qnA, so that ordq (Ã) = 0 and πq (Ã) = lcq (A). If [A]ϕ is such

that the factorial relation (5) holds for some integer k ≥ 1 then [A]ϕ
is (partially) desingularizable at q.



Proof. Let k be minimal so that (5) holds. Put

M := πq (Ãϕ
−1(Ã) · · ·ϕ−k+1(Ã)) and N := πq (ϕ

−k (Ã)).

By definition of k , the matrix M is nonzero (but singular) and we

have M · N = 0.With d := dim(A) it follows that

0 < rank(M) ≤ s := d − rank(N ) < d .

Let P ∈ GLd (C[z]/〈q〉) such that P · N has its last (d − s) rows

linearly independent over C[z]/〈q〉 while its s first rows are zero.

Consider the matrix : U = ϕk−1(P−1) as an element of Matd (C[z])

then by applying the unimodular transformation Y = UX , we can

assume that the matrix N has the following form:

N =

(
Os Os,d−s

N2,1 N2,2

)
,

where N2,1 and N2,2 are matrices with entries in C[z]/〈q〉 of size

(d−s)×s and (d − s)×(d−s) respectively, so that the last d−s rows

ofN are linearly independent over C[z]/〈q〉. AsM ·N = 0 we have

that the d − s last columns ofM are zero. Let Ã = (Ãi, j )1≤i, j≤2 be

partitioned in four blocks asN . �en πq (ϕ
−k (Ã1, j )) = 0 for j = 1, 2.

In other words, the s first rows of Ã are divisible by ϕk (q). Using

the substitution Y = DX where D = diag(ϕk−1(q)Is , Id−s ), we get

a new system which still has a pole at q of multiplicity at most n.

Indeed, we have

B := ϕ(D)−1AD = q−n

(
ϕk−1(q)Ã1,1

ϕk (q)

Ã1,2

ϕk (q)

ϕk−1(q)Ã2,1 Ã2,2

)
=

q−n
(
ϕk−1(q)Ã′1,1 Ã′1,2
ϕk−1(q)Ã2,1 Ã2,2

)
,

(6)

for some matrices Ã′1,1, Ã′1,2 with entries in Oq . It is clear that

den(B) | den(A) and that ordq (B) ≥ ordq (A). Now we will prove

that the factorial relation (5) holds for B̃ := qnB with k − 1 instead

of k . For this we remark first that

ϕ(D)B̃ϕ−1(B̃) · · ·ϕ−k+1(B̃) = Ãϕ−1(Ã) · · ·ϕ−k+1(Ã)ϕ−k+1(D).

It then follows that

πq (ϕ(D))πq (B̃ϕ
−1(B̃) · · ·ϕ−k+1(B̃)) = M · πq (ϕ

−k+1(D)).

We have that

πq (ϕ
−k+1(D)) = πq (diag(qIs , Id−s )) = diag(Os , Id−s ),

hence M · πq (ϕ
−k+1(D)) = 0 (since the d − s last columns ofM are

zero). Now πq (ϕ(D)) = πq (diag(ϕ
k (q)Is , Id−s )) is invertible (since

q and ϕk (q) are co-prime), it then follows that

πq (B̃ϕ
−1(B̃) · · ·ϕ−k+1(B̃)) = 0.

Ifk−1 is still positive thenwe can repeat this process for thematrix

B and the polynomial q until we arrive at k = 1. When k = 1 the

above factorial relation reduces to πq (B̃) = 0 which means that

ordq (B̃) > 0 and therefore ordq (B) ≥ −n + 1. �

�is proofmotivates the following alternative desingularization

algorithm. In contrast to Algorithm 1, instead of shi�ing a singu-

larity towards a zero of the system, it performs the analogous task

of moving a zero towards the singularity until they cancel each

other

Algorithm 2: desingularize B(A,q)

Input: A with entries in C(z) and a single, simple, ir-

reducible pole q ∈ C[z].

Output: (T ,T [A]ϕ ) s.t. T [A]ϕ is desingularized at q.

1 T ← Id
2 WHILE (den(A) = 0 mod q) DO

2.1 ℓ ← ϕ − dispersion(A,q)

2.2 IF (ℓ ≤ 0) THEN RETURN (T ,A)

2.3 n ← ordq (A) ; Ã← qnA

2.4 k ← 0 ;M ← Id ; N ← πq (Ã)

2.5 WHILE (M · N , 0 AND k ≤ ℓ) DO

2.5.1 M ← M · N ; k ← k + 1 ; N ← πq (ϕ
−k (Ã))

2.6 U ← as in the proof of Proposition 3.12.

2.7 D ← diag(ϕk−1(q)Is , Id−s )with s = d − rank(N ).

2.8 A← ϕ(U · D)−1 ·A · (U · D)

2.9 T ← T ·U · D

3 RETURN (T ,A)

An implementation of Algorithm 1 and Algorithm 2 in the com-

puter algebra system Sage [12] can be obtained from

h�p://www.mjaroschek.com/systemdesing/

Remark 3. All systems that are desingularizable via Algorithm 1

are also desingularizable via Algorithm 2 and vice versa.

Example 3.14. For A as in Example 2.2 and q = z − 2 we have

Ã = (z − 2)A =

(
0 z − 2

−2(z + 1) 3(z − 1)

)
,

M = πq (Ã(z)Ã(z − 1)Ã(z − 2)) = Ã(2)Ã(1)Ã(0) =

(
0 0,

−12 6

)
, 0

N = πq (ϕ
−3(Ã) = Ã(−1) =

(
0 −3

0 −6

)
,

πq (Ã(z)Ã(z − 1)Ã(z − 2)Ã(z − 3)) = Ã(2)Ã(1)Ã(0)Ã(−1) = 0,

so k = 3. If we chose

U =

(
1
2

1
2

0 1

)
,

then

ϕ(U )−1AU = U −1AU =
1

(z − 2)

(
(z + 1) 0

−(z + 1) 2(z − 2)

)
.

We have s = 1, so with D = diag(ϕ2(q), 1) = diag(z, 1) we get

B = ϕ(D)−1(ϕ(U )−1AU )D =
1

(z − 2)

(
z 0

−z(z + 1) 2(z − 2)

)
.

Note that, as expected, we have that

B̃(2)B̃(1)B̃(0) = 0.

Here we can repeat the above process on B to desingularize as

much as possible the matrix A at q = z − 2. In this particular

example q is removable by the transformation T = U · diag(z(z −

1)(z − 2), 1). Indeed, one can see that

T [A]ϕ = ϕ(T )−1AT =

(
1 0

−z(z2 − 1) 2

)
,

has polynomial entries. �e transformation T is the same as in

Example 3.11 up to a right factor diag( 12 , 1).

http://www.mjaroschek.com/systemdesing/


3.3 Rank Reduction

Consider a system [A]ϕ and let q be a ϕ−minimal factor of den(A)

with multiplicity n ≥ 1, such that [A]ϕ the is not partially desingu-

larizable at q. �is implies that there’s no positive integer k such

that relation (5) holds. As the quantity n cannot be reduced, it’s

natural to ask if it is possible to reduce the rank of the leading

matrix lcq (A) by applying a polynomial transformation T to [A]ϕ .

We shall give a criterion for the existence of a polynomial trans-

formation T such ordq(T [A]ϕ ) = ordq(A) and rank(lcq (T [A]ϕ )) <

rank(lcq(A))

Proposition 3.15. Let q ∈ C[z] be a ϕ-minimal pole of [A]ϕ . Let

Ã(z) = qnA(z), so that ordq(Ã) = 0 and πq (Ã) = lcq (A). �en a nec-

essary and sufficient condition for the existence of a polynomial trans-

formationT such that ordq(T [A]) = ordq(A) and rank(lcq (T [A])) <

rank(lcq(A)) is that there exists a positive integer k such that

rank(πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã))) < rank(lcq (A)). (7)

Proof. Necessary condition: Suppose first that there exists a

polynomial matrixT with the desired properties and let B = T [A]ϕ .

Similarly to the proof of Proposition 3.12, one gets for all non-

negative integers k :

ϕ(T )(qnB)ϕ−1(qnB) . . .ϕ−k (qnB) = Ãϕ−1(Ã) . . .ϕ−k (Ã)ϕ−k (T ).

Since ordq (q
nB) = 0 = ordq (Ã) and all the other factors in both

sides of this equality have non-negative orders at q we get that

πq (ϕ(T ))πq ((q
nB))πq (ϕ

−1(qnB) . . .ϕ−k (qnB)) =

πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã))πq (ϕ

−k (T )).

By using the fact that the rank of a product of matrices is less or

equal to the rank of each factor we get that the rank of the prod-

uct in the right hand side of the previous equality is bounded by

rank(πq ((q
nB))) = rank(lcq (B)) and hence

rank(πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã))πq (ϕ

−k (T ))) ≤

rank(lcq (B)) < rank(lcq(A)).

Now let k be the smallest positive integer such that the matrix

πq (T (z − k)) is of full rank. �en

rank(πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã))) =

rank(πq (Ãϕ
−1(Ã) . . .ϕ−k (Ã))πq (ϕ

−k (T ))) < rank(lcq (A)).

Sufficient condition: Let r = rank(lc(A)) and let k be minimal so

that (7) holds. Put

M := πq (Ãϕ
−1(Ã) · · ·ϕ−k+1(Ã)) and N := πq (ϕ

−k (Ã)).

By definition of k , the matrixM is nonzero, has the same rank r as

lcq (A) and we have the strict inequality

rank(M · N ) < r = rank(M).

�is implies in particular that rank(N ) < d = dim(A). Let s :=

d − rank(N ). As in the proof of Proposition 3.13, we can assume

that N has the following form:

N =

(
Os Os,d−s

N2,1 N2,2

)
,

where N2,1 and N2,2 are matrices with entries in C[z]/〈q〉 of size

(d−s)×s and (d − s)×(d−s) respectively, so that the lastd−s rows of

N are linearly independent over C[z]/〈q〉. Let M = (Mi, j )1≤i, j≤2
be partitioned in four blocks as N . �en we have

M · N =

(
M1,2

M2,2

)
·
(
N2,1 N2,2

)
.

As the matrix (N2,1 N2,2) is of full rank, we get that

rank

(
M1,2

M2,2

)
= rank(M · N ) < r .

Let Ã = (Ãi, j )1≤i, j≤2 be partitioned in four blocks as N . �en

πq (ϕ
−k (Ã1, j )) = 0 for j = 1, 2. Using the substitution Y = DX

where D = diag(ϕk−1(q)Is , Id−s ), we get a system [B]ϕ of the

form (6). with den(B) | den(A) and ordq(B) ≥ ordq(A). Note that

πq (q
nB) =

(
πq (

1
ϕk (q)

)Is Os,d−s

Od−s,s Id−s

)
·

(
πq (Ã1,1) πq (Ã1,2)

πq (Ã2,1) πq (Ã2,2)

)
·

(
πq (ϕ

k−1(q))Is Os,d−s

Od−s,s Id−s

)
.

It follows that if k ≥ 2, then rank(πq (q
nB)) = rank(lcq (A)), but we

will prove that the factorial relation (7) holds for B̃ := qnB with

k − 1 instead of k . As in the proof of Proposition 3.13, we have that

πq (ϕ
−k+1(D)) = πq (diag(qIs , Id−s )) = diag(Os , Id−s ),

hence

M · πq (ϕ
−k+1(D)) =

(
Os M1,2

Od−s M2,2

)
,

whose rank is less than r . Now πq (ϕ(D)) = diag(πq (ϕ
k (q))Is , Id−s )

is invertible (since q and ϕk (q) are co-prime), it then follows that

rank(πq (B̃ϕ
−1(B̃) · · ·ϕ−k+1(B̃))) =

rank(M · πq (ϕ
−k+1(D)) < r = rank(lcq (B)).

If k − 1 is still positive then we can repeat this process on the

matrix B and the polynomial q until we arrive at k = 1. �en we

have that

πq (q
nB) =

(
πq (

1
ϕ (q)
)Is Os,d−s

Od−s,s Id−s

)
·

(
Os M1,2

Od−s M2,2

)
,

whose rank is less than r . �

�e proof of Proposition 3.15 suggests that Algorithm 2 can

be easily adapted to minimize the rank of the leading matrix of

a ϕ-minimal pole. In particular, a T can be computed such that

ordp (T [A]ϕ ) ≥ ordp (A) for p ∈ C[z]. It is to note that rank reduc-

tion for a pole in A via Algorithm 2 comes at the potential cost of

an increase in order of a pole of A∗, as the next example shows.

Example 3.16. Consider the system with

A =
©
«
z(z + 1) 0 0

0 z+1
z 0

0 0 1
z

ª®¬
, A∗ =

©«
1

z(z−1)
0 0

0 z−1
z 0

0 0 z − 1

ª®®
¬
.

We have rank(lcz (A)) = 2 and ordz−1(A
∗) = −1, and computing a

rank reducing transformation for [A]ϕ via Algorithm 2 gives T =



diag(z,z, 1), which results in

T [A]ϕ =
©«
z2 0 0

0 1 0

0 0 1
z

ª®
¬
, T [A]∗

ϕ
=

©
«

1
(z−1)2

0 0

0 1 1

0 0 z − 1

ª®®¬
,

with rank(lcz (T [A]ϕ )) = 1 and ordz−1(A
∗) = −2. We note that

we merely shi�ed an already present pole in A∗ to the right, as

opposed to adding a new factor to the system.

4 APPARENT SINGULARITIES

In this section we establish the connection between the analyti-

cal notion of apparent and removable singularities of meromor-

phic solutions and the algebraic concept desingularization of dif-

ference systems. �e key observation is the fact that the factorial

relation (5) provides a sufficient condition for a singularity to be

removable..

Proposition 4.1. Let ζ ∈ Pr (A) be a pole of A of order ν ≥ 1

such that ζ − j < Pr (A) for all positive integers j. Let Ã = (z − ζ )
νA,

so that Ã(ζ ) , 0. If ζ is a removable r-singularity of [A]ϕ , then there

exists a positive integer k such that

Ã(ζ )A(ζ − 1) · · ·A(ζ − k) = 0.

In particular, the matrix A(ζ − j) is singular for some non-negative

integer j.

Proof. Using a result due to Ramis [4, 14, 20], one can easily

prove that for any complex number η with −Reη large enough,

there exist ameromorphic fundamental matrix solution F (z)which

is holomorphic for −Rez large enough and satisfies F (η) = Id .

Choose a positive integer k such that −Re(ζ − k) is large enough

and take a fundamental matrix solution F (z) as above with F (ζ −

k) = Id . �en one can write

F (z + 1) = A(z)A(z − 1)A(z − 2) · · ·A(z − k)F (z − k),

and hence

(z − ζ )ν F (z + 1) = (z − ζ )νA(z)A(z − 1)A(z − 2) · · ·A(z −k)F (z −k).

Taking the limit as z goes to ζ , we get that

0 = Ã(ζ )A(ζ − 1)A(ζ − 2) · · ·A(ζ − k). �

Corollary 4.2. Let ζ ∈ Pr (A) such that there is a ϕ-minimal q

with q(ζ ) = 0. If ζ is a removable singularity of [A]ϕ , then [A]ϕ is

desingularizable at q.

Proof. Let n := −ordq (A). We can apply Proposition 3.13 to

reduce the multiplicity of q in den(A) from n to n − 1. If n > 1,

q is still ϕ-minimal and ζ still removable, and we can repeat the

process until [A]ϕ is desingularized at q. �

5 CONCLUSION AND FUTURE WORK

In this paper we presented two algorithms to desingularize linear

first order difference systems and we explored the notions of appar-

ent and removable singularities. �ese topics have already been

studied in the context of difference operators, where usually the

solution space of a given operator is increased as a side effect of

the desingularization process. An interesting starting point for fur-

ther research is to investigate the relation of desingularization on

a system level and on an operator level in regard to this extension

of the solution space.

Concerning pseudo linear systems, we will continue our work

in several directions. We aim to establish a clear connection be-

tween removable singularities of a system [A]ϕ and the removable

singularities of [A∗]−1
ϕ
, as well as the role of removable singular-

ities for extending numerical sequences. Furthermore, studying

desingularization at non-ϕ-minimal poles is a promising approach

for identifying poles that only appear in some components of fun-

damental solutions. We are currently also investigating how to

characterize poles in solutions that do not propagate to infinitely

many congruent points via gauge transformations.

Regarding complexity, it would be desirable to conduct a thor-

ough complexity analysis of desingularization algorithms. Finally,

as was shown in [10, 16], removable singularities of operators can

negatively impact the running time of some algorithms and it is

interesting to investigate whether similar effects occur for linear

systems.
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