
Frobenius Additive Fast Fourier Transform
Wen-Ding Li

Research Center for Information

Technology Innovation, Academia

Sinica, Taiwan

thekev@crypto.tw

Ming-Shing Chen

Research Center for Information

Technology Innovation, Academia

Sinica, Taiwan

mschen@crypto.tw

Po-Chun Kuo

Department of Electrical Engineering,

National Taiwan University, Taiwan

kbj@crypto.tw

Chen-Mou Cheng

Graduate School of Engineering,

Osaka University, Japan

ccheng@cy2sec.comm.eng.osaka-u.

ac.jp

Bo-Yin Yang

Institute of Information Science,

Academia Sinica, Taiwan

by@crypto.tw

ABSTRACT
In ISSAC 2017, van der Hoeven and Larrieu showed that evaluating

a polynomial P ∈ Fq [x] of degree < n at all n-th roots of unity

in Fqd can essentially be computed d times faster than evaluating

Q ∈ Fqd [x] at all these roots, assuming Fqd contains a primitive

n-th root of unity [18]. Termed the Frobenius FFT, this discovery

has a profound impact on polynomial multiplication, especially for

multiplying binary polynomials, which finds ample application in

coding theory and cryptography. In this paper, we show that the

theory of Frobenius FFT beautifully generalizes to a class of additive

FFT developed by Cantor and Gao-Mateer [5, 11]. Furthermore,

we demonstrate the power of Frobenius additive FFT for q = 2:

to multiply two binary polynomials whose product is of degree

< 256, the new technique requires only 29,005 bit operations, while

the best result previously reported was 33,397 [1]. To the best of

our knowledge, this is the first time that FFT-based multiplication

outperforms Karatsuba and the like at such a low degree in terms

of bit-operation count.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; Computations in finite fields;

KEYWORDS
Fast Fourier Transform, additive FFT, Frobenius FFT, Frobenius

additive FFT, polynomial multiplication, finite field, complexity

bound, Frobenius automorphism

ACM Reference Format:
Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-

Yin Yang. 2018. Frobenius Additive Fast Fourier Transform. In ISSAC ’18:
2018 ACM International Symposium on Symbolic and Algebraic Computation,
July 16–19, 2018, New York, NY, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3208976.3208998

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5550-6/18/07.

https://doi.org/10.1145/3208976.3208998

1 INTRODUCTION
Let Fqd be the finite field of qd elements, and let ξ ∈ Fqd be a

primitive n-th root of unity. Let Fqd [x]<n denote the set of polyno-

mials in Fqd [x] with degree < n. The (discrete) Fourier transform

of a polynomial P ∈ Fqd [x]<n is (P(1), P(ξ ), P(ξ 2), . . . , P(ξn−1)),

namely, evaluating P at all n-th roots of unity. How to efficiently

compute the Fourier transform not only is an important problem

in its own right but also finds a wide variety of applications. As a

result, there is a long line of research aiming to find what is termed

“fast” Fourier tranform, or FFT for short, for various situations.

Arguably, one of the most important applications of FFT over

finite fields is fast polynomial multiplication. In particular, the case

of q = 2 has received a lot of attention from the research commu-

nities due to its wide-ranging application, e.g., in coding theory

and cryptography. Obviously, here we need to go to an appropri-

ate extension field F
2
d in order to obtain a primitive n-th root of

unity for any practically meaningful n. In this case, we can use the

well-known Kronecker method to efficiently compute binary poly-

nomial multiplication [12]. Such FFT-based techniques have better

asymptotic complexity compared with school-book and Karatsuba

algorithms. However, it is a conventional wisdom that FFT may not

be suitable for polynomial multiplication of small degrees because

of the large hidden constant in the big-O notation [10].

In ISSAC 2017, van der Hoeven and Larrieu showed how to use

the Frobenius map x 7→ xq to speed up the Fourier transform

of P ∈ Fq [x] essentially by a factor of d over Q ∈ Fqd [x] and

hence avoid the factor-of-two loss as in the Kronecker method [18].

However, the Frobenius FFT is complicated, especially when the

Cooley-Tukey algorithm is used for a (highly) composite n. One
of the reasons behind might be that the Galois group of Fqn over

Fq is generated by the Frobenius map and isomorphic to a cyclic

subgroup of the multiplicative group of units of Z/nZ, whereas
the Cooley-Tukey algorithms works by decomposing the additive
group Z/nZ. The complicated interplay between these two group

structures can bring a lot of headaches to implementers.

Can we hope for a better alignment between the Frobenius map

and FFT-style algorithms? In his seminal work, Cantor showed how

to evaluate a polynomial on some additive subgroup of size n of a

tower of Artin-Schreier extensions of a finite field of characteristic

p and gave an O(n(logn)1+logp ((p+1)/2)) FFT-like algorithm based

on polynomial division [5]. Based on Cantor’s construction, Gao

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

263

https://doi.org/10.1145/3208976.3208998
https://doi.org/10.1145/3208976.3208998
lacson
Typewritten Text
This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

lacson
Typewritten Text

lacson
Typewritten Text

lacson
Typewritten Text

lacson
Typewritten Text

lacson
Typewritten Text

https://creativecommons.org/licenses/by-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3208976.3208998&domain=pdf&date_stamp=2018-07-11


ISSAC ’18, July 16–19, 2018, New York, NY, USA Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang

and Mateer gave a Cooley-Tukey-style algorithm whose complexity

is O(n lg(n) lg lg(n)) for the specialized case of n = 2
2
r
[11], using

which Chen et al. achieved a competitive performance among the

state of the art in binary polynomial multiplication algorithms [9].

As will become clear later in this paper, the theory of Frobenius FFT

beautifully generalizes to such additive FFT techniques developed

by Cantor and Gao-Mateer because the group it works on comes

from the same Frobenius map. In the rest of this paper, we shall

refer to such a generalization as the Frobenius additive FFT, or FAFFT
for short, and although we will restrict our discussion to the case of

p = 2, most of our results can be extended to the case of general p.
We will use binary polynomial multiplication as a vehicle to

demonstrate the power of FAFFT, for which we will use the bit-

operation—mainly AND and XOR, as we are working in F2—count
as the main measure for computational complexity. Although this

may not be the most accurate performance indicator on modern

CPUs, it is still a useful metric for complexity estimation, especially

for hardware implementation using digital circuits or “bitsliced”

software implementation widely used in embedded systems. In

such a performance metric, today’s most competitive techniques

for multiplying binary polynomials of small degrees are almost all

based on the Karatsuba algorithm or its generalization to n-way
split [1, 6–8, 21]. As we will see, FAFFT techniques can break this

monopoly and outperformKaratsuba-like algorithms inmultiplying

binary polynomials of degree as small as 231. To the best of our

knowledge, this is the first time FFT-based techniques are shown to

be competitive for multiplying polynomials of such small degrees.

Last but not least, we have released to the general public our

software that generates computational procedures for polynomial

multiplication:

https://github.com/fast-crypto-lab/Frobenius_AFFT .

The rest of this paper is organized as follows. In Section 2, we will

review the theory and some important techniques for additive FFT;

then in Section 3, we will develop those for FAFFT. Finally in Sec-

tion 4, we will show how we can set a few new speed records, both

theoretically and in practice, for binary polynomial multiplication

using FAFFT.

2 REVIEW OF ADDITIVE FFT
2.1 Cantor’s construction
An Artin-Schreier extension of a finite field of characteristic p is a

degree-p Galois extension. Let Fp be the field of p elements, and F
an Artin-Schreier extension field containing Fp . The Artin-Schreier
polynomial ℘(x) = xp −x is a linear map on the vector space F over
Fp . In other words, it is an additive polynomial: ℘(x + y) = ℘(x) +
℘(y). Furthermore, the composition of i additive Artin-Schreier

polynomials

si (x) := (℘ ◦ ℘ ◦ · · · ◦ ℘)︸              ︷︷              ︸
i

(x) = ℘◦i (x)

is again a linear map on F over Fp and therefore additive. Following

Cantor’s seminal work [5], we define s0(x) := x and letWi be the

kernel of si as a linear map. Cantor showed that Fp =W1 ⊂W2 ⊂

· · · , dimFp Wi = i , |Wi | = pi , andWi is a field if and only if i = p j

for some positive integer j. Furthermore, deg si = p
i
, so the roots

of si are precisely those inWi , and hence si (x) =
∏

ω ∈Wi (x − ω)
is exactly the vanishing polynomial for the subspaceWi . Last but

not least, si (x) is sparse, having at most i + 1 nonzero coefficients.

More precisely, si (x) is a linear combination of the monomials

x ,xp , . . . ,xp
i
; in particular, we have the following property.

Lemma 2.1. Given a vanishing polynomial si (x) as defined above,
si (x) = xp

i
− x if and only if i = p j and j ∈ N ∪ {0} .

These vanishing polynomials have a nice decomposition:

si (x) =
∏
ω ∈W1

(
si−1(x) − ω

)
=

∏
ω ∈W2

(
si−2(x) − ω

)
...

=
∏
ω ∈Wi

(
x − ω

)
.

Based on this decomposition, Cantor gave an FFT-like algorithm

for evaluating P ∈ F[x] with deg P < n = pm at all ω ∈ Wm by

iteratively computing the following set of polynomials:

Am =
{
P
(i)
ω (x) := P(x) mod

(
si (x) − ω

)
: 0 ≤ i ≤ m,ω ∈Wm−i

}
.

(1)

That is, we start from P
(m)
0
(x) = P(x) and compute P (m−1),. . . ; the

constant polynomials P
(0)
ω ∀ω ∈Wm are the evaluation results. We

note that for any polynomial P ∈ F[x], P divides s(P) = Pp − P . In
particular, for ω ∈Wm−i , si (x) −ω divides s(si (x) −ω) = si+1(x) −

s(ω). Therefore, once we have computed P
(i+1)
s(ω) , we can compute

P
(i)
ω (x) = P(x) mod

(
si (x) − ω

)
=
(
P(x) mod

(
si+1(x) − s(ω)

) )
mod

(
si (x) − ω

)
= P
(i+1)
s(ω) (x) mod

(
si (x) − ω

)
.

In this paper, we define the additive fourier transform of P as

AFTn (P) =
{
P(x) mod

(
s0(x) − ω

)
: ω ∈Wm

}
= {P(ω) : ω ∈Wm }

2.2 Cantor bases
The complexity of Cantor’s algorithm is O(n(logn)1+logp ((p+1)/2))
for general p and n a power of p. For the case of p = 2 and n =

2
2
r
a power of a power of two, Gao and Mateer showed how to

reduce the complexity to O(n lg(n) lg lg(n)) via a Cooley-Tukey-

style algorithm [11]. From now on, we will restrict our discussion

to the special case of p = 2; nevertheless, we would like to stress

that the theory of Frobenius FFT applies to the general additive FFT

techniques developed by Cantor. Before we present more details,

we need to introduce a sequence of explicit and computationally

useful bases for extension fields given by Cantor [5].

Let F
2
d denote an binary extension field, and let

v = (v0,v1, . . . ,vd−1).

We callv a basis for F
2
d ifv0,v1, . . . ,vd−1 are linearly independent

over F2. Throughout this paper, we often represent an element ωi

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

264

https://github.com/fast-crypto-lab/Frobenius_AFFT


Frobenius Additive Fast Fourier Transform ISSAC ’18, July 16–19, 2018, New York, NY, USA

of a binary extension field as

ωi = i0v0 + i1v1 + · · · + id−1vd−1,

where i = i0 + 2i1 + 2
2i2 + · · · + 2

d−1id−1, i j ∈ {0, 1} ∀0 ≤ j < d ,
with the basis elements v0,v1, . . . ,vd−1 inferred from the context.

Definition 2.2. Given a sequence u0,u1,u2, . . . of elements from

the algebraic closure of F2 satisfying

u2i +ui = (u0u1 · · ·ui−1)+ [a sum of monomials of lower degrees],

where each “monomial of a lower degree” has the formu
j0
0
u
j1
1
· · ·u

ji−1
i−1

such that ∀0 ≤ k < i, jk ∈ {0, 1} and ∃k, jk = 0. For d = 2
r
, a Can-

tor basisvd = (v0, . . . ,vd−1) for F2d is given by

vi = u
i0
0
ui1
1
· · ·uir−1r−1 ,

where i = i0 + 2i1 + · · · + 2
r−1ir−1.

If we fix F
2
2
k = F2(u0,u1, . . . ,uk−1) for k = 1, 2, . . ., then we

have a tower of Artin-Schreier extension fields containing F2. As
a quick example, the following tower of extension fields of F2 are
one such construction:

F4 := F2[u0]/(u
2

0
+ u0 + 1),

F16 := F4[u1]/(u
2

1
+ u1 + u0),

F256 := F16[u2]/(u
2

2
+ u2 + u1u0),

F65536 := F256[u3]/(u
2

3
+ u3 + u2u1u0),

...

In this case, for example, the Cantor basis for F65536 is

v16 = (1,u0,u1,u0u1,u2,u0u2,u1u2, . . . ,u0u1u2u3).

An important property of a Cantor basis vd is that, ∀0 ≤ i <
d , the subspace spanned by (v0,v1, . . . ,vi−1) coincides with the

subspaceWi on which si (x) vanishes. That is, if we letW0 := {0},

then we have

Wi =


i−1∑
j=0

ajvj : aj ∈ F2

 .
We summarize some essential consequences of this property in the

following lemma.

Lemma 2.3. Given a Cantor basis vd , ∀0 ≤ j ≤ k ≤ d , we have
vk ∈Wk+1, so

sj (vk ) ∈Wk−j+1 \Wk−j , or sj (vk ) +vk−j ∈Wk−j .

In particular, for j = 1, we have s1(vk )+vk−1 ∈Wk−1, and for j = k ,
sk (vk ) +v0 ∈W0 = {0}, or sk (vk ) = 1.

Before leaving our discussion on finite field arithmetic, let us

remark briefly on its computational complexity. Unless stated oth-

erwise, we will use the bit complexity model in this paper. We use

A(d) to denote the complexity of adding two elements in F
2
d ; as

usual, A(d) = O(d). Now letMq (d) denote the complexity of multi-

plying two polynomials of degree < d over Fq . Currently, the best

known bound forMq isMq (d) = O(d logq log(d logq)8
log
∗(d logq)),

where log
∗(·) is the iterated logarithm function [13]. It is conven-

tional to assume that Mq (d)/d is an increasing function of d . We

will denote asM(d) the bit complexity of multiplying two elements

in F
2
d represented in a Cantor basis. We can use the modular de-

composition technique to convert F
2
d to F2[x] [20], so it follows

thatM(d) = O(M2(d)). As a result, we also assume thatM(d)/d is

an increasing function in d . Finally, we note that in some cases,

Cantor’s construction allows for more efficient multiplication. For

example, given α , β ∈ F
2
2
k := F

2
2
k−1 [uk−1]/(u

2

k−1 +uk−1 + ζ ), if α

happens to be in the (proper) subfield F
2
2
k−1 , then multiplying α

and β can be computed using only two multiplications in F
2
2
k−1 . In

this case, the cost of multiplication becomes 2M(2k−1) rather than

M(2k ). As we shall see, we often multiply elements from different

extension fields of F2, so Cantor’s trick plays an important role in

reducing bit complexity.

2.3 Additive FFT on subgroups of F
2
2
r

In this section, we come back to the Cooley-Tukey-style algorithm

given by Gao and Mateer [11]. Here we will follow the exposition

due to Lin, Chung, and Han [15]. In computing the polynomials

in Am in Eq. (1), one needs to compute remainders of division

by polynomials of the form si (x) − ω. Thus we can replace divi-

sion by substitution if we write the dividend polynomials as linear

combinations of monomials of the form

∏
sbii [15]:

Definition 2.4. Given a (Cantor) basisvd and its subspace vanish-

ing polynomials s0, s1, . . . , sd−1, we define its corresponding novel
polynomial basis as the polynomials Xk ∀0 ≤ k < n = 2

d
, where

Xk (x) :=
∏
(si (x))

bi
for k =

d−1∑
i=0

2
ibi with bi ∈ {0, 1}.

It is easy to see that, as deg si = 2
i
, degXk = k . Thus, a poly-

nomial P ∈ F
2
d [x] with deg P < n can be represented in novel

polynomial basis:

P(x) = p0X0(x) + p1X1(x) + · · · + pn−1Xn−1(x) for pi ∈ F2d .

We note that the notion of a novel polynomial basis can be

defined for d not a power of two. However, there is no gain in this

case in terms of complexity because conversion from the usual

monomial basis to novel polynomial basis has the same complexity

O(n lgn(lgn)2) as Cantor’s iterative division algorithm. When d is a

power of two, on the other hand, both Gao-Mateer and Lin et al. gave
O(n lgn lg lgn) algorithms for basis conversion; in Algorithm 1, we

present the version given by the latter [16]. We also note that for a

polynomial that admits coefficients from F2, we can easily gain a

factor of d because addition in F2 costs A(1) rather than A(d).
Finally, we are ready to define the additive FFT of a polynomial

P ∈ F
2
d [x] with deg P < 2

k
as

AFFT(k, P ,α) :=
(
P(ωi + α)

)
2
k−1

i=0
.

Now if n1 = 2
k−1

, then

P(ωi + α) = P(ωn1 ·i1+i2 + α)

=
∑

0≤j2<n1

∑
0≤j1<2

pn1 ·j1+j2Xn1 ·j1+j2 (ωn1 ·i1+i2 + α)

=
∑

0≤j2<n1

(
pj2 + sk−1(ωn1 ·i1+i2 + α) · pn1+j2

)
X j2 (ωn1 ·i1+i2 + α)

=
∑

0≤j2<n1

(
pj2 + sk−1(ωn1 ·i1 + α) · pn1+j2

)
X j2 (ωi2 + (α + ωn1 ·i1 )).

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

265



ISSAC ’18, July 16–19, 2018, New York, NY, USA Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang

BasisConversion(f (x)) :
input : f (x) = f0 + f1x + ... + fn−1x

n−1

output :д(X ) = д0 + д1X1(x) + ... + дn−1Xn−1(x) = f (x)

if deg f (x) ≤ 1 then return д(X ) = f0 + X1 f1 ;

Let k = max{2i : deg s
2
i (x) ≤ deg f (x)} .

Compute h′(y) = h′
0
(x) + h′

1
(x)y + h′

2
(x)y2 + · · · such that

h′(sk (x)) = f (x) and all h′i (x) has degree < 2
k
.

h(Y ) ← BasisConversion( h′(y))
// we have h′(y) = h(Y ) = h0(x) + h1(x)Y1 + h2(x)Y2 + · · ·

// h′(sk (x)) = h(X ) = h0(x) + h1(x)X2
k + h2(x)X2

k+1 + · · ·

дi (X ) ← BasisConversion( hi (x)) for all hi (x).
return д0(X ) + д1(X )X2

k + д2(X )X2
k+1 + · · ·

Algorithm 1: Converting from monomial to novel polynomial

basis

We can see that the AFFTwith input polynomial degree of 2
k −1 can

be computed using two AFFTwith input polynomial of degree 2
k−1−

1 corresponding to i1 = 0 and 1, which leads us to Algorithm 2.

AFFT(k, P(x),α) :

input :P(x) = p0X0(x) + p1X1(x) + ... + p2k−1X2
k−1(x) , all

pi ∈ F2d
α ∈ F

2
d , k ≤ d

output : (P(ω0 + α), P(ω1 + α), . . . , P(ω2
k−1 + α)) .

if k = 0 then return p0 ;

// Decompose P(x) = P0(x) + sk−1(x) · P1(x).
P0(x) ← p0X0(x) + p1X1(x) + . . .p2k−1−1X2

k−1−1(x)
P1(x) ← p

2
k−1X0(x) + p2k−1+1X1(x) + . . .p2k−1X2

k−1−1(x)
Q0(x) ← P0(x) + sk−1(α) · P1(x).
Q1(x) ← Q0(x) + sk−1(vk−1) · P1(x).
return AFFT(k − 1,Q0(x),α)∥AFFT(k − 1,Q1(x),vk−1 + α)
Algorithm 2: Addtive FFT in novel polynomial basis [15]

We note that for a Cantor basis, sk−1(ωn1
) = sk−1(vk−1) = 1

from Lemma 2.3. Given P ∈ F
2
d [x] with deg P < n represented in

monomial basis and n = 2
m
, its additive Fourier transform AFTn (P)

can be computed as follow. We first perform basis conversion to get

pi such that P(x) = p0X0(x)+p1X1(x)+ . . .+p2m−1X2
m−1(x). Then

we perform AFFT(m, P(x), 0). Thus, to compute AFTn (P) using AFFT,
the maximum depth of recursion ism, and the algorithm performs

total
1

2
n multiplications and n additions in each depth of recursion.

Therefore the cost of the algorithm is
1

2
n lg(n)(M(d)+2A(d)), where

n = 2
m

is the number of terms.

3 FROBENIUS ADDITIVE FOURIER
TRANSFORM

Let P be a polynomial in F2[x] andvd , a Cantor basis for F2d . Recall
that for all α ∈ F

2
d , P(ϕ(α)) = ϕ(P(α)), where ϕ is the Frobenius

map that sends x to x2. The core idea of the Frobenius Fourier

transform is to evaluate P at a minimal number of points such

that the values of P at other points can be derived through the

Frobenius map ϕ when P ∈ F2[x] ⊂ F2d [x]. This minimal set of

points is called a cross section [18]. Formally, given a setW ⊆ F
2
d ,

a subset Σ ⊆W is called a cross section ofW if for every w ∈W ,

there exists exactly one σ ∈ Σ such that ϕ◦j (σ ) = w for some j.

Let vd denote a basis of F
2
d . Given a polynomial P ∈ F2[x] with

deg P < n = 2
m
, the AFTn (P) is the evaluation of the points in

Wm = {ω0,ω1,ω2, . . . ,ω2
m−1}. To perform a Frobenius additive

Fourier transform, we partitionWm into disjoint orbits under the

action of ϕ. If there exists a subset Σ ofWm that contains exactly

one element in each orbit, then Σ is a cross section ofWm , and the

Frobenius map allows us to recover AFTn (P) from the values of P
on Σ. We denote {

P(σ ) : σ ∈ Σ
}

the Frobenius additive Fourier transform (FAFT) of polynomial P . In
the rest of this section, we will show how to generalize the theory

of Frobenius FFT to additive FFT by explicitly constructing the cross

sections.

3.1 Frobenius maps and Cantor bases
We recall that the Frobenius map ϕ on F

2
d generates the (cyclic)

Galois group Gal(F
2
d /F2) of order [F2d : F2] = d , which naturally

acts on F
2
d by taking α ∈ F

2
d to ϕ(α). The orbit of α under this

action is thus

Orbα =
{
σ (α) : σ ∈ Gal(F

2
d /F2)

}
.

Lemma 3.1. Given a Cantor basisvd , ∀k > 0, ∀w ∈Wk+1 \Wk ,��
Orbw

�� = 2
⌊lgk ⌋+1.

Proof. Let ℓ = ⌊lgk⌋. In this case, 2
ℓ ≤ k < 2

ℓ+1
, and vk =

uℓu
jℓ−1
ℓ−1
· · ·u

j0
0
, ji ∈ {0, 1}∀0 ≤ i < ℓ. Sincew ∈Wk+1 \Wk , we can

write

w = vk + α = uℓu
jℓ−1
ℓ−1
· · ·u

j0
0
+ α

for some α ∈ Wk . Obviously the smallest field containing w is

F
2
2
ℓ+1 = F2(u0,u1, . . . ,uℓ), so the stabilizer ofw is the subgroup of

Gal(F
2
d /F2) generated by ϕ2

ℓ+1
. It follows immediately from the

orbit-stabilizer theorem and Lagrange’s theorem that��
Orbw

�� = 2
⌊lgk ⌋+1.

□

Consider the field F
2
d with a Cantor basisvd for d a power of

two. From Lemma 2.3, we have ϕ(v0) = v0, and ϕ(vi ) = s(vi )+vi =
vi + vi−1 + α , where α ∈ Wi−1 for i > 0. Based on this, we can

further characterize the orbit ofw ∈Wk+1 \Wk using the following

lemma.

Lemma 3.2. Given a Cantor basis vd , ∀k > 0, consider the orbit
of w ∈ Wk+1 \Wk under the action of Gal(F

2
d /F2). For each i =

1, 2, 4, ..., let ji be in {0, 1}, there is precisely one elementw ′ ∈ Orbw
such thatw ′ = vk + j ′1vk−1 + · · · + j

′
kv0 ∈Wk+1 \Wk , ∀j ′i ∈ {0, 1},

and j ′i = ji for i = 1, 2, 4, . . . , 2 ⌊lgk ⌋ .

Proof. Let ℓ be a power of two. From Lemma 2.1, we have

ϕ◦ℓ(x) = x2
ℓ
= sℓ(x)+x . From Lemma 2.3, we see thatϕ◦ℓ(w)+w =

sℓ(w) ∈ Wk−ℓ+1 \Wk−ℓ . That is, ϕ
◦ℓ(w) + w ∈ vk−ℓ +Wk−ℓ . In

other words, ϕ◦ℓ allows us to flip jℓ , while j1, j2, . . . , jℓ−1 remain

the same. E.g., for ℓ = 1, we see that one ofw and ϕ(w) has j ′
1
= 0

and the other has j ′
1
= 1 for anyw ∈Wk+1 \Wk . Similarly for ℓ = 2,

one of w and ϕ◦2(w) has j ′
2
= 0 and the other has j ′

2
= 1, while

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

266



Frobenius Additive Fast Fourier Transform ISSAC ’18, July 16–19, 2018, New York, NY, USA

bothw and ϕ◦2(w) have the same j ′
1
. The same argument holds for

ϕ(w) and ϕ◦2(ϕ(w)) = ϕ◦3(w). Thusw,ϕ(w),ϕ◦2(w),ϕ◦3(w) cover
all 4 combinations of j1 and j2. Continuing, we see that w and

ϕ◦4(w) have different j ′
4
but the same j ′

1
and j ′

2
. Proceeding thusly,

w,ϕ(w), . . . ,ϕ◦2
⌊lgk⌋+1−1(w) cover all combinations of j ′i ∈ {0, 1},

for i = 1, 2, 4, . . . , 2 ⌊lgk ⌋ . Finally, as |Orbw | = 2
⌊lgk ⌋+1

, we see that

for each such combination, there is precisely one corresponding

element in Orbw combination due to the pigeonhole principle. □

Now we can explicitly construct a cross section. Let Σ0 = {0},
and ∀k > 0, let

Σk =

{
vk−1 + j1vk−2 + · · · + jk−1v0 :

ji = 0 if i is a power of 2,

ji ∈ {0, 1} otherwise.

}
Theorem 3.3. Σk is a cross section ofWk \Wk−1. That is, ∀k > 0,

∀w ∈Wk \Wk−1, there exists exactly one σ ∈ Σk such that ϕ◦j (σ ) =
w for some j.

Proof. First, any two elements of Σk are in different orbits for

any k ; this is a corollary of Lemma 3.2. Next, we know that ∀w ∈
Wk \Wk−1,

��
Orbw

�� = 2
⌊lg (k−1)⌋+1

, and ϕ◦j (w) ∈Wk \Wk−1, ∀j . So
each orbit generated by the element in Σk has the size 2

⌊lg (k−1)⌋+1
,

and 2
⌊lg (k−1)⌋+1 · |Σk | = 2

k−1 = |Wk \Wk−1 |. By the pigeonhole

principle, each element inWk \Wk−1 must be in an orbit generated

by exactly one element in Σk . □

3.2 Frobenius additive Fast Fourier transform
By Theorem 3.3, a cross section ofWm is

Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . ∪ Σm .

Given P(x) ∈ F2[x] with deg P < n represented with novel polyno-

mial basis and Cantor basisvd of field F
2
d where n = 2

m
, instead of

computing AFTn (P) = (P(ω0), P(ω1), . . . , P(ω2
m−1)), we only need

to compute FAFTn (P) = {P(σ ) : σ ∈ Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . ∪ Σm } and
then use Frobenius map ϕ to get the rest.

Due to the structure of the additive FFT, we can simply “truncate”

to those points. In the original additive FFT (Algorithm 2), each

FAFFT calls two FAFFT routines recursively. Those two recursive

calls correspond to evaluating points in α +Wk−1 and α +vk−1 +
Wk−1. We can omit one of the two calls and only compute on

α +Wk−1, so we will not evaluate the points not in the cross section

Σ, as Σ∩(α+vk−1+Wk−1) = ∅. This is howwe arrive at Algorithm 3,

in which we define ρ(l):

ρ(l) =

{
1 if l = 0,

2
⌈lg l ⌉

otherwise.

It is easy to see that FAFFT(m, 1, P(x),vm ) computes {P(x) : x ∈
Σm } because truncation happens when the vm−l−1 component

is zero for all points in Σm , i.e., l is a power of two. To compute

FAFT(P), we call FAFFT(m, 0, P(x), 0).
Figure 1 is a graphical illustration of the FAFFT(5, 0, f , 0) routine,

which computes FAFT32(f ) for f = д0X0(x) + д1X1(x) + д2X2(x) +
. . .+д31X31(x). It consists of five layers, each corresponding to one

level of recursion in the pseudocode. Each grey box is a “butterfly

unit” that performs a multiplication and an addition. A butterfly

FAFFT(k, l , P(x),α) :

input :k ∈ N, l ∈ N,
P(x) = p0X0(x) + p1X1(x) + ... + p2k−1X2

k−1(x)
where pi ∈ F2ρ (l ) ,

α ∈Wk+l \Wk if l > 0 , otherwise α = 0.

output :P(σ )σ ∈Σ where Σ = (Σ0 ∪Σ1 ∪ . . .∪Σk+l ) ∩ (α +Wk ),

if k = 0 then return p0 ;
Decompose P(x) = P0(x) + sk−1(x) · P1(x).
Q0(x) ← P0(x) + sk−1(α) · P1(x).
Q1(x) ← Q0(x) + P1(x).
if l = 0 then

return FAFFT(k − 1, 0,Q0(x),α) ∥
FAFFT(k − 1, 1,Q1(x),vk−1 + α)

else if l is a power of two then
return FAFFT(k − 1, l + 1,Q0(x),α)

else
return FAFFT(k − 1, l + 1,Q0(x),α) ∥

FAFFT(k − 1, l + 1,Q1(x),vk−1 + α)

end
Algorithm 3: Frobenius Additive FFT in novel polynomial basis.

unit has two inputs a,b ∈ F
2
d . For normal butterfly unit with two

output a′,b ′, it performs

a′ ← a + b · sk (α),

b ′ ← a′ + b,

while the truncated one only outputs a′. In the figure, we denote

the sk (α) in each butterfly unit ci, j . Butterflies are also labelled

with the value l coressponding to each recursive calls FAFFT. We

can see that truncated butterflies happen when l is a power of 2.
Initially, the inputs to butterfly units, д0,д1, . . . ,д31, are all in F2.
But as it goes through the layers, the bit size of the input to the

following butterfly unit grows larger, as the multiplicands ci, j may

be in extension fields. For example, after the second layer, the lower

half of the input are in F
2
2 because c3,1 are in (W2 \W1) ⊂ F22 .

Then they go through butterfly unit with c2,2 ∈ (W3 \W2) ⊂ F24
and finally arrive in F

2
4 .

3.3 Complexity Analysis
In this section, we analyze the complexity of FAFFT in Algorithm 3.

Let F (k, l) and FA(k, l) denote the cost of multiplication and addition

to compute FAFFT(k, l , P(x),α) for P ∈ F2[x] with deg P < 2
k
and

α ∈Wk+l \Wk .

First, it is straightforward to verify that for all FAFFT(k ′, l ′, P ′(x),α ′)
calls during the recursion:

• α ′ ∈Wk ′+l ′ \Wk ′ if l
′ > 0 , otherwise α ′ = 0;

• P ′(x) =
∑
p′iXi (x), p

′
i ∈ F2ρ (l ′) ;

• sk−1(α
′) ∈ (Wl ′+1 \Wl ′) ⊂

{
u
lg l ′ + F2l ′ if l ′ is a power of two,

F
2
2
⌈lg l ′⌉ otherwise.

Then we have F (k, l)

≤


F (k − 1, l) + F (k − 1, l + 1) + 2k−1(M(1)) if l = 0,

F (k − 1, l + 1) + 2k−1(M(l)) if l is a power of two,

2 · F (k − 1, l + 1) + 2k−1(M(2 ⌈lg l ⌉ )) otherwise.

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

267



ISSAC ’18, July 16–19, 2018, New York, NY, USA Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang

Figure 1: Illustration of the butterfly network with n = 32.
f (0), f (1) ∈ F2, f (ω2) ∈ F22 , f (ω4), f (ω8), f (ω9) ∈ F24 and
f (ω16), f (ω18) ∈ F28

Theorem 3.4. (multiplication complexity) Given n = 2
m , for

m + l ≤ d , d a power of two, we have

F (m, l) ≤
1

2

n lgn
M(d)

d
ρ(l),

assuming that M (l )
l is increasing in l .

Proof. We prove by induction. Considerm = 1: F (1, l) = M(l) ≤
M (d )
d l . Assume the statement holds for m = k − 1 and for any

l ≤ d −m,

F (m, l) ≤
1

2

2
mm

M(d)

d
ρ(l).

We then check three cases: first,m = k and l = 0:

F (k, l) ≤ F (k − 1, 0) + F (k − 1, 1) + 2k−1 ·M(1)

=
1

2

(k − 1)2k
M(d)

d
+ 2k ·M(1)

≤
1

2

k2k
M(d)

d
.

Second,m = k and l is a power of two:

F (k, l) ≤ F (k − 1, l + 1) + ·2k−1 ·M(l)

= (k − 1)2k
M(d)

d
l + 2k−1 ·M(l)

≤
1

2

(k − 1)2k
M(d)

d
l + 2k−1

M(d)

d
l

=
1

2

k2k
M(d)

d
l .

Finally, l > 0 and is not a power of two:

F (k, l) ≤ 2 · F (k − 1, l + 1) + 2k−1 ·M(2 ⌈lg l ⌉ )

=
1

2

(k − 1)2k
M(d)

d
2
⌈lg l+1⌉ + 2k−1 ·M(2 ⌈lg l ⌉ )

≤
1

2

(k − 1)2k
M(d)

d
2
⌈lg l ⌉ + 2k−1 ·

M(2 ⌈lg l ⌉ )

2
⌈lg l ⌉

2
⌈lg l ⌉

≤
1

2

k2k
M(d)

d
l .

□

For the cost of addition, it can be proven following the same

procedure as above, substitutingM(d) with 2A(d) and noting that

A(d )
d is constant.

Theorem 3.5. (addition complexity) Given n = 2
m , form+ l ≤ d ,

d a power of two, we have

FA(m, l) ≤ n lgn
A(d)

d
ρ(l).

Given P ∈ F2[x] with deg P < n, a power of two, to compute

FAFTn (P), we call FAFFT(lg(n), 0, P , 0). Thus, the cost to compute

FAFTn (P) is 1

2
n lg (n)M (d )d + n lg (n)A(d )d . Comparing with the cost

of additive FFT
1

2
(n lg(n)(M(d)+ 2A(d)), we indeed gain a speed-up

factor of d .

3.4 Inverse Frobenius additive FFT
The inverse Frobenius additive FFT is straightforward because for

the butterfly unit with two output, it is easy to find its inverse.

However, due to the truncation, it is not obvious how to perform

inversion when l is a power of two. Here we show that it is always

invertible. In the Algorithm 3, when l is a power of two, it truncates
and only computes FAFT of Q0(x) = P0(x) + sk−1(α) · P1(x). To be

able to invert, we need to recover P0(x) and P1(x) fromQ0(x). Note
that sk−1(α) ∈ (Wl+1 \Wl ) = vl +Wl because α ∈ Wk+l+1\Wk+l
and Lemma 2.3. Since we use a Cantor basis, c.f. Definition 2.2,

vl = u
lg l when l is a power of two. We can rewrite the equation

from the point of F
2
l [ulg l ][x]. Let sk−1(α) = ulg l + c and c ∈ F2l ,

Q0(x) = R0(x) + R1(x)ulg l = P0(x) + (c + ulg l ) · P1(x),

where R0(x),R1(x) ∈ F2l [x]. Then we have

P0(x) = R0(x) + R1(x) · c,

P1(x) = R1(x).

Thus we can always recover P0(x) and P1(x) from Q(x). The full
inverse Frobenius additive FFT algorithm is shown in Algorithm 4.

It can be shown that the complexity of the inverse FAFFT is also

bounded by
1

2
n lg (n)M (d )+2A(d )d following the analysis in the pre-

vious section.

4 APPLICATION TO F2[x]-MULTIPLICATION
In this section, we will show that FAFFT is competitive both theo-

retically (measured by the number of bit operations involved) and

in practice (measured by actual speeds on modern CPUs) when

applied to multiplying two polynomials in F2[x].

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

268



Frobenius Additive Fast Fourier Transform ISSAC ’18, July 16–19, 2018, New York, NY, USA

IFAFFT(k, l ,A,α) :

input :A = P(σ )σ ∈Σ
where Σ = (Σ0 ∪ Σ1 ∪ . . . ∪ Σk+l ) ∩ (α +Wk ),

α ∈Wk+l \Wk if l > 0 , otherwise α = 0.

output :P(x) = p0X0(x) + p1X1(x) + ... + p2k−1X2
k−1(x)

where pi ∈ F2ρ (l ) .

if k = 0 then return the only element in A ;

if l = 0 then
Divide the set A to A0, A1

Q0(x) ← IFAFFT(k − 1, 0,A0,α)
Q1(x) ← IFAFFT(k − 1, 1,A1,vk−1 + α)
P1(x) ← (Q0(x) +Q1(x))
P0(x) ← Q0(x) + sk−1(α) · P1(x)

else if l is a power of 2 then
Q(x) ←IFAFFT(k − 1, l + 1,A,α)
Let sk−1(α) = c + ulg(l )
Let Q(x) = R0(x) + ulg(l ) · R1(x)
P0(x) ← R0(x) + R1(x) · c
P1(x) ← R1(x)

else
Divide the set A to A0, A1

Q0(x) ← IFAFFT(k − 1, l + 1,A0,α)
Q1(x) ← IFAFFT(k − 1, l + 1,A1,vk−1 + α)
P1(x) ← Q0(x) +Q1(x)
P0(x) ← Q0(x) + sk−1(α) · P1(x)

end
return P0(x) + P1(x) · sk−1(x)
Algorithm 4: Inverse FAFFT in novel polynomial basis

4.1 New speed records in terms of
bit-operation count

One of our motivating applications is to multiply binary polyno-

mials, which finds ample application in, e.g., implementation of

elliptic-curve cryptography (ECC). For example, Bernstein pointed

out that ECC over a binary field can be faster than ECC over a

prime field at the same security level [1]. Thus, multiplications

of binary polynomials of some specific sizes are of interest to the

cryptographic engineering community [1, 6]. The previous speed

records in terms of bit-operation count for multiplying two binary

polynomials of small degrees, say, < 1000, were set by Bernstein [1]

and Cenk-Hasan [6], both of which are based on Karatsuba-like

algorithms.

With FAFFT and its inverse, we can now efficiently multiply two

polynomials P ,Q ∈ F2[x] without Kronecker segmentation. First,

we apply forward FAFFT on P and Q ; we then pointwise-multiply

the results and apply an inverse FAFFT to get the product PQ . To
further reduce the bit-operation count, we also eliminate some

common subexpressions [17].

Figure 2 shows the comparison against two best results previ-

ously known in the literature: Bernstein set a comprehensive set

of speed records for polynomials of degree up to 1000 [1], whereas

Cenk and Hasan selectively improved some of his results up to

4.5% [6]. Since FAFFTworks with polynomials whose size is a power

of two, we apply FAFFT to multiplying polynomials of size 256,

512, and 1024; such a small disadvantage apparently did not stop

FAFFT from setting new speed records. Specifically, when compared

0

2
0
0

4
0
0

6
0
0

8
0
0

1
,0
0
0

0

1

2

3

·105

(709,159267)

(414,68484)

(231,29124)

(1024,158226)

(512,68446)

(512,98018)

(256,29005)

Polynomial size

B
i
t
-
o
p
e
r
a
t
i
o
n
c
o
u
n
t

Bernstein [1]

Cenk-Hasan [6]

This work

Figure 2: Complexity for multiplication in F2[x]

against Karatsuba-like algorithms for multiplying polynomials of

size 256, 512, and 1000, FAFFT is faster by 19.1%, 29.7%, and 41.1%,

respectively. To the best of our knowledge, it is the first time FFT-

based method outperforms Karatsuba-like algorithm in such low

degree in terms of bit-operation count.

We also try to push the limit by applying FAFFT to multiplying

polynomials of size as small as 128, a degree way too small for FFT-

based techniques to prevail according to the traditional wisdom.

However, we are able to achieve a bit-operation count of 11,556

using FAFFT, which is only slightly worse than 11,466 achieved

by Cenk and Hasan [6]. We note that this would not be possible

without Frobenius FFT. Using Kronecker segmentation and a highly

optimized implementation of additive FFT by [2], one would achieve

a bit-operation count of 22,292. As expected, we gain a factor of

two speed-up here using FAFFT.

4.2 New speed records on modern CPUs
Now we will show that FAFFT is also competitive in practice when

applied to multiplying two polynomials in F2[x]. On modern CPUs,

we can use the carryless multiplication instruction PCLMULQDQ for

achieving further speed-up [14]. Similar to van der Hoeven, Larrieu,

and Lecerf [19, Prop. 1], here we need a bijection for multiplying

polynomials in F2[x]<2m−1 .

Proposition 4.1. Let P ∈ F2[x]<2m , 7 < m ≤ 71, 57 +m <
k ≤ 128 and S = vk−1 +Wm−7 where vk−1 andWm−7 are defined
as in Section 2 w.r.t. v128, a Cantor basis for F

2
128 . Then the map

P ∈ F2[x]<2m 7→ (P(w))w ∈S ∈ F
2
m−7

2
128

is a bijection.

Proof. ∀w ∈ S , ��Orbw �� = 128 (Lemma 3.1). Every two points in

S are in different orbits (Lemma 3.2). Let OrbS := ∪w ∈SOrbw . Then��
OrbS

�� = 128 ·
��S �� = 2

m
. Since (P(w))w ∈S determines (P(w))w ∈OrbS

via the Frobenius map, and the latter is P on 2
m

points, (P(w))w ∈S

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

269



ISSAC ’18, July 16–19, 2018, New York, NY, USA Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-Yin Yang

Table 1: Timing of multiplications in F2[x]<n on Intel Skylake
Xeon E3-1275 v5 @ 3.60GHz (10−3 sec.)

log
2
(n/64) 16 17 18 19 20 21 22 23

This work, F
2
128 9 20 41 88 192 418 889 1865

FDFT [19]
c

11 24 56 127 239 574 958 2465

ADFT[9] 16 34 74 175 382 817 1734 3666

F
2
60 [12]

b
22 51 116 217 533 885 2286 5301

gf2x [3]
a

23 51 111 250 507 1182 2614 6195

a
Version 1.2. Available from http://gf2x.gforge.inria.fr/

b
SVN r10663. Available from svn://scm.gforge.inria.fr/svn/mmx

c
SVN r10681. Available from svn://scm.gforge.inria.fr/svn/mmx

determines P . So P ∈ F2[x]<2m 7→ (P(w))w ∈S ∈ F
2
m−7

2
128

is bijective.

□

To compute (P(w))w ∈S , we perform AFFT(m, P(x),vk−1) =
(P(w))w ∈vk−1+Wm . As we only need the points S = vk−1 +Wm−7,

we further truncate the first 7 butterfly layers of the AFFT to only

evaluate points in S . The composition of these 7 layers can be

written as matrix-vector products over F2. The multiplications in

subsequent layers are all in F
2
128 . This lets us use PCLMULQDQ to

multiply in F
2
128 (analogously to [19]).

We report our benchmark on Intel Skylake architecture in Ta-

ble 1. [3], [12] and [9] use Kronecker segmentation with triadic

variants of Schönhage-Strassen, DFT over F
2
60 and additive FFT

over F
2
256 , respectively. Instead of Kronecker segmentation, [19]

applied Frobenius FFT to improve [12] by a factor of 2 and achieved

the best result. We use the variant of Frobenius additive FFT to

improve the result of [9] by about a factor of 2 and outperform [19].

Thus, for polynomial of size n where log
2
(n/64) = 16, 17, . . . , 23,

our implementation outperforms the previous best results in the

literature.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Tung Chou for his valuable sug-

gestions to improve the article, as well as the anonymous reviewers

for their insightful comments and helpful suggestions. The work

is supported by the Ministry of Science and Technology, Taiwan,

R.O.C. under Grant No. 105-2923-E-001-003-MY3.

REFERENCES
[1] Daniel J. Bernstein. 2009. Batch Binary Edwards. In Advances in Cryptology -

CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings. 317–336. https://doi.org/10.1007/

978-3-642-03356-8_19

[2] Daniel J. Bernstein and Tung Chou. 2014. Faster Binary-Field Multiplication and

Faster Binary-Field MACs. In Selected Areas in Cryptography - SAC 2014 - 21st In-
ternational Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected
Papers (Lecture Notes in Computer Science), Antoine Joux and Amr M. Youssef

(Eds.), Vol. 8781. Springer, 92–111. https://doi.org/10.1007/978-3-319-13051-4_6

[3] Richard P Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann.

2008. Faster Multiplication in GF (2)(x). Lecture Notes in Computer Science 5011
(2008), 153–166.

[4] Michael A. Burr, Chee K. Yap, and Mohab Safey El Din (Eds.). 2017. Proceedings of
the 2017 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC 2017, Kaiserslautern, Germany, July 25-28, 2017. ACM. https://doi.org/10.

1145/3087604

[5] David G. Cantor. 1989. On Arithmetical Algorithms over Finite Fields. J. Comb.
Theory Ser. A 50, 2 (March 1989), 285–300. https://doi.org/10.1016/0097-3165(89)

90020-4

[6] Murat Cenk and M. Anwar Hasan. 2015. Some new results on binary polynomial

multiplication. J. Cryptographic Engineering 5, 4 (2015), 289–303. https://doi.org/

10.1007/s13389-015-0101-6

[7] Murat Cenk,M. AnwarHasan, and ChristopheNègre. 2014. Efficient Subquadratic

Space Complexity Binary Polynomial Multipliers Based on Block Recombination.

IEEE Trans. Computers 63, 9 (2014), 2273–2287. https://doi.org/10.1109/TC.2013.

105

[8] Murat Cenk, Christophe Nègre, and M. Anwar Hasan. 2013. Improved Three-Way

Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products. IEEE
Trans. Computers 62, 7 (2013), 1345–1361. https://doi.org/10.1109/TC.2012.96

[9] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-

Yin Yang. 2017. Faster Multiplication for Long Binary Polynomials. CoRR
abs/1708.09746 (2017). arXiv:1708.09746 http://arxiv.org/abs/1708.09746

[10] Haining Fan and M. Anwar Hasan. 2015. A Survey of Some Recent Bit-parallel

GF ( 2 N ) Multipliers. Finite Fields Appl. 32, C (March 2015), 5–43. https:

//doi.org/10.1016/j.ffa.2014.10.008

[11] Shuhong Gao and Todd Mateer. 2010. Additive Fast Fourier Transforms over

Finite Fields. IEEE Trans. Inf. Theor. 56, 12 (Dec. 2010), 6265–6272. https://doi.

org/10.1109/TIT.2010.2079016

[12] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. 2016. Fast Polynomial

Multiplication over F
2
60 . In Proceedings of the ACM on International Symposium

on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo, ON, Canada, July
19-22, 2016, Sergei A. Abramov, Eugene V. Zima, and Xiao-Shan Gao (Eds.). ACM,

255–262. https://doi.org/10.1145/2930889.2930920

[13] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. 2017. Faster Polynomial

Multiplication over Finite Fields. J. ACM 63, 6 (2017), 52:1–52:23. https://doi.

org/10.1145/3005344

[14] Intel Corp. 2008. Carry-Less Multiplication and Its Usage for Com-

puting The GCM Mode. http://http://software.intel.com/en-us/articles/

carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode.

[15] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. 2014. Novel Polynomial

Basis and Its Application to Reed-Solomon Erasure Codes. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014. IEEE Computer Society, 316–325. https://doi.org/10.1109/

FOCS.2014.41

[16] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. 2016. FFTAlgorithm

for Binary Extension Finite Fields and Its Application to Reed–Solomon Codes.

IEEE Trans. Inf. Theor. 62, 10 (Oct. 2016), 5343–5358. https://doi.org/10.1109/TIT.

2016.2600417

[17] C. Paar. 1997. Optimized arithmetic for Reed-Solomon encoders. In Proceedings
of IEEE International Symposium on Information Theory. 250–. https://doi.org/10.

1109/ISIT.1997.613165

[18] Joris van der Hoeven and Robin Larrieu. 2017. The Frobenius FFT, See [4],

437–444. https://doi.org/10.1145/3087604.3087633

[19] Joris van derHoeven, Robin Larrieu, andGrégoire Lecerf. 2017. Implementing Fast

Carryless Multiplication. In Mathematical Aspects of Computer and Information
Sciences - 7th International Conference, MACIS 2017, Vienna, Austria, November
15-17, 2017, Proceedings (Lecture Notes in Computer Science), Johannes Blömer,

Ilias S. Kotsireas, Temur Kutsia, and Dimitris E. Simos (Eds.), Vol. 10693. Springer,

121–136. https://doi.org/10.1007/978-3-319-72453-9_9

[20] Joris van der Hoeven and Grégoire Lecerf. 2017. Composition Modulo Powers of

Polynomials, See [4], 445–452. https://doi.org/10.1145/3087604.3087634

[21] Joachim von zur Gathen and Jamshid Shokrollahi. 2005. Efficient FPGA-Based

Karatsuba Multipliers for Polynomials over F
2
. In Selected Areas in Cryptography,

12th International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005,
Revised Selected Papers (Lecture Notes in Computer Science), Bart Preneel and
Stafford E. Tavares (Eds.), Vol. 3897. Springer, 359–369. https://doi.org/10.1007/

11693383_25

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

270

http://gf2x.gforge.inria.fr/
svn://scm.gforge.inria.fr/svn/mmx
svn://scm.gforge.inria.fr/svn/mmx
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-319-13051-4_6
https://doi.org/10.1145/3087604
https://doi.org/10.1145/3087604
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1007/s13389-015-0101-6
https://doi.org/10.1007/s13389-015-0101-6
https://doi.org/10.1109/TC.2013.105
https://doi.org/10.1109/TC.2013.105
https://doi.org/10.1109/TC.2012.96
http://arxiv.org/abs/1708.09746
http://arxiv.org/abs/1708.09746
https://doi.org/10.1016/j.ffa.2014.10.008
https://doi.org/10.1016/j.ffa.2014.10.008
https://doi.org/10.1109/TIT.2010.2079016
https://doi.org/10.1109/TIT.2010.2079016
https://doi.org/10.1145/2930889.2930920
https://doi.org/10.1145/3005344
https://doi.org/10.1145/3005344
http://http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode
http://http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1109/TIT.2016.2600417
https://doi.org/10.1109/TIT.2016.2600417
https://doi.org/10.1109/ISIT.1997.613165
https://doi.org/10.1109/ISIT.1997.613165
https://doi.org/10.1145/3087604.3087633
https://doi.org/10.1007/978-3-319-72453-9_9
https://doi.org/10.1145/3087604.3087634
https://doi.org/10.1007/11693383_25
https://doi.org/10.1007/11693383_25

	Abstract
	1 Introduction
	2 Review of additive FFT
	2.1 Cantor's construction
	2.2 Cantor bases
	2.3 Additive FFT on subgroups of F22r

	3 Frobenius Additive Fourier Transform
	3.1 Frobenius maps and Cantor bases
	3.2 Frobenius additive Fast Fourier transform
	3.3 Complexity Analysis
	3.4 Inverse Frobenius additive FFT

	4 Application to F2 [x]-multiplication
	4.1 New speed records in terms of bit-operation count
	4.2 New speed records on modern CPUs

	Acknowledgments
	References



