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Abstract

A fundamental problem in computational algebraic geometry is
the computation of the resultant. A central question is when and
how to compute it as the determinant of a matrix. whose elements
are the coefficients of the input polynomials up-to sign. This prob-
lem is well understood for unmixed multihomogeneous systems, that
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is for systems consisting of multihomogeneous polynomials with the
same support. However, little is known for mixed systems, that is for
systems consisting of polynomials with different supports.

We consider the computation of the multihomogeneous resultant
of bilinear systems involving two different supports. We present a
constructive approach that expresses the resultant as the exact de-
terminant of a Koszul resultant matrix, that is a matrix constructed
from maps in the Koszul complex. We exploit the resultant matrix to
propose an algorithm to solve such systems. In the process we extend
the classical eigenvalues and eigenvectors criterion to a more general
setting. Our extension of the eigenvalues criterion applies to a general
class of matrices, including the Sylvester-type and the Koszul-type
ones.

Keywords: Resultant; Sparse Resultant; Determinantal formula; Bilinear
system; Mixed Multihomogeneous system; Polynomial solving

1 Introduction

The resultant is a central object in elimination theory and computational
algebraic geometry. We use it to decide when an overdetermined polynomial
system has a solution and to solve well-defined (square) systems. Moreover,
it is one of the few tools that take into account the sparsity of supports of
the polynomials.

Usually, we compute the resultant as a quotient of determinants of two
matrices [Mac02, Jou97, DD01, D’A02]. If we can compute the resultant as
a determinant of only one matrix whose non-zero entries are forms evaluated
at the coefficients of the input polynomials, then we have a determinantal
formula. Among these cases, the best we can hope for is to have linear forms.
In general, determinantal formulas do not exist and it is an open problem to
decide when they do.

The matrices appearing in the computation of resultants have a strong
structure and we can classify them according to it. For a system (f0, . . . , fn),
a Sylvester-type formula is a matrix that represents a map (g0, . . . , gn) 7→∑

i gi fi. It extends the classical Sylvester matrix and it corresponds to the
last map of the Koszul complex of (f0, . . . , fn). Another kind of formula is
the Koszul-type formula that involves the other maps of the Koszul com-
plex. We call the matrices related to this formula Koszul resultant matri-

2



ces [MT17, BMT17]. For both formulas, the elements of the matrices are
linear polynomials in the coefficients of (f0, . . . , fn). Other important resul-
tant matrices include Bézout- and Dixon-type; we refer to [EM99] and ref-
erences therein for details. We consider Koszul-type determinantal formulas
for mixed multihomogeneous bilinear systems with two supports.

A well-known tool to derive determinantal formulas [WZ94, DE03, EM12,
EMT16, MT17, BMT17] is the Weyman complex [Wey94], a generalization
of the Koszul complex. For an introduction we refer to [Wey03, Sec. 9.2] and
[GKZ08, Sec. 2.5.C, Sec. 3.4.E]. We follow this approach.

For unmixed multihomogeneous systems, that is systems where all the
polynomial share the same support, determinantal formulas are well studied,
e.g., [SZ94, WZ94, KS97, CK00, DD01, Wey03, DE03]. On the other hand,
when we consider polynomials with different supports, that is mixed systems,
little is known about determinantal formulas; with the exception of scaled
multihomogeneous systems [EM12], that is when the supports are scaled
copies of one of them, and the bivariate tensor-product case [MT17, BMT17].

The resultant is also a tool to solve 0-dimensional square polynomial
systems (f1, . . . , fn). There are different variants, for example by hiding a
variable, or using the u-resultant; we refer to [CLO06, Chp. 3] for a general
introduction. When a Sylvester-type formula is available, we can use the
corresponding resultant matrix to obtain the matrix of the multiplication
map of a polynomial f0 in K[x]/〈f1, . . . , fn〉. Then, we can solve the system
by computing the eigenvalues and eigenvectors of the latter matrix, e.g.,
[AS88, Emi96]. The eigenvalues correspond to the evaluation of f0 at every
zero of the system. From the eigenvectors we can recover the coordinates of
the zeros. To our knowledge similar techniques involving matrices coming
from Koszul-type formulas do not exist up to now.

We consider mixed bilinear polynomial systems. On the one hand, this is
simplest case of mixed multihomogeneous systems where no resultant formula
was known. On the other hand, bilinear, and their generalization multilinear,
polynomial systems are common in applications, for example in cryptography
[FLDVP08, Jou14] and game theory [EV14]. We refer to [FSEDS11], see also
[Spa12], for computing the roots of unmixed multilinear systems by means of
Gröbner bases, and to [EMT16] by using resultants. We refer to [BFT18] for
a Gröbner bases approach to solve square mixed multihomogeneous systems.
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Our contribution We introduce a new algorithm to solve square mixed
multihomogeneous systems consisting of bilinear polynomials with two differ-
ent supports. It relies on eigenvalues and eigenvectors computations. Follow-
ing classic resultant techniques we add a polynomial, f0, to make the system
overdetermined. The polynomial f0 must be trilinear, as this is simplest one
that can separate the roots. Then, we introduce a determinantal formula
for the resultant of this overdetermined system. This is the first determi-
nantal formula for a mixed multilinear polynomial system. Using Weyman’s
complex, we derive a Koszul-type formula and compute the resultant as the
determinant of a Koszul resultant matrix.

We present a general extension of the eigenvalue criterion that works for
a general class of formulas (see Def. 4.1), which include the Koszul-type and
Sylvester-type formulas as special cases. We consider a square matrix M
whose determinant is a multiple of the resultant of a system (f0, . . . , fn). If

there is a monomial xσ in f0 such that we can partition M as
[M1,1 M1,2

M2,1 M2,2

]

where M1,1 is invertible, the coefficient of the monomial xσ in f0 appears
solely in the diagonal ofM2,2 and this diagonal contains only this coefficient,

then the evaluations of f0(x)
xσ at the solutions of (f1, . . . , fn), that is {

f0(x)
xσ |x=α :

(∀i > 0)fi(α) = 0,xσ|x=α 6= 0}, are eigenvalues of the Schur complement of
M2,2, that is M2,2 −M2,1 ·M

−1
1,1 ·M1,2.

We extend the eigenvector criteria for these mixed bilinear systems. When
M is our Koszul resultant matrix, we show how to recover the coordinates of
the solutions from the eigenvectors of the Schur complement of M2,2. This
approach works for systems whose solutions have no multiplicities.

Algorithm 1 summarizes our strategy to solve square 0-dimensional 2-
bilinear systems whose solutions have no multiplicities.

Future work. Weyman complex leads to determinantal formulas for mixed
multihomogeneous systems. A possible extension is to classify all the pos-
sible determinantal formulas for mixed multihomogeneous systems of this
construction, similarly to [WZ94]. The structure of the Koszul resultant
matrix could lead to more efficient algorithms to perform linear algebra
with these matrices, and hence to solve faster, theoretically and practically,
square mixed multihomogeneous systems. Finally, our eigenvector criterion
should be extensible to any Koszul resultant matrix. This approach might
be adapted to recover the coordinates of the solutions with multiplicities.
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Algorithm 1 Solve2Bilinear((f̄1, . . . , f̄n))

Input: (f̄1, . . . , f̄k) is a square 2-bilinear
system such that VP(f̄1, . . . , f̄k) is
finite and has no multiplicities.

1: A← Random linear change of coordinates preserving the structure.
2: (f1, . . . , fn)← (f̄1 ◦ A, . . . , f̄n ◦ A). (Thm. 4.7)
3: f0 ← Random trilinear polynomial in S(1, 1, 1).

4:
[M1,1 M1,2

M2,1 M2,2

]
←

{
Matrix corresponding to δ1((f0, . . . , fn),m), split wrt
the monomial wθ. (Def. 4.1)

5:
{(

f0
wθ (α), v̄α

)}
α
←

{
Set of pairs Eigenvalue-Eigenvector of the Schur
complement of M2,2. (Thm. 4.2)

6: for all
(

f0
wθ (α), v̄α

)
∈
{(

f0
wθ (α), v̄α

)}
α
do

7:
Extract the coordinates αx, αy from ρα(λ̂α) by recovering it

from
[
M−1

1,1 ·M2,1

I

]
· v̄. (Thm. 4.13)

8:
Let αz ∈ P

nz be the unique solution to the linear system given by
{f1(αx, αy, z) = 0, . . . , fn(αx, αy, z) = 0}, over K[z].

9: Recover the solution of the system (f̄1, . . . , f̄n), as A
(
(αx, αy, αz)

)
.

10: end for

Paper organization In Sec. 2 we introduce notation and the resultant
of mixed multihomogeneous systems. In Sec. 3, we present the Weyman
complex in our setting and we prove the existence of a Koszul-type formula.
Then, in Sec. 4, we present algorithms for solving 2-bilinear systems; Sec. 4.1
extends the eigenvalue criterion to a general class of matrices and Sec. 4.2
studies the eigenvectors to recover the coordinates of the solutions. Finally,
in Sec. 5, we compare the size of our matrix with the experimental size of
the matrices in Gröbner basis computation.

2 Preliminaries

Consider nx, ny, nz ∈ N and let P := P
nx × P

ny × P
nz be a multiprojec-

tive space over an algebraic closed field K of characteristic 0. Consider
x := {x0, . . . , xnx

}, y := {y0, . . . , yny
}, z := {z0, . . . , znz

} and let Sx(dx) :=
K[x]dx , Sy(dy) := K[y]dy , and Sz(dz) := K[z]dz be the spaces of homo-
geneous polynomials in variables x, y and z and degrees dx, dy and dz,
respectively. Let S(dx, dy, dz) := Sx(dx) ⊗ Sy(dy) ⊗ Sz(dz) be the multi-
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homogeneous polynomials in x, y, and z of degrees dx, dy, and dz, re-
spectively. We say that the polynomials in S(dx, dy, dz) have multidegree
d := (dx, dy, dz) ∈ N

3
0. To avoid the repetition of the various definitions for

x, y, and z, we consider t ∈ {x, y, z}. The dual space of St(dt) is St(dt)
∗.

For σt ∈ N
nt+1
0 , we define tσt :=

∏nt

i=0 t
σt,i

i . Then A(dt) := {σt : t
σt ∈ St(dt)}

is the set of the exponents of all the monomials of degree dt in t and
A(d) := A(dx)×A(dy)×A(dz) is the set of all the exponents of the monomi-
als of multidegree d. If σ = (σx, σy, σz) ∈ A(d), then wσ := xσxyσyzσz . Let
n := nx + ny + nz. For multidegrees d = (d0, . . . ,dn) ∈ (N3

0)
n+1, we consider

square multihomogeneous polynomial system

f := (f1, . . . , fn) ∈ S(d1)× · · · × S(dn) . (1)

Let VP(f ) be the set of solutions of f over P. The multihomogeneous Bézout
bound (MHB) [VdW78] bounds the number of isolated solutions of f over
P [Ber75, Kus76, Kho78]. The bound is attained for any generic square
system f . It is the mixed volume of the polytopes A(d1), . . . ,A(dn) [CLO06,
Chp. 7] and appears as the coefficient of the monomial

∏
t∈{x,y,z}X

nt

t in∏n

j=1

∑
t∈{x,y,z} dj,tXt [MS87].

In the sequel we consider overdetermined systems which we construct by
adding an f0 ∈ S(d0) to f , that is,

f0 := (f0, f1, . . . , fn) ∈ S(d0)× · · · × S(dn) . (2)

Typically, we will consider d0 = (1, 1, 1), as we would like f0 to be as simple
as possible while still depending on all the variables.

2.1 Multihomogeneous sparse resultant

The multihomogeneous sparse resultant of f0 is a polynomial in the co-
efficients of the polynomials in f0, which vanishes if and only if the sys-
tem has a solution over P. Following [CLO06], for fixed d0 . . .dn ∈ N

3
0,

we introduce a set of variables ui := {ui,σ}σ∈A(di), for 0 ≤ i ≤ n, and
u := {u0, . . . ,un}. Given P ∈ K[u], we let P (f0) denote the value ob-
tained by replacing each variable ui,σ with the coefficient of the mono-
mial wσ in the polynomial fi of f0. In this way we obtain polynomi-
als over the coefficients of a polynomial system. The “universal” system
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Fd0,...,dn
∈ K[u0][x,y, z]× · · · ×K[un][x,y, z] is

Fd0,...,dn
:=

( ∑

σ∈A(d0)

u0,σw
σ, . . . ,

∑

σ∈A(dn)

un,σw
σ
)
. (3)

Here the variables of u parametrize the systems described by polynomials in
S(d0)× · · · × S(dn) over K

#A(d0) × · · · ×K
#A(dn).

Consider the set of all tuples of n + 1 multihomogeneous polynomials
together with their common solutions over P, {(f0, . . . , fn, α) ∈ S(d0)×· · ·×
S(dn) × P : (∀0 ≤ i ≤ n) fi(α) = 0}. The projection of this set on S(d0)×
· · ·×S(dn) is the set of overdetermined systems with common solutions in P,
{(f0, . . . , fn) ∈ S(d0)× · · · × S(dn) : VP(f0, . . . , fn) 6= ∅}. By the Projective
Extension Theorem [CLO92, Chp. 8 Sec. 5], this projection is a closed set
under the Zariski topology and it forms an irreducible hypersurface over the
vector space S(d0)×· · ·×S(dn) [GKZ08, Chp. 8]. More formally, there is an
irreducible polynomial ResP(d0, . . . ,dn) ∈ Z[u] such that for all the systems
f0 ∈ S(d0)×· · ·×S(dn), VP(f0) 6= ∅ if and only if ResP(d0, . . . ,dn)(f0) = 0.
This polynomial is the sparse resultant over P for multihomogeneous systems
of multidegrees (d0, . . . ,dn).

The resultant ResP(d0, . . . ,dn) is itself a multihomogeneous polynomial,
homogeneous in each block of variables ui. For each i, its degree with respect
to ui is MHB(d0, . . . ,di−1,di+1, . . . ,dn).

2.2 2-bilinear systems

A square 2-bilinear system of type (nx, ny, nz ; r, s) is a bilinear system
f := (f1, . . . , fn) with two different supports, namely f1, . . . , fr ∈ S(1, 1, 0)
and fr+1, . . . , fn ∈ S(1, 0, 1), such that n = r + s, ny ≤ r and nz ≤ s. It
holds MHB(f) =

(
r

ny

)(
n−r

nz

)
.

Example 2.1. The following (Eq. (4)) is a square 2-bilinear system of type
(1, 1, 1 ; 2, 1) and has two solutions over P, namely α1 := (1 : 1 ; 1 : 1 ; 1 : 1)
and α2 := (1 :3 ; 1 :2 ; 1 :3).





f1 := 7x0y0 − 8x0y1 − x1y0 + 2x1y1

f2 := −5x0y0 + 7x0y1 − x1y0 − x1y1

f3 := −6x0z0 + 9x0z1 − x1z0 − 2x1z1

. (4)
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Consider the trilinear f0 ∈ S(1, 1, 1). We refer to the systems f0 :=
(f0, f1, . . . , fn) as overdetermined 2-bilinear systems. We can also consider
f0 in S(1, 1, 0), S(1, 0, 1), S(1, 0, 0), S(0, 1, 0) and S(0, 0, 1). We work with
a trilinear f0 because in the other cases it is not always possible to separate
all the solutions of VP(f).

Example 2.2 (Cont.). Consider the overdetermined 2-bilinear system f0 :=
(f0, f1, f2, f3), where

f0 := 3 x0y0z0 − x0y0z1 − 4 x0y1z0 + 2 x0y1z1

+ x1y0z0 + 2 x1y0z1 + 2 x1y1z0 − 2 x1y1z1.

In the following, we use F (2) to denote the “universal” system of overde-
termined 2-bilinear systems (see Sec. 2.1). Similarly, we use Res

(2)
P , for the

resultant of the “universal” system F (2).

Lemma 2.3. Let MHB(f) =
(

r

ny

)(
s

nz

)
. The degree of Res

(2)
P is

µ := (nx + 1) MHB(f)
r · s− ny · nz + r + s + 1

(r − ny + 1)(s− nz + 1)
. (5)

3 Determinantal formulas for 2-bilinear sys-

tems

A complex K• is a sequence of modules {Kv}v∈Z together with homomor-
phisms δv : Kv → Kv−1, such that (∀v ∈ Z) Im(δv) ⊆ Ker(δv−1), i.e.,
δv ◦ δv−1 = 0. We say that the complex is exact if (∀v ∈ Z) Im(δv) =
Ker(δv−1). A complex is bounded when there are two constants a and b
such that for every v < a or b < v, it holds Kv = 0. If all the Kv are finite
dimensional free-modules, then we can choose a basis of them and we can rep-
resent the maps δv using matrices. Under certain assumptions (see [GKZ08,
App. A]) given a bounded complex of finite dimensional free-modules we can
define its determinant. It is the quotient of minors of the matrices of δv and
it is not zero if and only if the complex is exact. If there are only two non-
zero modules of the same dimensions in the complex (that is all the other
modules are the zero module), the determinant of the complex reduces to
the determinant of the (matrix of the) map between these modules.

The Weyman Complex [Wey94, WZ94, Wey03] of a multihomogeneous
system f is a bounded complex that is exact if and only if the sparse resultant
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of the system f does not vanish [Wey03, Thm. 9.1.2]. The determinant of
the complex is a power of the resultant [Wey03, Prop. 9.1.3]. When all the
multidegrees are bigger than zero, the determinant of this complex is a non-
zero constant multiple of the sparse resultant [GKZ08, Thm. 3.4.11]. If the
Weyman Complex only involves two non-zero modules, the resultant of the
corresponding system is the determinant of the map between these modules,
and it has a determinantal formula.

Let f0 := (f0, f1, . . . , fn) be an overdetermined 2-bilinear system. Con-
sider E := K

n+1 and its canonical basis e0, . . . , en. Given a set I ⊂ {0, . . . , n},
we define eI := eI1 ∧ · · · ∧ eI#I

as the exterior product of the elements
eI1, . . . , eI#I

. As the exterior product is antisymmetric, that is ei ∧ ej =
−ej ∧ ei, when we write eI1 ∧ · · · ∧ eI#I

we assume that (∀i) Ii < Ii+1. Let∧
a,b,c

E be the vector space over K generated by {eK∪I∪J : K ⊂ {0}, I ⊂

{1, . . . , r}, J ⊂ {r + 1, . . . , n},#I = a,#J = b,#K = c}.
For a degree vector m ∈ Z

3, the Weyman complex is K•(f0,m). Each
module of the complex is Kv(m) :=

⊕n+1
p=0 Kv,p(m), where

Kv,p(m) :=
⊕

a+b+c=p
0≤a≤r
0≤b≤s
0≤c≤1

Hp−v
P (m− (p, p− b, p− a))⊗

∧

a,b,c

E,

andHq
P(m

′) is the q-th cohomology of P with coefficients in the sheaf O(m′),
and the space of global sections is H0

P(m
′) [Har77]. Note that the terms

Kv,p(m) do not depend on f0 [WZ94, Prop. 2.1]. Since P is a product of
projective spaces, by Künneth’s formula

Hp−v
P

(
m′

x, m
′
y, m

′
z

)
∼=

⊗

t∈{x,y,z}

Hjt
Pnt (m

′
t), (6)

where jx + jy + jz = p − v. By Serre’s duality [Har77, Ch.III,Thm. 5.1] we
have the identifications:

Proposition 3.1. For each t ∈ {x, y, z}, m′
t ∈ Z, it holds

(1) H0
Pnt (m

′
t)
∼= St(m

′
t) if m′

t ≥ 0, (2) Hnt

Pnt (m
′
t)
∼= St(−m

′
t − 1 − nt)

∗ if
m′

t < nt, where “∗” denotes the dual space, and (3) Hq
Pnt (m

′
t)
∼= 0, of all

other values of q and mt.

As a corollary from Eq. (6), for each t ∈ {x, y, z}, jt ∈ {0, nt}. Moreover,
we can identify dual complexes.
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Proposition 3.2 ([Wey03, Thm. 5.1.4]). Let m and m′ be degree vectors
such that m + m′ = (ny + nz, nx + nz − s, nx + ny − r). Then, Kv(m) ∼=
K1−v(m

′)∗ for all v ∈ Z and K•(f0,m) is dual to K•(f0,m
′).

3.1 Degree vectors and determinantal formulas

If K1(m), K0(m) are the only non-zero modules in the Weyman complex
K•(f0,m), then the determinant of the complex is the determinant of the
map, between them, δ1(f0,m). In this case, we have a determinantal formula
for the resultant. In the following, when it is clear from the context, we write
δ1 instead of δ1(f0,m).

Theorem 3.3. Let f0 be a 2-bilinear overdetermined system of type
(nx, ny, nz; r, s), with f0 ∈ S(1, 1, 1). The degree vectors
(1) (ny − 1,−1, nx + ny − r + 1), (2) (nz + 1, nx + nz − s + 1,−1),
(3) (nz − 1, nx + nz − s + 1,−1), (4) (ny + 1,−1, nx + ny − r + 1)

lead to determinantal Weyman complexes for Res
(2)
P (f0).

Observation 3.4. The four degree vectors of Thm. 3.3 provide a single ma-
trix formula. Vector 1 (resp. 2) is obtained from 3 (resp. 4) by exchanging
the variables y and z. By Prop. 3.2, we can see that 1,2 and 3, 4 are dual
pairs, yielding the same matrix transposed.

Proof. We consider only the first degree vector m :=
(ny − 1,−1, nx + ny − r + 1). By Obs.3.4, the other cases are similar.

First, we show that the complex has only two non-zero terms. Since
Kv(m) :=

⊕n+1
p=0 Kv,p(m), and in view of Eq. (6), for each Kv,p(m), we have

to consider sums
∑

t∈{x,y,z} jt = p − v. By Prop. 3.1, if jt 6∈ {0, nt}, then
Kv,p = 0. The remaining cases are summarized in the following table and
their analysis follows.

jx jy jz Case

0 0 0 (1)

nx 0 0 (1)

jx jy jz Case

0 0 nz (1)

nx 0 nz (1)

jx jy jz Case

0 ny nz (2)

nx ny nz (2)

jx jy jz Case

0 ny 0 (3)

nx ny 0 (4)

Case 1: jy = 0. The second term in the tensor product ofKv,p isH
0
P
ny (−1−

a − c) ∼= Sy(−1 − a − c), by Prop. 3.1. As a, c ≥ 0, Sy(−1 − a − c) = 0.
Hence, Kv,p = 0.
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Case 2: jz = nz. The third term in the tensor product of Kv,p is H
nz

Pnz (nx+
ny − r + 1− b− c) ∼= Sz(−(nx + ny + nz) + r− 2 + b+ c)∗, by Prop. 3.1. As
nx + ny + nz = r + s, −(nx + ny + nz) + r − 2 + b+ c = −s− 2 + b+ c < 0
because b ≤ s and c ≤ 1. Hence, Hnz

Pnz (nx + ny − r + 1 − b − c) = 0 and so
Kv,p = 0.
Case 3: jx = 0, jy = ny. As jy = ny, the second term in the tensor
product Kv,p is H

ny

P
ny (−1 − a − c) ∼= Sy(a + c − ny)

∗, by Prop. 3.1. This
module is not zero iff a + c ≥ ny. Consider the first term in the tensor
product, H0

Pnx(ny − 1− p) ∼= Sx(ny − 1− p). If a+ c ≥ ny, as p = a+ b+ c,
then ny − 1 − p ≤ −1 − b < 0. Hence, either H

ny

P
ny (−1 − a − c) = 0 or

H0
Pnx (ny − 1− p) = 0, and so Kv,p = 0.

Case 4: jx = 0, jy = ny, jz = 0. The first term in the tensor productKv,p

isHnx

Pnx (ny−1−p) ∼= Sx(−nx−ny+p) = Sx(v), as p−v = jx+jy+jz = nx+ny.
Hence, Hnx

Pnx (ny− 1− p) 6= 0 iff v ≥ 0. As jz = 0 the third term in the tensor
product of Kv,p is H

0
Pnz (nx+ny− r+1− b− c) ∼= Sz(nx+ny− r+1− b− c).

This term is not zero iff nx + ny − r+ 1 ≥ b+ c. Moreover, as p = a+ b+ c,
v = a + b + c − nx − ny. Then, if H0

Pnz (nx + ny − r + 1 − b − c) 6= 0, then
v ≤ a− r + 1. By definition a ≤ r, so v ≤ 1.

We deduce that all other modules apart from K1,nx+ny+1(m) and
K0,nx+ny

(m) are equal to zero. Hence, by [Wey03, Prop. 9.1.3] the deter-

minant of (a matrix expressing) δ1 is a power 1 of Res
(2)
P (f0).

To conclude, it suffices to show that the exponent is equal to one. Due to
the form δ1 : K1,q+1(m)→ K0,q(m), the elements in a matrix that represents
δ1 have degree (q + 1)− q = 1 as polynomials in K[u] [Wey03, Prop. 5.2.4].
Therefore, the exponent is one iff the degree of the resultant is equal to the
dimension of the matrix of

K•(f0,m) : 0→ K1,nx+ny+1(m)
δ1−→ K0,nx+ny

(m)→ 0 .

We analyze the possible values for (a, b, c) to compute the dimension. Fol-
lowing Case 4, if H0

Pnz (nx +ny − r+1− b− c) 6= 0, then the possible values
for a are v + r − 1 ≤ a ≤ r, for v ∈ {0, 1}. As b = p− a− c, and 0 ≤ c ≤ 1,
we enumerate all the options for (a, b, c) and write our modules as

1The exponent is known to be one for any very ample supports [GKZ08], i.e.
(∀i, j) di,j > 0. However, due to the zero degrees, 2-bilinear supports are ample but
not very ample.
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K1 = K1,nx+ny+1
∼= L1,1 ⊕ L1,2 (7)

=
(
Sx(1)

∗⊗Sy(r − ny)
∗⊗Sz(0)⊗

∧

r,s−nz+1,0

E
)
⊕

(
Sx(1)

∗⊗Sy(r − ny + 1)∗⊗Sz(0)⊗
∧

r,s−nz,1

E
)
.

K0 = K0,nx+ny
∼= L0,1 ⊕ L0,2 ⊕ L0,3 ⊕ L0,4 (8)

=
(
Sx(0)

∗⊗Sy(r − ny − 1)∗⊗Sz(0)⊗
∧

r−1,s−nz+1,0

E
)
⊕

(
Sx(0)

∗⊗Sy(r − ny)
∗⊗Sz(1)⊗

∧

r,s−nz,0

E
)
⊕

(
Sx(0)

∗⊗Sy(r − ny)
∗⊗Sz(0)⊗

∧

r−1,s−nz,1

E
)
⊕

(
Sx(0)

∗⊗Sy(r − ny + 1)∗⊗Sz(1)⊗
∧

r,s−nz−1,1

E
)
.

To compute their dimensions we notice that dim
(∧

a,b,cE
)

=
(
r

a

)(
s

b

)
,

and we recall that dimSt(q) = dimSt(q)
∗ =

(
nt+q

q

)
. The calculation leads to

dim(K1) = dim(K0) = µ, see Eq. (5).

The four degree vectors of Thm. 3.3 are not the only ones that lead to
determinantal formulas. We are interested in them because, experimentally,
there are no Sylvester-type formulas and only these degree vectors lead to
Koszul-type formulas [EMT16, MT17].

3.2 Construction of the map δ1(f0,m)

Following [Wey03, Sec. 5.5], we construct the map δ1(f0,m) : K1(m) →
K0(m). By Obs. 3.4, we only consider m = (ny − 1,−1, nx + ny − r + 1).

In the proof of Thm. 3.3 we saw that the map δ1(F
(2),m) has linear

coefficients in K[u]. As it is a linear map between free modules, it is enough
to define it over a basis of K0 and K1.

First we introduce some notation. Let t ∈ {x, y, z}. For each σt ∈ A(d),
d ∈ N0, consider ∂tσt ∈ St(d)

∗ such that ∂tσt(
∑
cθtt

θt) = cσt
. The set

12



{∂tσt : σt ∈ A(d)} forms a basis of St(d)
∗. The map ⋆t : K[t]×K[t]∗ → K[t]∗,

acts as (tθt ,∂tσt) 7→ tθt ⋆t ∂t
σt , where

tθt ⋆t ∂t
σt =





∂tσt−θt if (∀i, 0 ≤ i ≤ nt) σt,i ≥ θt,i

0 otherwise
. (9)

This map is graded, that is, for each (d, d̄) ∈ Z
2, it maps the elements in

St(d)×St(d̄)
∗ to St(d̄−d)

∗. We will denote the map by “⋆” when the variable
is clear from the context. We define the graded map ψ,

ψ : (K[x]∗ ⊗K[y]∗ ⊗K[z])× (K[x]⊗K[y]⊗K[z])

→ (K[x]∗ ⊗K[y]∗ ⊗K[z]) (10)

ψ(∂xσx ⊗ ∂yσy ⊗ zσz ,xθx ⊗ yθy ⊗ zθz) :=

(xθx ⋆ ∂xσx)⊗ (yθy ⋆ ∂yσy)⊗ (zθz+σz)

For each (dx, dy, dz, d̄x, d̄y, d̄z) ∈ Z
6, it maps (Sx(dx)

∗ ⊗ Sy(dy)
∗⊗ Sz(dz)) ×(

Sx(d̄x)
∗ ⊗ Sy(d̄y)

∗ ⊗ Sz(d̄z)
)
to Sx(dx − d̄x)

∗ ⊗ Sy(dy − d̄y)
∗ ⊗ Sz(dz + d̄z).

As δ1(f0,m) : K1 → K0 is linear and K1
∼= L1,1⊕L1,2, we define the map

over a basis of L1,1 and L1,2. For each ℓ ∈ Sx(1)
∗⊗

Sy(r − ny)
∗⊗Sz(0) and eI ∈

∧
r,s−nz+1,0

E, we consider ℓ⊗ eI ∈ L1,1 and

δ1(f0,m) (ℓ⊗ eI) :=

nx+ny+1∑

i=1

(−1)i−1ψ (ℓ, fIi)⊗ eI\{Ii} ∈ L0,1 ⊕ L0,2.

For each ℓ ∈ Sx(1)
∗⊗Sy(r−ny +1)∗⊗Sz(0) and eJ ∈

∧
r,s−nz,1

E, we consider

ℓ⊗ eJ ∈ L1,2 and

δ1(f0,m) (ℓ⊗ eJ) :=

nx+ny+1∑

i=1

(−1)i−1ψ(ℓ, fJi)⊗ eJ\{Ji} ∈ L0,2 ⊕ L0,3 ⊕ L0,4.

The map δ1(f0,m) corresponds to a Koszul-type formula, involving mul-
tiplication and dual multiplication maps. The matrix that represents this
map is a Koszul resultant matrix [MT17, BMT17].
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Example 3.5 (Cont.). In this case, m = (0,−1, 1). We consider the fol-
lowing monomial basis,

Basis of K1 (Columns)

(A) ∂x0∂y
2
1e{0,1,2}

(B) ∂x1∂y
2
0e{0,1,2}

(C) ∂x1∂y
2
1e{0,1,2}

(D) ∂x0∂y0e{1,2,3}

(E) ∂x0∂y1e{1,2,3}

(F) ∂x1∂y0e{1,2,3}

(G) ∂x1∂y1e{1,2,3}

(H) ∂x0∂y0∂y1e{0,1,2}

(I) ∂x0∂y
2
0e{0,1,2}

(J) ∂x1∂y0∂y1e{0,1,2}

Basis of K0 (Rows)

(I) e{1,3}

(II) e{2,3}

(III) ∂y0e{0,1}

(IV) ∂y1e{0,1}

(V) ∂y0e{0,2}

(VI) ∂y1e{0,2}

(VII) ∂y0z1e{1,2}

(VIII) ∂y1z1e{1,2}

(IX) ∂y0z0e{1,2}

(X) ∂y1z0e{1,2}

The following matrix represents δ1(f0,m) wrt the basis above.

(A) (B) (C) (D) (E) (F ) (G) (H) (I) (J)

(I) 0 0 0 5 −7 1 1 0 0 0

(II) 0 0 0 7 −8 −1 2 0 0 0

(III) 0 −1 0 0 0 0 0 −1 −5 7

(IV ) 7 0 −1 0 0 0 0 −1 0 −5

(V ) 0 1 0 0 0 0 0 −2 −7 8

(V I) 8 0 −2 0 0 0 0 1 0 −7

(V II) 0 2 0 9 0 −2 0 −2 −1 2

(V III) 2 0 −2 0 9 0 −2 2 0 −1

(IX) 0 1 0 −6 0 −1 0 2 3 −4

(X) −4 0 2 0 −6 0 −1 1 0 3
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The 2× 2 splitting illustrated above will be used in the next section.

4 Solving 2-bilinear systems

Consider a 0-dimensional system f1, . . . , fn ∈ K[x]. A common strategy
for solving is to work over K[x]/〈f1, . . . , fn〉, which is a finite a dimensional
vector space over K. We fix a monomial basis, choose f0 ∈ K[x], and com-
pute the matrix that represents the multiplication by f0 in the quotient ring.
Its eigenvalues are the evaluations of f0 at the solutions. For a suitable
basis, from the eigenvectors we can recover the coordinates of all the solu-
tions [EM07, CLO06, Cox05]. To compute these matrices we can use the
Sylvester-type formulas [AS88, Emi96, CLO06]. We extend these techniques
to a general family of matrices, that includes the Koszul resultant matrix
(Sec. 3.2).

4.1 Eigenvalues criteria

In this section we assume fixed multidegrees d0, . . . ,dn.

Definition 4.1 (property Πθ). Given θ ∈ A(d0) and a matrix

M :=
[M1,1 M1,2

M2,1 M2,2

]
∈ K[u]K×K (Sec. 2.1), we say that M has the property

Πθ(d0, . . . ,dn), or simply Πθ, when:

• ResP(d0, . . . ,dn) divides det(M),

• the submatrix M2,2 is square and its diagonal entries equal to u0,θ, and

• the coefficient u0,θ does not appear anywhere in M expect from the
diagonal of M2,2.

For a system f0, Eq. (2), let M(f0) be the specialization of M at f0

(see Sec. 2.1). IfM1,1(f0) is invertible, then the Schur complement ofM2,2(f0)
is M2,2(f0)−M2,1(f0) · (M1,1(f0))

−1 ·M1,2(f0). To simplify, we write (M2,2−
M2,1 ·M

−1
1,1 ·M1,2)(f0).

Theorem 4.2. Consider θ ∈ A(d0) and a matrixM ∈ K[u]K×K such that Πθ

holds (Def. 4.1). Assume a system f0, Eq.(2), such that the specialization
M1,1(f0) is non-singular. Then, for all α ∈ VP(f ) such that wθ(α) 6= 0,
f0
wθ (α) is an eigenvalue of the Schur complement of M2,2(f0).
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Proof. The idea of the proof is as follows: For each α ∈ VP(f), Eq. (1),
we consider a system g0, slightly different from f0, with α as a solution.
We study the matrices M(f0) and M(g0) and from the kernel of M(g0) we
construct an eigenvector for the Schur complement ofM2,2(f0) corresponding
to an eigenvalue equal to f0

wθ (α).

Let α ∈ VP(f ) such that wθ(α) 6= 0. Consider the polynomial g0 :=
f0 −

f0
wθ (α) ·w

θ and a new system g0 := (g0, f1, . . . , fn). The coefficients of
the polynomials g0 and f0 are the same, with exception of the coefficient of
the monomial wθ, so the specializations ui,σ(f0) and ui,σ(g0) (Sec. 2.1) differ
if and only if i = 0 and σ = θ. Hence, as Πθ holds, u0,θ does not appear
in M1,1, M2,1, and M1,2, and M1,1(g0) =M1,1(f0), M1,2(g0) =M1,2(f0), and
M2,1(g0) = M2,1(f0). The specialization of u0,θ is a ring homomorphism, so
u0,θ(g0) = u0,θ(f0) −

f0
wθ (α). By Πθ, u0,θ only appears in the diagonal of

M2,2. Hence, M2,2(g0) =M2,2(f0)−
f0
wθ (α) · I, where I is the identity matrix.

Therefore,

M(g0) =
[
M1,1 M1,2

M2,1 M2,2

]
(f0)−

f0
wθ

(α) ·
[
0 0
0 I

]
.

By construction g0(α) = 0, α ∈ VP(f ), thus α ∈ VP(g0), and so ResP(g0)
vanishes. By property Πθ, det(M) is a multiple of ResP(d0, . . . ,dn), hence
M(g0) is singular. Let v ∈ ker(M(g0)), then

M(g0) · v = 0 ⇐⇒
[
M1,1 M1,2

M2,1 M2,2

]
(f0) · v =

f0
wθ

(α) · [ 0 0
0 I ] · v .

Multiplying this equality by the non-singular matrix related to the Schur

complement of M2,2(f0),
[

I 0
−M2,1·M

−1
1,1 I

]
(f0), we obtain

[
M1,1 M1,2

0 (M2,2−M2,1·M
−1
1,1 ·M1,2)

]
(f0) · v =

f0
wθ

(α) · [ 0 0
0 I ] · v .

Consider the lower part of the matrices in the previous identity,
[
0 M2,2 −M2,1 ·M

−1
1,1 ·M1,2

]
(f0) · v =

f0
wθ

(α) ·
[
0 I

]
· v

and let v̄ :=
[
0 I

]
· v be a truncation of the vector v. Then,

(M2,2 −M2,1 ·M
−1
1,1 ·M1,2)(f0) · v̄ =

f0
wθ

(α) · v̄ .

This equality proves that f0
wθ (α) is an eigenvalue of the Schur complement

of M2,2(f0) with eigenvector v̄.
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Let f ∈ S(d1) × · · · × S(dn), Eq. (1), be a square system. Consider
f0 ∈ S(d0) and θ ∈ A(d0). We say that the rational function f0

wθ separates

the zeros of the system, if for all α ∈ VP(f ), w
θ(α) 6= 0 and for all α, α′ ∈

VP(f1, . . . , fn),
f0
wθ (α) =

f0
wθ (α

′) ⇐⇒ α = α′.

Corollary 4.3. Under the assumptions of Thm. 4.2, if the row dimension
of M2,2 is MHB(d1, . . . ,dn),

f0
wθ separates the zeros of (f1, . . . , fn) and there

are MHB(d1, . . . ,dn) different solutions for this subsystem (over P), then the
Schur complement of M2,2(f0) is diagonizable with eigenvalues f0

wθ (α), for
α ∈ VP(f1, . . . , fn).

Proof. As a consequence of Thm. 4.2, for each α ∈ VP(f ) we have an eigen-
value f0

wθ (α) for the Schur complement ofM2,2(f0). As
f0
wθ separates these ze-

ros, all the eigenvalues are different. Hence, we have as many different eigen-
values as the dimension of the matrix, so the matrix is diagonalizable.

Note that, as the MHB bounds the number of isolated solutions counting
multiplicities, we can not use Thm. 4.3 when we have a square system f such
that its solutions over P have multiplicities.

Lemma 4.4. Under the assumptions of Thm. 4.2, assume that
ResP(f0) 6= 0 and det(M) = q · ResP(d0, . . . ,dn), where q is a non-zero
constant in K. If λ is an eigenvalue of the Schur complement of M2,2(f0),
then there is α ∈ VP(f ) such that λ = f0

wθ (α).

Proof. Consider the system g0 := ((f0 − λ ·w
θ), f1, . . . , fn). As the matrix

of the Schur complement in the proof of 4.2 is invertible, we extend v̄ to
v =

[
M−1

1,1 ·M2,1

I

]
(f0) v̄, and reverse the argument in this proof to show that

M(g0) is singular. As the determinant of M is a non-zero constant multiple
of the resultant, we deduce that ResP(g0) is zero. Let α ∈ VP(g0), then
α ⊂ VP(f ) and (f0 − λ ·w

θ)(α) = 0, equivalently, f0(α) = λ ·wθ(α). As we
assumed that ResP(f0) 6= 0, then f0(α) 6= 0 and so f0

wθ (α) = λ.

Proposition 4.5. Under the assumptions of Thm. 4.2, assume det(M) = q ·
ResP(d0, . . . ,dn), where q is a non-zero constant in K, and that the (row) di-
mension of M2,2 is MHB(d1, . . . ,dn). Then for any system f0 := (f0, . . . , fn),
VP(w

θ, f1, . . . , fn) = ∅ if and only if M1,1(f0) is non-singular.

Proof. Consider the determinant of M . As it is a multiple of the resul-
tant (Sec. 2.1) and the resultant is a multihomogeneous polynomial of de-
gree MHB(d1, . . . ,dn) with respect to u0, we can write det(M) = P (u) ·
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u
MHB(d1,...,dn)
0,θ + Q(u), where P (u) ∈ K[u] does not involve the variables in

u0 and Q(u) ∈ K[u] is a polynomial such that none of its monomials are

multiple of u
MHB(d1,...,dn)
0,θ . As Πθ holds, u0,θ only appears in the diagonal of

M2,2. Consider the expansion by minors of det(M). If the (row) dimen-
sion of M2,2 is MHB(d1, . . . ,dn), then P (u) = ± det(M1,1). The polynomial

P (u) is a constant multiple of the cofactor of u
MHB(d1,...,dn)
0,θ in the resultant

ResP(d0, . . . ,dn).
By construction, Q(u) is a homogeneous polynomial with respect to the

variables u0 of degree MHB(d1, . . . ,dn). As u
MHB(d1,...,dn)
0,θ does not divide any

monomial in Q(u), each monomial involves a variables of u0 different to u0,θ.
Hence, for any system f0, we have Q(wθ, f1, . . . , fn) = 0. By construction,
the polynomial P (u) does not involve any of the variables of u0. Therefore
det(M1,1)(f0) = det(M1,1)(w

θ, f1, . . . , fn). Therefore, for any system f0,
q · ResP(d0, . . . ,dn)(w

θ, f1, . . . , fn) = det(M)(wθ, f1 . . . fn) =
± det(M1,1)(w

θ, f1 . . . fn) = ± det(M1,1)(f0). The determinant of M is a
non-zero constant multiple of the resultant, hence
det(M1,1)(f0) 6= 0 if and only if the system (wθ, f1, . . . , fn) has no solutions
over P, i.e., VP(w

θ, f1, . . . , fn) = ∅.

If the square system f = (f1, . . . , fn) has no solutions at infinity in P,
that is all the coordinates of the solutions are not zero, then the evaluation
of the solutions of f at any monomial in S(d0) is not zero. Hence, for any
wθ ∈ S(d0), VP(w

θ, f1, . . . , fn) = ∅. By Prop. 4.5, M1,1(f0, f1, . . . , fn) is
invertible. To avoid solutions at infinity, in the 0-dimensional multihomoge-
neous case, we perform a generic linear change of coordinates that preserves
the multihomogeneous structure. We state the following corollary without
proof.

Corollary 4.6. Consider a square multihomogeneous system f ∈ S(d1) ×
· · · × S(dn) with finite VP(f). Choose θ ∈ A(d0) and let M be a resultant
matrix for ResP(d0, . . . , dn), such that Πθ holds. Consider any f0 ∈ S(d0).
Then, for a generic linear change of coordinates A, preserving the multiho-
mogeneous structure, the matrix M1,1(f0, f1 ◦ A, . . . , fn ◦ A) is invertible.

We can use Thm. 4.2 to solve the 2-bilinear systems.

Theorem 4.7. Assume a 2-bilinear system f1, . . . , fn of type
(nx, ny, nz; r, t), such that VP(f1, . . . , fn) is finite. Choose θ ∈ A(d0) and con-
sider theM be the matrix of δ1(F

(2),m) (Sec. 3.2) for the “universal” system
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F (2) rearranged with respect to the monomial wθ. Choose f0 ∈ S(1, 1, 1).
Then, after applying a generic linear change of coordinates A, preserving
the multihomogeneous structure, the eigenvalues of the Schur complement of
M2,2(f0, f1◦A, . . . , fn◦A) are the evaluations of

f0
wθ over VP(f1◦A, . . . , fn◦A).

Proof. We only need to check if the Koszul resultant matrix has the property
Πθ. The entries of our matrix are the variables of u up to sign. Note that if
ui,σ ∈ u appears in an entry, then it does not appear in the other entries in the
same row, or column. Hence, we can rearrange the matrix in such a way that
the coefficient u0,θ only appears in the diagonal of M2,2. As the determinant
of the system is a constant multiple of the resultant, the dimension of M2,2

the degree of u0 in the determinant, which equals the MHB.

Example 4.8 (Cont.). In the previous example (Ex. 3.5), we choose θ =

((1, 0), (1, 0), (1, 0)) ∈ A(1, 1, 1) and partition the matrix as
[M1,1 M1,2

M2,1 M2,2

]
. If we

consider the Schur complement, we get
[
5 −2
4 −1

]
. The characteristic polynomial

of this matrix is X2 − 4X + 3, whose roots are f0
wθ (α1) = 3 and f0

wθ (α2) = 1.

4.2 Eigenvectors for 2-bilinear systems

We fix θ ∈ A(d0). We consider the degree vectorm = (ny−1,−1, nx+ny−r+
1) and the determinantal formula M for the map δ1(F

(2),m) (Sec. 3.2). We
study the right eigenvectors of the Schur complement of M2,2 to recover the
coordinates of all the solutions of a 2-bilinear system f of type (nx, ny, nz; r, s)
(Sec. 2.2). We assume that the number of different solutions is #VP(f ) =
MHB(f).

We augment f to f0 by adding a trilinear polynomial f0, which we specify
in the sequel. We study the right eigenvalues of the Schur complement of
M2,2(f0). We reduce the analysis of the kernel of δ1(f0,m) to the analysis of
a map in a strand of the Koszul complex of a system with common solutions.

Let α = (αx, αy, αz) ∈ P, and without loss of generality assume that
αt,0 6= 0, for t ∈ {x, y, z}. First, we study the kernel of δ1(f0,m), when
the overdetermined system f0 has common solutions. We relate this kernel
to the eigenvectors, as we did in the proof of thm. 4.2. For each variable
t ∈ {x, y, z}, consider the dual form

1

t
α(dt) :=

∑

θt∈A(dt)

tθt

tdt0
(αt) ∂t

θ ∈ St(dt)
∗
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for dt ≥ 0. If dt < 0, then we take 1t
α(dt) := 0.

Observation 4.9. For each variable t ∈ {x, y, z}, given a polynomial gt ∈
St(d̄t), such that d̄t ≤ dt, then operator ⋆t, Eq. (9), acts over gt and 1

t
α(dt)

as the evaluation of gt

t
d̄t
0

at α, that is

gt ⋆t 1
t
α(dt) =

gt

td̄t0
(αt) · 1

t
α(dt − d̄t).

To simplify notation, given f ∈ S(dx, dy, dz) and (αx, αy, αz) ∈ P, we
denote by f(αx, αy) ∈ Sz(dz) the partial evaluation of f

x
dx
0 y

dy
0

at x = αx

and y = αy. This evaluation is well-defined because the numerator and
denominator share the same degrees w.r.t. x and y.

Lemma 4.10. Consider d = (dx, dy, dz), d̄ = (d̄x, d̄y, d̄z). Let f ∈ S(d̄) and
gz ∈ Sz(dz). If dx ≥ d̄x and dy ≥ d̄y, then the map ψ (Eq. (10)) acts over
1

x
α(dx)⊗ 1

y
α(dy)⊗ gz and f , as the multiplication of gz and f(αx, αy), that is

ψ(1x
α(dx) ⊗ 1

y
α(dy)⊗ gz, f) = 1

x
α(dx − d̄x)⊗ 1

y
α(dy − d̄y)⊗

(
gz · f(αx, αy)

)
.

Let ω(1) := {I : eI ∈
∧

r,s−nz+1,0

E} and ω(2) := {J : eJ ∈
∧

r,s−nz ,1

E}. Let

ρα : K#ω(1)
×K

#ω(2)
→ L1,1 ⊕ L1,2, Eq. (7),

ρα(λ
(1),λ(2)) :=

∑

I∈ω(1)

λ
(1)
I ·

(
1

x
α(1)⊗ 1

y
α(r − ny)⊗ 1⊗ eI

)

+
∑

J∈ω(2)

λ
(2)
J ·

(
1

x
α(1)⊗ 1

y
α(r − ny + 1)⊗ 1⊗ eJ

)

As #ω(1) +#ω(2) =
(

s+1
s−nz+1

)
, we write ρα : K( s+1

s−nz+1) → K1.

Lemma 4.11. The linear map δ1(f0,m) ◦ ρα : K( s+1
s−nz+1) → K0 is equivalent

to the (s − nz + 1)-th map of the Koszul complex of the following system,
consisting of s+ 1 linear polynomials in z,

fz :=
(
f0(αx, αy), fr+1(αx, αy), . . . , fn(αx, αy)

)
, (11)

restricted to its 0-graded part, i.e. the strand of the Koszul complex such that

its (s− nz + 1)-th module is isomorphic to K
( s+1
s−nz+1).
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If f0 has a solution (αx, αy, αz) ∈ VP(f0), then, αz is a solution of the linear
system fz, that is αz ∈ VP(fz). As fz is an overdetermined system, the
Koszul complex fz is not exact [Lan02, Thm. XXI.4.6].

Lemma 4.12. Let f0 be an overdetermined 2-bilinear system. If α ∈ VP(f0),

then there is a non-zero λ̂α ∈ K
( s+1
s−nz+1) such that δ1(f0,m) ◦ ρα(λ̂α) = 0.

Proof. Following Lem. 4.11, if we compose δ1(f ,m) and ρα, then we obtain
a map which is similar to the 0-graded part of the (s−nz +1)-th map of the
Koszul complex of the s + 1 linear polynomials in z, fz, Eq. (11). As the
linear system fz has a solution αz, at most nz of its polynomials are linearly
independent. Hence, the Koszul complex of fz is isomorphic to a Koszul
complex K(f̃1, . . . , f̃nz

, 0, . . . , 0) of a system of s+1 linear polynomials, where
(s+1−nz) of them are equal to zero [Lan02, Lem. XXI.4.2]. The (s+1−nz)-th

map of K(f̃1, . . . , f̃nz
, 0, . . . , 0) maps enz+1∧. . .∧es+1−nz

to zero. Hence, its 0-

graded part has a non-trivial kernel, and so there is a non-zero λ̂α ∈ K
( s

s−nz+1)

such that δ1(f ,m) ◦ ρα(λ̂α) = 0.

Theorem 4.13. Let f = (f1, . . . , fn) be a square 2-bilinear system of type
(nx, ny, nz; r, s), such that it has

(
r

ny

)
·
(

s

nz

)
different solutions over P. Con-

sider θ ∈ A(1, 1, 1) such that

Res
(2)
P (wθ, f1, . . . , fn) 6= 0

and f0 ∈ S(1, 1, 1) such that f0
wθ separates the elements in VP(f). Let

m := (ny − 1,−1, nx + ny − r+ 1) and M ∈ K[u]K×K related to δ1(F
(2),m)

for the overdetermined 2-bilinear “universal” system (Thm. 3.3). Then, the
Schur complement of M2,2(f0) is diagonalizable, each eigenvalue is f0

wθ (α),
for α ∈ VP(f1, . . . , fn), and we can extend the eigenvector v̄α related to α

to vα :=
[
M−1

1,1 ·M2,1

I

]
(f0) · v̄α such that vα is the element ρα(λ̂α), for some

λ̂α ∈ K
( s+1
s−nz+1).

Proof. By Cor. 4.3, the Schur complex ofM2,2(f0) is diagonalizable and every
eigenvalues is different. For each α ∈ VP(f ), consider the eigenvalue f0

wθ (α),

related eigenvector v̄α, and the system gα := (f0 −
f0
wθ (α), f1, . . . , fn). By

Lem. 4.12, there is a λα ∈ K such that δ1(gα,m) ◦ ρ(λα) = 0. Hence,
there is a wα, representing ρ(λα) = 0, in the kernel of M(gα). Following the
proof of Thm. 4.2, each element in the kernel of the Schur complement of
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M2,2(gα) is related to an eigenvector of the Schur complement of M2,2(f0)
with corresponding eigenvalue f0

wθ (α). As for each eigenvalue we have only
one eigenvector, then the dimension of this kernel is 1. Hence, the truncation
of wα, w̄α := (0|I) · wα, is a multiple of v̄α, where 0 is the zero matrix of
appropriate dimension.

As M1,1(gα) is invertible and M(gα) · wα = 0, it holds that[
M−1

1,1 ·M2,1

I

]
(gα)w̄α = wα. As

[
M−1

1,1 ·M2,1

I

]
(gα) does not involve u0,θ, then

[
M−1

1,1 ·M2,1

I

]
(gα) =

[
M−1

1,1 ·M2,1

I

]
(f0). Therefore, we conclude that, as v̄α is a

multiple of w̄α, then vα =
[
M−1

1,1 ·M2,1

I

]
(f0) · v̄α is a multiple of wα.

In the following example we use Thm. 4.13 to recover α2.

Example 4.14 (Cont.). The eigenvalue of f0
wθ (α2) = 1 is v̄α2 := (1, 2)⊤. By

extending v̄α2, we get

vα2 :=
[
M−1

1,1 ·M2,1

I

]
(f0) ·

(
1
2

)
= (4, 3, 12, 1, 2, 3, 6, 6, 1, 2)⊤

which represents ρα2(1, 1) =

(
∂x(1,0) + 3∂x(0,1)

)
⊗
(
∂y(2,0) + 2∂y(1,1) + 4∂y(0,2)

)
⊗ 1⊗ e{0,1,2}

+
(
∂x(1,0) + 3∂x(0,1)

)
⊗
(
∂y(1,0) + 2∂y(0,1)

)
⊗ 1⊗ e{1,2,3}

Hence, 1

x
α2
(1) =

(
1∂x(1,0) + 3∂x(0,1)

)
, and so α2,x = (1 : 3) ∈ P

1. Also,

1

y
α2
(1) =

(
1∂y(1,0) + 2∂y(0,1)

)
, and then α2,y = (1 : 2) ∈ P

1. We note that

1

y
α2
(2) =

(
1 · 1 · ∂y(2,0) + 1 · 2 · ∂y(1,1) + 2 · 2 · ∂y(0,2)

)
.

We can recover α2,z as the solution of f (α2,x, α2,y, z) = 0,





f1(α2,x, α2,y, z) = 0

f2(α2,x, α2,y, z) = 0

f3(α2,x, α2,y, z) = −9 z0 + 3 z1

Hence, α2,z = (1 : 3) ∈ P
1 and so α2 = (1:3 ; 1 :2 ; 1 :3) ∈ P.
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5 Size of matrices and FGb

As there are no tight bounds for the complexity of Gröbner basis algorithms
for solving 2-bilinear systems, we compare against our algorithms experi-
mentally in Table 1. We consider the state-of-the-art Gröbner basis imple-
mentation, FGb [Fau10]. For each set of parameters, we consider a random
square 2-bilinear system and we dehomogenize the system to compute its
Gröbner basis. We compared the ratio between the size of the maximal ma-
trix appearing in the Gröbner basis computation and the size of our Koszul
resultant matrix, for all the cases n ≤ 15. For reasons of space we only
present some indicative examples for n = 12. The rest of the cases can be
found in http://www-polsys.lip6.fr/~bender/2bilinear/. The results
are promising and motivate the study of the structure Koszul resultant ma-
trix to develop algorithms for faster linear algebra with such matrices.

Table 1: Matrix sizes and ratios of Koszul matrix and FGb.

nx ny nz r s Size δ1 Size FGb Ratio

2 6 4 7 5 630× 630 1769× 1158 5.1 ∼

10 1 1 10 2 352× 352 709× 422 2.4 ∼

5 5 2 9 3 6804× 6804 8941× 8390 1.6 ∼

4 4 4 6 6 4125× 4125 5436× 4262 1.3 ∼

5 5 2 6 6 2106× 2106 2007× 1164 1/1.9 ∼

6 3 3 6 6 7000× 7000 4708× 3801 1/2.7 ∼

6 4 2 5 7 2450× 2450 1773× 1125 1/3 ∼
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Appendix

Proof of Lem. 4.10. Consider f =
∑

σ cσx
σxyσyzσz . As ψ is a bilinear map

and the tensor product is multilinear, it is enough to prove this lemma only
for the monomials xσxyσyzσz ∈ S(d̄).

, ψ(1x
α(dx)⊗ 1

y
α(dy)⊗ g, f) =

∑
σ cσψ(1

x
α(dx)⊗ 1

y
α(dy)⊗ g,

xσxyσyzσz). For that reason, we study the monomial case,

ψ(1x
α(dx)⊗ 1

y
α(dy)⊗ gz,x

σx ⊗ yσy ⊗ zσz) =(
xσx ⋆x 1

x
α(dx)

)
⊗

(
yσy ⋆y 1

y
α(dy)

)
⊗
(
gz · z

σz

)
=

(xσx

xd̄x0
(αx)1

x
α(dx − d̄x)

)
⊗
(yσy

y
d̄y
0

(αy)1
y
α(dy − d̄y)

)
⊗

(
gz · z

σz

)
=

(
1

x
α(dx − d̄x)

)
⊗

(
1

y
α(dy − d̄y)

)
⊗

(
gz ·

xσx

xd̄x0
(αx)

yσy

y
d̄y
0

(αy) · z
σz

)

Then, we have

ψ(1x
α(dx)⊗ 1

y
α(dy)⊗ g, f) =

∑

σ

cσ(1
x
α(dx − d̄x)⊗ 1

y
α(dy − d̄y)⊗ gz ·

xσx

xd̄x0
(αx) ·

yσy

y
d̄y
0

(αy) · z
σz)

1

x
α(dx − d̄x)⊗ 1

y
α(dy − d̄y)⊗ gz ·

∑

σ

cσ
xσx

xd̄x0
(αx) ·

yσy

y
d̄y
0

(αy) · z
σz

1

x
α(dx − d̄x)⊗ 1

y
α(dy − d̄y)⊗ gz · f(αx, αy)

Proof of Lem. 4.11. We split the map ρ as ρ(λ(1),λ(2)) := ρ
(1)
α (λ(1))+ρ

(2)
α (λ(2)),

where ρ
(1)
α : K#ω(1)

→ L1,1, Eq. (7), such that,

ρ(1)α (λ(1)) :=
∑

I∈ω(1)

(
1

x
α(1)⊗ 1

y
α(r − ny)⊗ λ

(1)
I ⊗ eI

)
,

and ρ
(2)
α : K#ω(2)

→ L1,2, Eq. (7), such that

ρ(2)α (λ(2)) :=
∑

J∈ω(2)

(
1

x
α(1)⊗ 1

y
α(r − ny + 1)⊗ λ

(2)
J ⊗ eJ

)
.
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Both maps are injective.
As δ1(f0,m)◦ρα = δ1(f0,m)◦ρ

(1)
α +δ1(f0,m)◦ρ

(2)
α , we study δ1(f0,m)◦

ρ
(1)
α and δ1(f0,m) ◦ ρ

(2)
α separately.

Following the definition of δ1 (Sec. 3.2) we have

δ1(f0,m) ◦ ρ(1)α =
∑

I∈ω(1)

λ
(1)
I δ1(f0,m)

(
1

x
α(1)⊗ 1

y
α(r − ny)⊗ 1⊗ eI

)
=

∑

I∈ω(1)

λ
(1)
I

( r∑

i=1

(−1)i−1ψ(1x
α(1) ⊗ 1

y
α(r − ny)⊗ 1, fIi)⊗ eI\{Ii}+

nx+ny+1∑

i=r+1

(−1)i−1ψ(1x
α(1) ⊗ 1

y
α(r − ny)⊗ 1, fIi)⊗ eI\{Ii}

)
.

By Lem. 4.10 we have,

δ1(f0,m) ◦ ρ(1)α =

∑

I∈ω(1)

λ
(1)
I

( r∑

i=1

(−1)i−1
1

x
α(0)⊗ 1

y
α(r − ny − 1)⊗ fIi(αx, αy)⊗ eI\{Ii}+

nx+ny+1∑

i=r+1

(−1)i−1
1

x
α(0)⊗ 1

y
α(r − ny)⊗ fIi(αx, αy)⊗ eI\{Ii}

)
.

For i ≤ r, fIi ∈ S(1, 1, 0). Hence fIi(αx, αy) = fIi(α) = 0.

δ1(f0,m) ◦ ρ(1)α =

∑

I∈ω(1)

λ
(1)
I

nx+ny+1∑

i=r+1

(−1)i−1
1

x
α(0)⊗ 1

y
α(r − ny)⊗ fIi(αx, αy)⊗ eI\{Ii} =

1

x
α(0)⊗ 1

y
α(r − ny)⊗

( ∑

I∈ω(1)

nx+ny+1∑

i=r+1

(−1)i−1λ
(1)
I fIi(αx, αy)⊗ eI\{Ii}

)
.

We conclude that the image of δ1(f0,m) ◦ ρ
(1)
α belongs to L0,2.

Now consider δ1(f0,m) ◦ ρ
(2)
α . Following a similar procedure, we deduce
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δ1(f0,m) ◦ ρ(2)α =

1

x
α(0)⊗ 1

y
α(r − ny)⊗

∑

I∈ω(2)

(
λ
(2)
I f0(αx, αy)⊗ eI−{0}

)
+

1

x
α(0)⊗ 1

y
α(r − ny − 1)⊗

∑

I∈ω(2)

r+1∑

i=2

(
(−1)i−1λ

(2)
I fIi(αx, αy)⊗ eI−{Ii}

)
+

1

x
α(0)⊗ 1

y
α(r − ny + 1)⊗

∑

I∈ω(2)

nx+ny+1∑

i=r+1

(
(−1)i−1λ

(2)
I fIi(αx, αy)⊗ eI−{Ii}

)

For 1 ≤ i ≤ r + 1, fIi ∈ S(1, 1, 0), so fIi(αx, αy) = fIi(α) = 0. Hence,

δ1(f0,m) ◦ ρ(2)α =

1

x
α(0)⊗ 1

y
α(r − ny)⊗

∑

I∈ω(2)

(
λ
(2)
I f0(αx, αy)⊗ eI−{0}

)
+

1

x
α(0)⊗ 1

y
α(r − ny + 1)⊗

∑

I∈ω(2)

nx+ny+1∑

i=r+1

(
(−1)i−1λ

(2)
I fIi(αx, αy)⊗ eI−{Ii}

)

Therefore, the image of δ1(f0,m) ◦ ρ
(2)
α belongs to L0,2 ⊕ L0,4.

We can rewrite δ1(f0,m) ◦ ρα : K( s+1
s−nz+1) → L0,2 ⊕ L0,4 as

(δ1(f0,m) ◦ ρα)(λ) = 1

x
α(0)⊗ 1

y
α(r − ny)⊗ P1(λ)+

1

x
α(0)⊗ 1

y
α(r − ny + 1)⊗ (−1)rP2(λ)

where

P1(λ) :=
∑

I⊂ω(2)

λIf0(αx, αy)⊗ eI\{0}+

∑

J⊂ω(1)

s−nz+1∑

j=1

(−1)j−1λJfJj(αx, αy)⊗ eJ\{Jj}

P2(λ) :=
∑

I⊂ω(2)

s−nz∑

j=2

(−1)r+j−1λIfIj(αx, αy)⊗ eI\{Ij}
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We observe that the intersection between the image of P1 and −P2 is triv-
ial, because Im(P1) ∈ Sz(1)⊗

∧
r,s−nz,0

E and Im(P2) ∈ Sz(1)⊗
∧

r,s−nz−1,1E.
Hence, P1 + P2 vanishes if and only if P1 and P2 vanish. Hence, δ1 ◦ ρα is
equivalent to the map λ 7→ P1(λ) + P2(λ). Note that, for all I ∈ ω(1) ∪ ω(2),
{1, . . . , r} ⊂ I. Therefore, if we expand this map we conclude that it is
equivalent to the 0-graded part of the (s − nz + 1)-th map of the Koszul
complex of the linear system fz.

P1(λ) + P2(λ) =
∑

J⊂{0,r+1,...,n}
#J=s−nz+1

s−nz+1∑

j=1

(−1)j−1λJfJj(αx, αy) ⊗ e{1...r}∪J\{Jj}
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