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ABSTRACT
This article is an extended abstract of the ISSAC 2018 talk “Polyno-
mial systems arising from discretizing systems of nonlinear differ-
ential equations” by Andrew Sommese.
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1 INTRODUCTION
Systems of differential equations arise from applications throughout
engineering and science. Discretizations of nonlinear differential
equations often lead to systems of polynomials. These discretiza-
tions, which often have thousands of equations in thousands of
variables, are sparse with a fair amount of structure. For example,
finite difference discretizations with related grids resemble each
other, and in particular many of the solutions of a given discretiza-
tion may be associated with solutions of discretizations that are
“finer.” The polynomial systems arising through discretization are a
rich source of significant problems. In this talk, I give an overview
of what I have learned working on these problems.

In §2, which might also be called “Truth in Advertising,” I dis-
cuss issues, which (though for the most part standard for applied
mathematicians) might not be expected by those used to exact
computation and the certainty afforded by proofs.

In §3, I discuss some of the approaches we have used to investi-
gate the polynomial systems that arise in discretizing systems of
differential equations.
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It is worth noting (and satisfying to this algebraic geometer) that
many systems that at first appear “nonalgebraic” can be converted
to (and often first arose from) systems of differential equations with
polynomial discretizations. For example if ex occurs in an equation,
we can replace ex by a new quantity v and add an equation

dv
dx

−v = 0.

This same adjustment applies to the occurrence of many classical
functions (such as Bessel functions), which satisfy “algebraic dif-
ferential equations.” Of course, in practice this is not necessarily a
good fix since it significantly increases the number of variables and
equations in discretizations.

I would like to here thank my many collaborators on this work
and in particular Bei Hu, Wenrui Hao, and Jonathan Hauenstein.

2 RULES OF THE GAME
Relatively few systems of nonlinear differential may be solved ex-
actly, and must instead be solved numerically. As a simple example
(see [17] for more realistic examples), consider computing a func-
tion y(x) on [0, 1] that satisfies

y′′ + p(y) = 0 with y(0) = a and y(1) = b, (1)

where p(y) is a polynomial and a and b are real numbers. For each
positive integer N , choose N +2 points x j = jh where h = 1/(N +1)
and j = 0, . . . ,N + 1. We would like to find numbers y1, . . . ,yN
such that there is a solution y(x) of Eq.1 with yj appropriately close
to y(x j ). One way to approach this is to set y0 = a and yN+1 = b
and try to solve the polynomial system

yi−1 − 2yi + yi+1
h2

+ p(yi ) = 0 j = 1, . . . ,N . (2)

If p(y) = y, then Eq.2 is a system on linear equations with a unique
solution (y1, . . . ,yN ) and for large enough N , there is a constant
B > 0 such that |y(x j ) − yj | ≤ Bh2. Going from a solution of Eq.1
in this case to the conclusion that the solution of Eq.2 satisfies
|y(x j ) − yj | ≤ Bh2 is straightforward. It follows from the fact that
given a function y(x) with enough differentiability on [0, 1], there
is a positive constant C such that for all sufficiently large N and
any x ∈ (0, 1)����y′′(x) − y(x − h) − 2y(x) + y(x + h)

h2

���� ≤ Ch2.

Going the other way takes work (not much in the case of Eq.1
with p(y) linear). For a wide variety of linear ordinary and par-
tial differential equations, i.e., differential equations with y and its
derivatives entering linearly, this sort of procedure works very well.
The elementary text [21] is a good place for general information.
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Most systems of differential equations are not linear. Discretiza-
tion still makes sense and solutions of the original differential equa-
tions are “close” to solutions of the discretized equations, but there
are some serious issues with going from the solutions of the dis-
cretized equations to the approximate solutions of the original
system of differential equations. Let’s enumerate them.

(1) Even for ordinary differential equations, it is often unknown
in the nonlinear case how many solutions exists or even
whether any solution exists.

(2) The discretization for any reasonable number of gridpoints
often has more solutions than estimates of the number of
atoms in the universe. (In fact, more than the square of the
estimates.)

(3) It is not clear which solutions of the discretization are ap-
proximate solutions of the original system of differential
equations.

(4) the discretization is numerically very difficult to work with
when using double precision.

The first point is an ever present issue. As noted in [17], the
system of differential equations in a simple two-dimensional tumor
growth model [11] is more complicated than the classical Hele-
Shaw problem with surface tension (with many works devoted to
it in the literature, i.e., searching Hele-Shaw on the title alone on
MathSciNet returns 517 entries).

For traditional polynomial systems arising in applications areas
such as Theoretical Kinematics, sorting through all solutions for
those that are physically realistic is standard. For nonlinear differen-
tial equations, this is rarely possible. For example, a discretization
of a simple two-dimensional Lotka-Volterra population model with
diffusion, that consists of two partial differential equations ([17,
§1.1] and [18, §9.4]), has is a polynomial system with 2д equations
of total degree 22д with 2д complex solutions. A relatively coarse
20 × 20 grid gives д = 324 for a system with ≈ 3.4 · 1097 solutions.
This rules out finding all solutions as a viable option.

I know no absolutely certain solution for the third point about
whether a solution of the discretization corresponds to a solution
of the system of differential equations. What can be done is to
interpolate to extend the solution on one grid to a finer grid and
then check if the extension is near a solution of the analogous
discretized system for the finer grid.

The last point about needing double precision is key. At typical
nonsingular solutions, condition numbers of Jacobian matrices of
the polynomial system in the range of 109 and larger as the grid
size grows are common, e.g., [12]. If we restrict ourselves to double
precision, the linear algebra is not trustworthy and continuation
sometimes fails. Moreover deciding whether a numerical scheme is
converging (and what the order of convergence is) seems hopeless
with just double precision, e.g., see [19, Table 1]. In our work we
used Bertini [4, 5] which uses adaptive multiprecision algorithms
based on [6? , 7].

3 COMPUTING SOLUTIONS
The goal is to find solutions of the systems of differential equations.
In light of the points raised in the last section, what can be done?

There are several approaches we have followed.

The simplest, which might be labeled the brute force method is
to compute all solutions for a coarse grid and sort through them
for possible solutions to the system of differential equation. We
tried with some success for a system of four ordinary differential
equations arising in a pattern formation problem [9]. In 2011, a
discretization of this system with ten gridpoints took about eleven
hours on a 200 core cluster. Each additional gridpoint add four new
equations and four new variables, with the count of paths which
need to be followed increased by a multiple of five. Software and
hardware have improved since then, but the exponential growth
of the number of solutions as the number of gridpoints increase
means that at most a few more nodes could be added.

In [1] a filtering approach was proposed (see also [2, 3]). To
understand the basic idea in the case of a single ordinary differential
that has a discretization into a system of polynomials Fn (y) = 0 for
n gridpoints (x1, . . . ,xn ) at which we want to compute solutions
(y1, . . . ,yn ) giving approximations of solutions of the differential
equation at gridpoints:

(1) start with a set Sn0 of isolated solutions of Fn0 (y1, . . . ,yn0 ) =
0 for some n0;

(2) construct a homotopyHn0 (y1, . . . ,yn0+1, t) = 0withHn0 (y, 0) =
Fn0+1(y) and

Hn0 (y, 1) =
(

Fn0 (y1, . . . ,yn0 )
дn0 (y1, . . . ,yn0+1)

)
for a polynomial дn0 (y1, . . . ,yn0+1);

(3) for each solution s of Sn0 , compute the solutions (s,yn0+1)
of дn0 (s,yn0+1) = 0 and denote the union of these solutions
when running over all s ∈ Sn0 by Tn0+1;

(4) use Hn0 (y, t) = 0 to compute the continuations to t = 0 of
the solutions Tn0+1 of Hn0 (y, 1) = 0 and denote the set of
these solutions of Hn0 (y, t) = 0 by Ŝn0+1; and

(5) remove from Ŝn0+1 those solutions which are “far” from
being discretizations of solutions of the differential equation
and call the remaining solutions Sn0+1.

Repeating this procedure, we can hopefully compute for large n the
solutions of Fn (y) = 0 corresponding the solutions of the differential
equation.

There are two main problems with this procedure. First, it is not
easy to apply it partial differential equations. Second, the filtering
procedure going from Ŝn0+1 to Sn0+1 is not obvious, e.g., complex
solutions in Sn0 can turn into real solutions of Sn0+1. This said, there
is a lot of flexibility in this approach, and it can be quite effective
when applied to ordinary differential equations.

A third (and very powerful) approach [14] called the bootstrap
method (related in spirit to the filtering approach and to domain
decomposition methods in numerical partial differential equations)
is to use the geometry of the chosen grid to find a homotopy to
the given discretization from a nearby easier-to-solve system. For
example, consider Eq.2

a − 2y1 + y2 + h2p(y1) = 0
y1 − 2y2 + y3 + h2p(y2) = 0 (3)
y2 − 2y3 + b + h2p(y3) = 0

with N = 3, which consists of 3 polynomials in the variables
y1,y2,y3 with y0 = a and y4 = b for the constants a,b. A choice of
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a nearby easier-to-solve system could consist of

a − 2y2 + b + (2h)2p(y2) = 0
a − 2y1 + y2 + h2p(y1) = 0 (4)
y2 − 2y3 + b + h2p(y3) = 0.

Note the first equation of the simpler system is just Eq.2 with the
nodes x0,x2,x4. After solving this for y2, the second equation of
the simpler system is Eq.2 with the nodes x0,x1,x2 on [x0,x2] and
the third equation is just Eq.2 with the nodes x2,x3,x4 on [x2,x4].
This will work an the same way when N + 1 = km is a product of
two integers k ≥ 2 andm ≥ 2. The simpler system would consist of

(1) Eq.2 for the nodes 0 = x0,xm ,x2m , . . . ,xkm = b;
(2) Eq.2 on [xk ,x(k+1)j ] for the nodes xk j ,xk j+1, . . . ,xk j+k for

j = 0, . . . ,m − 1.

A fourth approach is to take a solution we know, which depends
on a parameter, and change the parameter until a bifurcation occurs,
and then follow the solution along a different branch occurring
at the given bifurcation. This has been a surprisingly successful
approach applied to a sequence of successively more complicated
systems of differential equations arising in tumor growth (see [10–
13, 16]). All of these examples have very nice bifurcations, i.e., the
tangent cones consist of two reduced lines. A numerical algorithm
to compute the tangent cone in general would be useful. For more
complicated bifurcations, something along the lines of a local irre-
ducible decomposition computed off local information is needed:
the result [8] depends on global information that is not available on
the large polynomial systems arising from differential equations.

Finally, I would like to mention a surprising success [15] that
came from applying algebraic geometric ideas to the numerical
solution of polynomial systems. Hyperbolic conservations laws
are a class of differential equations that arise in many places often
with discontinuous solutions, e.g., shockwaves from explosions. For
these problems, there are often positive dimensional sets of solu-
tions with the physically realistic time-invariant solution picked
out by minimizing auxiliary quantities. For many of these a the-
oretical way to pick out the realistic solution is to add a term ϵD,
whereD is something like a Laplacian to the system. This perturbed
system has a unique solution, which “theoretically” goes to the true
solution when ϵ goes to zero. I say theoretically, because the dis-
cretization is very singular when ϵ = 0, and the standard numerical
method to find the physically realistic solution is time-marching.
Of course, for numerical algebraic geometers, seeing a parameter,
i.e., ϵ in this case, going to zero, the first thought is use an endgame.
So as a “proof of concept,” we used the Cauchy Endgame [20] in
Bertini [5] to compute the limit when ϵ → 0. This led to [15]. The
surprise is that the endgame applied to the theoretical approach
(not thought of as practical numerically) is remarkably better than
the standard numerical approach.
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