

Vrije Universiteit Brussel

Degrees of relatedness
Nuyts, Andreas; Devriese, Dominique

Published in:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018

DOI:
10.1145/3209108.3209119

Publication date:
2018

License:
CC BY-NC-ND

Document Version:
Proof

Link to publication

Citation for published version (APA):
Nuyts, A., & Devriese, D. (2018). Degrees of relatedness: A unified framework for parametricity, irrelevance, Ad
Hoc polymorphism, intersections, unions and algebra in dependent type theory. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018 (pp. 779-788). (Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS '18). Institute of Electrical and
Electronics Engineers Inc.. https://doi.org/10.1145/3209108.3209119

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 20. Apr. 2024

https://doi.org/10.1145/3209108.3209119
https://cris.vub.be/en/publications/degrees-of-relatedness(3da0b559-1121-4fba-b460-ffacaa19dc7b).html
https://doi.org/10.1145/3209108.3209119

Degrees of Relatedness

A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections, Unions and

Algebra in Dependent Type Theory

Andreas Nuyts

imec-DistriNet, KU Leuven, Belgium

Dominique Devriese

imec-DistriNet, KU Leuven, Belgium

Abstract

Dependent type theory allows us to write programs and to prove

properties about those programs in the same language. However,

some properties do not require much proof, as they are evident

from a program’s implementation, e.g. if a polymorphic program is

not ad hoc but relationally parametric, then we get parametricity

theorems for free. If we want to safely shortcut proofs by relying on

the evident good behaviour of a program, then we need a type-level

guarantee that the program is indeed well-behaved. This can be

achieved by annotating function types with a modality describing

the behaviour of functions.

We consider a dependent type system with modalities for rela-

tional parametricity, irrelevance (i.e. type-checking time erasability

of an argument) and ad hoc polymorphism. The interplay of three

modalities and dependent types raises a number of questions. For

example: If a term depends on a variable with a given modality,

then how should its type depend on it? Are all modalities always

applicable, e.g. should we consider parametric functions from the

booleans to the naturals? Do we need any further modalities in

order to properly reason about these three?

We develop a type system, based on a denotational presheaf

model, that answers these questions. The core idea is to equip every

type with a number of relations — just equality for small types,

but more for larger types — and to describe function behaviour

by saying how functions act on those relations. The system has

modality-aware equality judgements (ignoring irrelevant parts)

and modality-aware proving operators (for proving free theorems)

which are even self-applicable. It also supports sized types, some

form of intersection and union types, and parametric quantification

over algebraic structures. We prove soundness in a denotational

presheaf model.

CCS Concepts • Theory of computation→ Type theory;

Keywords Parametricity, irrelevance, erasure, cubical type theory,

presheaf semantics, intersections, unions, algebra in type theory

ACM Reference Format:

Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness: A

Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism,

Intersections, Unions and Algebra in Dependent Type Theory. In LICS ’18:
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–
12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209108.3209119

See the first author’s website for a version with appendices.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209119

1 Introduction

By now, several dependent type systems can be found in the litera-

ture in which function types are annotated with a modality which

restricts the behaviour of the functions they contain. A modality

for compile-time erasability is found in (adaptations of) Miquel’s

implicit calculus of constructions (ICC) [7, 22, 23]. Modalities for

type-checking time erasability (which we will call irrelevance) are

found in [3, 7, 23, 27, 29]. Our previous work with Vezzosi [26] has

a modality for relationally parametric functions, which we can

prove free theorems about, and a ‘pointwise’ modality for func-

tions which break the relational structure, comparable to ad hoc

polymorphism.

Example 1.1 (Parametricity). The polymorphic if operator takes

four arguments: a type X of type U (which is a type of types), a

boolean, and two elements x1,x2 : X of which it picks one, depend-

ing on the boolean.

if : (par p X : U) → Bool→ X → X → X (1)

In the above type signature, we used the annotation par to signal

that the argument X is used parametrically, allowing us to rely on

free theorems such as f (if X b x1 x2) = if Y b (f x1) (f x2), for
any f : X → Y , irrespective of the implementations of f and if .

Example 1.2 (Irrelevance). Let Listn A be the type of lists of length

less than n. Size bounds such as n can be used as a modular way

of ensuring termination of recursive functions [4, 5, 14]. Possible

type signatures for the constructors of lists are then:

nil : (par p X : U) → (irr p n : N) → (irr p 0 < n) → Listn X ,

cons : (par p X : U) → (irr pm n : N) →

(irr pm < n) → X → Listm X → Listn X . (2)

All size bounds and proofs about them are marked as irrelevant (irr),
because they can and should be ignored during equality-checking.

Indeed, we want the following lists (where _ replaces arbitrary

inequality proofs) to be judgementally equal as they are both anno-

tated versions of the list (a :: []):
cons A 2 5 _ a (nil A 2 _) ≡ cons A 3 5 _ a (nil A 3 _). (3)

Example 1.3 (Ad hoc polymorphism). The law of excluded middle

lem : (hoc p X : U) → X ⊎ (X → Empty) (4)

breaks parametricity. Indeed, if lem X were parametric in X , then
it would be a parametricity theorem that lem Unit and lem Empty
either both give an inhabitant, or both prove emptiness. Hence, to

avoid inconsistency, we need to mark lem as ad hoc polymorphic. A

sufficiently syntactic model may also justify an ad hoc polymorphic

typecase operator.

Modality of the codomain In a modal dependent type system,

we can consider the function type (µ p x : A) → B x of functions

f of modality µ that map arguments a : A to f a : B a. Here, B is

a function from A to a universe (i.e. a type of types)U, mapping

a : A to the type B a : U. An important question is: how well-

behaved does B have to be before it is sensible to even ask µ-modal

1

https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3209108.3209119

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Andreas Nuyts and Dominique Devriese

behaviour of functions f : (µ p x : A) → B x? Different authors
have answered this question differently.

Example 1.4 (Shape-irrelevance). Example 1.2 introduced the func-

tion nil which takes an irrelevant size bound n. Pfenning [27] and

Reed [29] do not support this function: they require the codomain

B :≡ λn.((irr p 0 < n) → Listn X) of the irrelevant function

nil X : (irr p n : N) → B n to be also an irrelevant function.

However, Listn X cannot be irrelevant in n; otherwise, list types
of different size bound would be judgementally equal, allowing us

to convert lists between types of different bounds, rendering the

bounds meaningless.

Mishra-Linger and Sheard [23] and Barras and Bernardo [7]

do not impose any restrictions on the behaviour of B, however
Abel and Scherer [3, example 2.8] show that this is problematic in

the presence of type-aware computation (such as η-expansion for

record types or the unit type): if η-expansion of f a is triggered by

its type B a, which in turn depends on a, then computation may

depend on a even if f uses its argument only in type annotations.

Hence, a cannot be erased from f a at type-checking time.

Abel introduced the idea that the argument x may appear in

B x but should be irrelevant to the shape of B x , e.g. x does not

get to decide whether or not B x is a record type, hence it cannot

trigger η-expansion of records. Shape-irrelevance is currently

only formally understood in the context of sized types [4] (i.e. x
has to be a size index), but is available in general in the Agda

programming language.

The type Listn X is shape-irrelevant in n: regardless of n, it is
always a type of lists with constructors nil and cons. Similarly,

(0 < n) is always a type of inequality proofs. Hence, B : (shi p n :

N) →U is shape9-irrelevant and qualifies as a codomain for nil X .

Example 1.5 (Continuity). The codomain of the if operator from

Example 1.1 w.r.t. the argumentX , is the function B :≡ λX .(Bool→
X → X → X) : U → U. This non-dependent function B cannot be

parametric, because it is a parametricity theorem that parametric

non-dependent functions are all constant (in System F, these have

type ∀X .T , where T does not depend on X). So we should not

require the codomain of a parametric function type to depend

parametrically on its argument.

However, it does notmake sense to consider parametric functions

(par p X : U) → T (X) if T is defined using a typecase operator: it

is then unclear what theorems parametricity should entail. This

suggests that we need a modality in between parametricity and ad

hoc polymorphism; which we have called continuity [26].

Modalities interact Suppose we want to combine irrelevance,

shape-irrelevance, parametricity, continuity and ad hoc polymor-

phism in a single type system. This raises new questions: if f has

modality µ, and д has modality ν , then what is the best that can be

said about д ◦ f — do we need a new modality or can we fall back

to one of the existing ones? What about functions whose behaviour

satisfies both µ and ν?

Example 1.6 (Composition of modal functions). We expect the

following terms of type List5 A, which are both annotated versions

of a :: (if b [] (a′ :: as)), to be equal:

cons A 4 7 _ a (if (List4 A) b (nil A 4 _) (cons A 3 4 _ a′ as)),

cons A 5 7 _ a (if (List5 A) b (nil A 5 _) (cons A 3 5 _ a′ as)).

Indeed, by the parametricity theorem in Example 1.1, we can dis-

tribute the outer cons over the then- and else-clauses, after which

equality becomes clear.

As it stands, though, the terms differ not only in irrelevant ar-

guments to cons and nil, but also in the size-bound on List. This
size-bound is used shape-irrelevantly by List, and Listn A is sub-

sequently used parametrically by if . This suggests that a shape-
irrelevant function, post-composed with a parametric one, should

yield an irrelevant function: par ◦ shi = irr.

Pertinence of modalities for a given (co)domain In our previ-

ous work [26] we show that it is sound to allow dependent pattern

matching when constructing parametric functions (par p n : N) →
B n from the naturals. This raises the question whether there is any

point in distinguishing between parametric, continuous and ad hoc

functions when the domain is N. Meanwhile, others [6, 15, 31] have

shown that all continuous (non-ad-hoc) functions to a small type

are parametric, e.g. any continuous function (X : U0) → X → X
is automatically parametric. So it seems that certain modalities

become synonymous if the (co)domain is sufficiently small.

A unified framework The above exposition raises a number of

questions. We have mentioned five different modalities that all have

a clear use case; are these all we need or will there be more? What

modalities are synonymous under what circumstances? How do we

compute the modality of composed functions? How do we compute

the required modality for the codomain of a modal dependent

function type? How can we justify that equality checking ignores

irrelevant parts? How can we prove parametricity theorems for

parametric functions? Some of these questions have been answered

for specific modalities or under restricted circumstances [3, 4, 6–

8, 15, 17, 22–24, 26, 27, 29, 31], but to the best of our knowledge,

there are no conclusive answers in the literature in the presence of

all the aforementioned modalities. We provide a general theory of

modalities that deal with relations and equality, including the five

we mentioned, that answers all of the above questions.

The core idea is that we describe function behaviour by stating

how a function affects the degree of relatedness of objects that it

is applied to. In our previous work [26] we already classified func-

tions by how they act on related inputs, with parametric functions

sending them to equal outputs, continuous functions sending them

to related outputs, and ad hoc functions (which there we called

pointwise) sending them to potentially unrelated outputs.

Multiple relations Our current framework is based on the ob-

servation that ‘related’ is an insufficiently specific concept. For

example, in small types such as Bool, N and Listn Bool, the only
truly interesting relation is equality. Equality has a heterogeneous

generalization which we call 0-relatedness (informally denoted⌢0),

e.g. a list of type List4 A is 0-related to a list of type List6 A if they

have equal length and contents. This is the most obvious notion of

0-relatedness (henceforth: 0-relation) between List4 A and List6 A
and also the one that our type system will consider by default.

There is no canonical 0-relation between the types N and Unit,
but every object N → Unit → U gives rise to a non-canonical 0-

relationR. DefiningB as in Example 1.5, this gives rise to a 0-relation

B R (informal notation) between B N and B Unit, as in Reynolds’

original semantics of parametricity [30]. Regardless of the choice of

R, the object if N : B N will be 0-related to if Unit : B Unit (infor-
mally denoted if N⌢B R

0
if Unit), since both functions essentially

apply the same algorithm. It is a property of our type system that

the default 0-relation between a type A and itself, coincides with

equality, e.g. if a,b : A, then a ⌢A
0
b means that a equals b.

2

Degrees of Relatedness LICS ’18, July 9–12, 2018, Oxford, United Kingdom

hoc = ⟨0, 0, . . . , 0⟩ : m → n ad hoc polym.

str = ⟨0, 0, 1, . . . , n⟩ : n → n + 1 structurality

con = ⟨0, 1, . . . , n⟩ : n → n continuity

par = ⟨1, 2, . . . , n⟩ : n → n − 1 parametricity

shi = ⟨0, ⊤, . . . , ⊤⟩ : m → n ≥ 0 shape-irr.

irr = ⟨⊤, ⊤, . . . , ⊤⟩ : m → n irrelevance

up = ⟨0, . . . , n, n⟩ : n ≥ 0 → n + 1 upw. cont.

dn = ⟨0, . . . , n − 2, n⟩ : n ≥ 1 → n − 1 downw. cont.

Figure 1. Some important modalities

Types themselves can also be 0-related, e.g. List2+3 A ⌢U0

0

List5 A. However, this is not the only interesting relation that we

can consider on types. Consider the types List2 A and List4 A.
These types are not 0-related (equal), but there is a notion of

0-relatedness of their elements. We say that they are 1-related

(List2 A ⌢U0

1
List4 A). This is a proof-relevant property and the

proofs R : S ⌢U0

1
T correspond up to isomorphism to relations

S → T →U0 and are precisely what gives meaning to (s : S) ⌢R
0

(t : T). So we can prove N⌢U0

1
Unit in many ways. We can also

prove List2 A⌢U0

1
List4 A in many ways, but there is one default

way to prove it, namely by giving the default 0-relation between

List2 A and List4 A. As such, the type-checker will acknowledge

without proof that List2 A⌢U0

1
List4 A, whereas it will not do so

for N ⌢U0

1
Unit — this is analogous to the distinction between

propositional and judgemental equality. Note that 0-related types

are also 1-related: indeed, if S ⌢U0

0
T , then both types are equal

and the equality relation on S is a 0-relation between them, proving

S ⌢U0

1
T . In general, 0-relatedness implies 1-relatedness in the

sense that proofs of the former map to proofs of the latter.

The notion of 1-relatedness extends to other large types. For

example, we can define a type of monoids Mon such that two

monoidsM and N are 1-related (R : M ⌢Mon
1

N) if their underlying

typesM and N are 1-related (R : M ⌢U0

1
N) and their operations

(multiplication and neutral element) are 0-related according to R.
We can define a non-canonical 1-relation V between Grp and

Mon by saying that a group G is 1-related to a monoidM (denoted

G ⌢V
1
M) if the underlying monoid N of G is (N ⌢Mon

1
M). This

is expressed as V : Grp⌢U1

2
Mon, i.e. these types of algebras are

2-related as proven by giving the 1-relation V .

A modality µ is now a function (i · µ ← [i) mapping degrees of

relatedness of the codomain to degrees of relatedness of the domain.

It expresses what degree of relatedness x ⌢S
i ·µ y is needed in order

for a µ-modal function f : (µ p S) → T to map x and y to i-related
objects f x ⌢T

i f y. The two most extreme modalities are now easy

to define: irrelevant functions produce maximally related outputs

even for unrelated inputs, so we set i · irr = ⊤ (where⊤-relatedness

is the trivial relation ‘true’) and ad hoc functions produce related

outputs only for equal inputs, so we set i · hoc = 0.

Contributions We present (§3) and have proven soundness (§5,

[25]) of a type system in which every dependency is annotated with

a modality (§2.2) that describes its relational behaviour in a fine-

grained way. The available modalities include parametricity [30],

irrelevance [3, 7, 23, 27, 29], shape-irrelevance [4], ad hoc polymor-

phism, and continuity in the sense of our previous work [26]; and

we explain each of these modalities as a certain action on relations

(§2.4). We answer the question which of the available modalities

are synonymous under what circumstances (§2.6) and make the

type system aware of this synonymity using the concept of depth

(§2.1). Depth also bridges the gap between viewing irrelevance as

a property of types (as in Coq) or functions (as in Agda) (§6). We

explain how the available modalities compose (§2.2), and give and

explain the relation between the modalities through which a term

and its type depend on the same variable (§2.3).

We support and justify type-checking time erasure of irrelevant

subterms — even when irrelevance occurs as a composite of other

modalities — using a fine-grained erasure system with a family

erasure functions (§3.2). Using internal parametricity operators

[8, 24, 26], we allow users to construct ‘cheap’ proof terms for ‘free’

theorems [33] (§3.3).

We give the first account of shape-irrelevance in which all func-

tion types, and not just those with the special domain Size, can be

annotated shape-irrelevant (§2.3). We support sized (co)-inductive

types and index them with shape-irrelevant natural numbers from

the inductive type N (§4). Moreover, we support shape-irrelevant

universe polymorphism (t-Uni, Fig. 3) and hence allow the erasure

of universe levels, like size bounds, when they are irrelevant. Some

of these features already experimentally supported by Agda.

We introduce a novel modality that we call structurality (§2.4).

It expresses how algebras depend on their structure and thus al-

lows the correct notion of parametric quantification over a type of

algebras. It also replaces the ad hoc (pointwise) modality that our

previous work [26] had to use in its internal parametricity opera-

tors, and unlike ad hoc polymorphism does not get in the way of

iterated parametricity. This means that we are first to present a type

system that combines fully iterable (i.e. self-applicable) internal

parametricity operators and the identity extension lemma.

Using a special dependent if-expression in which the conditional

is irrelevant, we can implement a notion of intersection and union

types as irrelevant quantification over the booleans (§4).

Overview In §2, we introduce the concept of depth of a type, de-

fine the collection of modalities that we will use, and the necessary

operations on them. In §3, we introduce the type system: we list

core typing rules, explain the erasure system and briefly discuss

the internal parametricity operators. In §4, we consider some ap-

plications: Church encoding and algebra, intersections and unions,

and sized types. In §5, we sketch the denotational model and the

semantics of erasure. In §6, we discuss related and future work.

2 Depths and Modalities

In this section, we define the collection of all available modalities,

and investigate what modality operations a dependent type system

requires and how we can compute them.

2.1 Types, Depth and Relations

An important prerequisite is the concept of depth of a type: a type

of depth n can be thought of as being equipped with n + 1 proof-

relevant relations, numbered 0 through n, plus the trivially satisfied
relation ⊤. As in Reynolds’ original semantics of parametricity [30],

these relations arise from an intricate interplay between user-made

choices and the mechanics of the framework. Here, we give a con-

ceptual discussion and hide higher-dimensional (cubical) relational

structure; in §3.3 we sketch how the relations are exposed internally

using parametricity operators and in §5 we sketch the denotational

model. Conceptually, a depth n type Γ ⊢n A type gives us, for every
assignment γ of the variables in Γ, a set of values A[γ]. Moreover,

for every i ∈ {0, . . . ,n}, we get a proof-relevant binary relation on

A[γ] which we call the homogeneous i-relation and informally

denote as⌢A[γ]

i . These relations are reflexive, meaning that A[γ]

comes equipped with functions that map values a : A[γ] to reflex-

ivity proofs of a : a ⌢A[γ]

i a (denoted with the same symbol). The

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Andreas Nuyts and Dominique Devriese

homogeneous 0-relation⌢A[γ]

0
is the strictest one and is always

the equality relation — this generalizes Reynolds’ identity extension

lemma. As i increases,⌢A[γ]

i becomes more liberal, meaning more

precisely that A[γ] comes equipped with functions that map proofs

r : x ⌢A[γ]

i y to proofs r : x ⌢A[γ]

j y (denoted with the same

symbol) if j ≥ i , such that all diagrams commute. Finally,⌢A[γ]

⊤

is always true and can always be proven in only one way. Thus,

we place an order relation 0 ≤ . . . ≤ n ≤ ⊤ on the degrees of

relatedness available in a type of depth n.

Example 2.1. The type Γ ⊢0 Bool type is a weakening of a closed

type and hence its meaning is independent of the assignment γ . It
represents a 2-element set Bool equipped with a homogeneous 0-

relation⌢Bool
0

that is equality. The type Γ ⊢n ListA type yields, for
every assignment γ , the set (List A)[γ] of lists over A[γ], equipped

with the homogeneous i-relation that relates as ⌢(ListA)[γ]

i bs if as

and bs have equal length and are componentwise related by⌢A[γ]

i .

In particular, if⌢A[γ]

0
is the equality relation, then so is⌢(ListA)[γ]

0
.

This exemplifies that the 0-relation is defined by recursion on the

type, while we prove inductively that it is the equality relation.

But there is more to the semantics of Γ ⊢n A type. For any two
assignments γ ,γ ′, any proof γ ∗ : γ ⌢Γ

i γ ′ that they are i-related
(meaning that the assignments for each µ-modal variable are (i · µ)-
related) and any j ≥ i , we obtain a heterogeneous j-relation
⌢A[γ ∗]

j between elements of A[γ] and A[γ ′]. These heterogeneous

relations need not be reflexive; indeed, they do not even relate

values from the same set. Moreover, the heterogeneous 0-relation

may be any proof-relevant relation and need not be the equality

relation. As in the homogeneous case, the heterogeneous relations

become more liberal as i increases, i.e. A[γ ∗] comes with functions

that map proofs of a ⌢A[γ ∗]
j a′ to proofs of a ⌢A[γ ∗]

k a′ if k ≥ j.

Example 2.2. The type Γ ⊢0 Bool type is closed and has as its

heterogeneous relation ⌢Bool[γ ∗]
0

simply the homogeneous rela-

tion⌢Bool
0

. The type Γ ⊢n List A type relates as ⌢(ListA)[γ ∗]
j as ′

heterogeneously if as : (List A)[γ] and as ′ : (List A)[γ ′] have equal
length and are componentwise related by⌢A[γ ∗]

j .

In the introduction, we pretended that the depth of a type would

be derivable from its universe level, e.g. that all small types would

have depth 0. However, in practice it will be useful to treat universe

level and depth as orthogonal properties of a type. UniversesUn
ℓ

will be annotated with a level ℓ to prevent impredicativity, and

a depth n which is the depth of the types they contain. We have

Un
ℓ

: Un+1

ℓ′
if ℓ < ℓ′. This double indexing is not unlike the way the

homotopy level is treated in HoTT [32] and allows us to consider

predicative depth-truncation (using Box, see Remark 2.8) and small

higher inductive types (as a future research direction).

Example 2.3. The universe Γ ⊢n+1 U
n
ℓ
type, like Bool, is a closed

type. Its values are the closed types ⊢n T type of depth n and level

ℓ. As is required by identity extension, ⌢U
n
ℓ

0
means equality. A

proof of homogeneous (i + 1)-relatedness A⌢U
n
ℓi+1
B wraps up ever

more liberal heterogeneous relations between A and B, numbered i

throughn. Reflexivity of⌢U
n
ℓi+1
is proven by using the homogeneous

relations as heterogeneous relations. A variable Γ ⊢n X type will
only be well-typed if Γ provides a variable X : Un

ℓ
for parametric

use, to which γ will assign a value X [γ] : Un
ℓ

which contains

everything needed to interpretX [γ] as a type. A proof γ ∗ : γ ⌢Γ
i γ
′

assigns to a parametric variable X a proof X [γ ∗] : X [γ] ⌢U
n
ℓi ·par

X [γ ′]. Since i · par = i + 1 (as we will find in §2.4), the object X [γ ∗]
gives us exactly what we need: heterogeneous relations numbered

i through n. Internal parametricity operators (§3.3) give the user

control over what relations they put in X [γ ∗].

A special case are types of depth −1: they are solely equipped

with the trivial relation⌢⊤, which then also takes the role of the

0-relation and therefore expresses equality. In other words, in a

−1-type, equality is trivially true, i.e. −1-types are proof-irrelevant

propositions. When dealing with −1-types, we will allow ourselves

to use 0 and ⊤ interchangeably, reducing the need for special cases.

2.2 Modalities

Let A be a type of depthm, and B x a type of depth n for each x : A.
Then the behaviour of a dependent function f : (µ p A) → B is

described by a modality µ : m → n which gives us the minimal

degree of relatedness i · µ that is required of x and y in order to

conclude f x ⌢i f y. Clearly, a stronger degree of relatedness

of x and y is required in order to conclude a stronger degree of

relatedness of f x and f y. Also clearly, ⊤ · µ = ⊤. Thus, we say:

Definition 2.4. A depth is an integer n ≥ −1. A modality µ :

m → n from depth m to depth n is a monotonically increasing

function µ : {0 ≤ . . . ≤ n} → {0 ≤ . . . ≤ m ≤ ⊤} : i 7→ i · µ, which
we also denote in vector notation as µ = ⟨0 · µ, . . . ,n · µ⟩. By con-

vention, we write ⊤ · µ = ⊤.

Example 2.5. The precise signature of hoc and irrwas already de-
rived in the introduction and can be found in Fig. 1. Notice how both

modalities exist for arbitrary domain and codomain, but coincide

when either has depth −1 (Fig. 2).

Consider a function f : (µ p A) → B of modality µ : m → n and

a function д : (ν p B) → C of modality ν : n → p. Then how do we

compute the modality ν ◦ µ of д ◦ f ? Clearly, д (f x) ⌢i д (f y)
requires f x ⌢i ·ν f y, which in turn requires x ⌢(i ·ν) ·µ y. Thus,
we have i · (ν ◦ µ) = (i · ν) · µ.

Meanwhile, the identity function id : X → X has a modality con
for which i · con = i . We consider con the default modality (hence

we omit its annotation) and call it continuity (Fig. 1; in §2.4 we

argue that this is also the modality encountered in Example 1.5).

Notice how continuity coincides with ad hoc polymorphism on

depth 0 types like Bool or N (Fig. 2).

Finally, we define a partial order relation on modalities: we say

that µ ≤ ν when all ν-modal functions are also µ-modal (the

direction of the ordering arises from viewing µ and ν as opera-

tions applied to a function’s domain). This means that µ concludes

f x ⌢i f y under stronger assumptions than ν does, i.e. i · µ ≤ i · ν
for all i . For example, an irrelevant function also satisfies every

other modality (irr is maximal), and all functions can be seen as ad

hoc polymorphic (hoc is minimal).

Example 2.6. If a function satisfies both modalities µ and ν , then
it satisfies their least upper bound µ ⊔ ν , for which i · (µ ⊔ ν) =
max

{
i · µ, i · ν

}
.

Proposition 2.7. Depths and modalities form a poset-enriched cat-
egory, i.e. a category whose Hom-sets are partially ordered and whose
composition operation is monotonically increasing. □

Remark 2.8. We can have a data typeBoxµAwith a single µ-modal

constructor boxµ : (µ p A) → BoxµA. Then boxµx ⌢i boxµy can

and can only be proven from x ⌢i ·µ y, and functions (µ p A) → B
can be thought of as continuous functions from domain BoxµA.
This shows that we can think of modalities as operations that are

applied to the domain of a function type.

4

Degrees of Relatedness LICS ’18, July 9–12, 2018, Oxford, United Kingdom

2.3 Modality of the Codomain

We come back to the question of what modality ν is required of B in

order to consider µ-modal functions f : (µ p x : A) → B x . Assume

thatA has depthm and B x always has depth n, i.e. µ : m → n. Then
B has type (ν p A) →Un

ℓ
for some universe level ℓ. As mentioned

in §2.1, in order to consider f x ⌢i f y, we need (i + 1)-related-
ness of their types, i.e. B x ⌢i+1 B y. We know that µ asserts

the former when x ⌢i ·µ f y, so ν should assert the latter under

the same circumstances, i.e. (i + 1) · ν = i · µ. Equality of types

B x ⌢0 B y is only required when the arguments x ⌢0 y are

equal, so we make the most liberal choice and set 0 · ν = 0. Then

ν = ⟨0, 0 · µ, . . . ,n · µ⟩ : m → n + 1, i.e. the modality of a function’s

codomain is obtained by inserting a 0 in front of the modality of

the function itself. Applying this reasoning to the signature of irrel-

evance, we obtain the signature of shape-irrelevance (Fig. 1), which

was indeed conceived as the modality of an irrelevant function’s

codomain. This signature in turn shows that we can ignore shape-

irrelevant subterms when checking for 1-relatedness. We also find

that ad hoc functions can have ad hoc codomain.

2.4 Modalities Worthy of a Name

In this section, we take a closer look at the type signature and mean-

ing of the modalities mentioned in the introduction. Irrelevance

(§1), shape-irrelevance (§2.3) and ad hoc polymorphism (§1) have

already been treated.

Continuity In §2.2, we defined continuity con : n → n as the

modality of the identity function, thus obtaining its signature. Here,

we show that the continuous pair and function type formers are

continuous, confirming what we said in Example 1.5. We have

0 · con = 0, and indeed if X ⌢U
n
ℓ

0
X ′ and Y ⌢U

n
ℓ

0
Y ′, we will have

X × Y ⌢U
n
ℓ

0
X ′ × Y ′ and X → Y ⌢U

n
ℓ

0
X ′ → Y ′ as 0-relatedness

means equality. Next, we show that the type formers respect the fact

that (i + 1) · con = i + 1. If X ∗ : X ⌢U
n
ℓi+1
X ′ and Y ∗ : Y ⌢U

n
ℓi+1
Y ′,

then we can prove X ∗ × Y ∗ : X × Y ⌢U
n
ℓi+1

X ′ × Y ′ by taking

(x∗,y∗) : (x ,y) ⌢X ∗×Y ∗
i (x ′,y′) to mean that x∗ : x ⌢X ∗

i x ′ and

y∗ : y ⌢Y ∗
i y′. Meanwhile, we would naively prove X ∗ → Y ∗ :

X → Y ⌢U
n
ℓi+1
X ′ → Y ′ by taking a proof f ∗ : f ⌢X ∗→Y ∗

i f ′ to

be a function that maps proofs x∗ : x ⌢X ∗
i x ′ to proofs f ∗ x∗ :

f x ⌢Y ∗
i f ′ x ′. However, with this definition, the relations for

X ∗ → Y ∗ do not become more liberal as i increases. Thus, we
require that for all j ≥ i , the proof f ∗ maps proofs x∗ : x ⌢X ∗

j x ′

to proofs f ∗ x∗ : f x ⌢Y ∗
j f ′ x ′ in a coherent way.

Parametricity We want to continue Example 1.1 and investigate

how if X depends on X . However, in order to derive the general

signature of parametricity, we need to consider typesX of arbitrary

depth. Because we have not yet explained how to promote Bool to
depths greater than zero, we will instead consider t X :≡ λx .λx ′.x :

T X :≡ X → X → X , which corresponds to the operation ‘if true’ on

X . Under what circumstances can we conclude that t X ⌢T R
i t Y ?

Remember that this means that for all j ≥ i , we have t X x x ′ ⌢R
j

t Y y y′ whenever x ⌢R
j y and x ′ ⌢R

j y′. But that statement is

trivially true (as t X x x ′ ≡ x and t Y y y′ ≡ y) provided that it can be
stated, i.e. provided that we can consider i-relatedness of elements

ofX andY . So we needR : X ⌢i+1 Y , and conclude that i ·par = i+1

(Fig. 1). Inserting a 0 in front of the signature as per §2.3, we see

that parametric functions indeed require a continuous codomain

as was claimed in Example 1.5. Observe also that par ◦ shi = irr, as
was conjectured in Example 1.6.

Structurality Where parametricity expresses how types can be

used at the term level, the structural modality (str, Fig. 1) expresses
how terms can be used at the type level. For example, the codomain

B x of a continuous function type (con p x : A) → B x depends

structurally on x . In particular, structurality expresses how algebras

depend on their structure. Suppose we want to define a typeMon of

(lawless) monoidsM , i.e. typesM equipped with a nullary operation

eM : M and a binary operation ∗M : T M :≡ M → M → M .

MonoidsM and N should be 0-related, i.e. equal, when all parts are

equal, i.e. M ⌢U
0

ℓ
0

N , eM ⌢
M
0

eN and ∗M ⌢
T M
0
∗N . Meanwhile,

a sensible notion of 1-relatedness R : M ⌢1 N would be that the

underlying sets are 1-related (R : M ⌢1 N) and that their structure

is 0-related according to R. This shows that monoids depend on

their structure with modality str = ⟨0, 0⟩ : 0→ 1, so we can define

Mon :≡ (X : U0

ℓ) × Box
str (X × (X → X → X)). (5)

Notably, structurality is the sole modality that is right inverse

to parametricity: par ◦ str = con. This means that we can uncurry

functions that take both parametric and continuous arguments. For

example, the type of canonical elements that can be constructed in

the same way in any monoid is

(par p (X , boxstr (e, ∗)) : Mon) → X (6)

which can be curried to

(par p X : U0

ℓ) → X → (X → X → X) → X . (7)

This is the Church encoding of the type of binary tree shapes, which

(up to predicativity issues) is the initial lawless monoid.

2.5 Left Division and Contramodalities

Consider modalities µ : m → n and ν : n → p and functions

f : (µ p A) → B and д : (ν p B) → C and suppose we want to

type-check λ(ρ p x : A).д (f x) : (ρ p A) → C . Mathematically,

it is clear that this should type-check if and only if ρ ≤ ν ◦ µ.
However, the type-checker will go about this differently. First of

all, it will put (ρ p x : A) into the context. Then it observes that д
needs an argument of type B with modality ν , so it will type-check

ν \ ρ p x : A ⊢ f x : B, where ν \ ρ is some modality computed from

ν and ρ. Type-checking now succeeds whenever ν \ ρ ≤ µ, so this

should be equivalent to the condition ρ ≤ ν ◦ µ mentioned above.

This means that the operation ν \ ⌞⌟ : (m → p) → (m → n) is left
adjoint to ν ◦ ⌞⌟ : (m → n) → (m → p), i.e. they form a Galois

connection. It turns out that left division by ν can be computed as

postcomposition with a left adjoint contramodality κ ⊣ ν :

Definition 2.9. A contramodality κ : p → n is a monotonically

increasing function κ : {0 ≤ . . . ≤ n} →
{
⊥ ≤ 0 ≤ . . . ≤ p

}
: i 7→

i · κ. Composition with a modality ρ : m → p yields another

modality κ ◦ ρ : m → n given by i · (κ ◦ ρ) = (i · κ) · ρ, where by
convention ⊥ · ρ = 0.

Proposition 2.10. For every modality ν : n → p, there is a con-
tramodality κ : p → n so that κ ◦ ⌞⌟ : (m → p) → (m → n) is left
adjoint to ν ◦ ⌞⌟ : (m → n) → (m → p). We write κ ⊣ ν and can
compute ν \ ρ as κ ◦ ρ. Adjoint pairs κ ⊣ ν are characterized by the
fact that for all i, j (not ⊥ or ⊤), we have i ≤ j · κ ⇔ i · ν ≤ j. □

Example 2.11. Parametricity is both amodality and a contramodal-

ity, and we have par ⊣ str. Hence, if we want to define a monoid

(T , boxstr (e, ∗)) with a variable (µ p x : A) in the context, then e
and ∗ are type-checked with (par ◦ µ p x : A) in the context.

Example 2.12. The left adjoint to parametricity is ⟨⊥, 0, . . . ,n⟩.
Hence, par \ µ has the signature of µ with a 0 inserted in front: it is

the modality of the codomain of a µ-modal function. To see where

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Andreas Nuyts and Dominique Devriese

irr, shi, hoc = ⟨⊤, . . . , ⊤⟩ : −1 → n
irr, hoc = ⟨⟩ : m → −1

hoc, dn ◦ str, con, par ◦ up = ⟨0⟩ : 0 → 0

irr, dn ◦ shi = ⟨⊤⟩ : 0 → 0

hoc = ⟨0⟩ : 1 → 0

dn2 ◦ str, dn ◦ con, par = ⟨1⟩ : 1 → 0

dn ◦ shi, irr = ⟨⊤⟩ : 1 → 0

hoc, str, con ◦ up, par ◦ up2 = ⟨0, 0⟩ : 0 → 1

shi = ⟨0, ⊤⟩ : 0 → 1

irr = ⟨⊤, ⊤⟩ : 0 → 1

hoc = ⟨0, 0⟩ : 1 → 1

dn ◦ str, con = ⟨0, 1⟩ : 1 → 1

shi = ⟨0, ⊤⟩ : 1 → 1

par ◦ up = ⟨1, 1⟩ : 1 → 1

shi ⊔ (par ◦ up) = ⟨1, ⊤⟩ : 1 → 1

irr = ⟨⊤, ⊤⟩ : 1 → 1

Figure 2. All modalities µ : m → n withm,n ≤ 1.

this comes from, consider the type ascription operator (polymorphic

identity function) _ ∋ _ : (par p X : Un
ℓ
) → X → X . When we

check the term λ(µ p x : A).(B x ∋ f x), the type ascription B x is a

parametric argument and will be checked against (par \ µ p x : A).

Example 2.13. The left adjoint to irrelevance is ⟨⊥, . . . ,⊥⟩. Hence,

irr \ µ = hoc for all µ.
2.6 Depth as information

The concepts treated so far will not let us form Bool×U0

ℓ
, because

Bool has depth 0 and U0

ℓ
has depth 1. We first need to increase

the depth of Bool; this can be done by defining⌢1 as a copy of

⌢0, which is represented syntactically by the type Boxup Bool,
where up duplicates the weakest relation (Fig. 1). Then we can form

(Boxup Bool) ×U0

ℓ
. In our denotational model, up is interpreted as

a fully faithful functor, which shows that we can really see it as an

embedding, i.e. that we can see depth n types as a special case of

depth n + 1 types.

In the introduction, we raised the question whether there is any

difference between parametric, continuous and ad hoc functions

from N. In our previous work [26] we have used pattern match-

ing (intuitively an ad hoc feature) to define a parametric identity

function (par p N) → N on the naturals. However, currently we

cannot consider parametric functions N→ N as par decreases the
depth, but we can consider (par p Boxup N) → N or equivalently

(par ◦ up p N) → N. So we can use precomposition with up to

decrease the depth of a modality’s domain, to make it match the

function type of interest (Fig. 2). In this particular case, we find that

par ◦ up = ⟨1⟩ ◦ ⟨0, 0⟩ = ⟨0⟩ = con = hoc : 0 → 0. So indeed we

need not distinguish between these modalities at depth 0.

We also mentioned that others [6, 15, 31] have shown that any

continuous function to a small (depth 0) type — e.g. of type (X :

U0

ℓ
) → X → X — is parametric. However, we cannot consider

continuous functions of this type, as continuity preserves the depth

andU0

ℓ
has depth 1. But we can consider (X : U0

ℓ
) → Boxup (X →

X). In general, a function (µ p x : A) → BoxupB[x] is essentially

the same as a function (up \ µ p x : A) → B[x], because if we

type-check λx .boxup b[x], then we end up checking up \ µ p x :

A ⊢n b[x] : B[x]. Proposition 2.10 entails that the contramodality

dn ⊣ up is itself a modality which forgets the second weakest

relation (Fig. 1), so up \ µ = dn ◦ µ and we can use postcomposition

with dn to decrease the depth of a modality’s codomain, to make

it match the function type of interest. In this case, we find that

dn ◦ con = ⟨1⟩ ◦ ⟨0, 1⟩ = ⟨1⟩ = par : 1 → 0, i.e. parametricity and

continuity coincide.

Repeated application of Boxup allows us to view all types as

being equipped with arbitrarily many relations, and to think of

finite depths as information about these relations: a type of depth

n is a type of depth ω for which all relations⌢i are equal for i ≥ n.
A modality µ : m → n can then be thought of as an equivalence

class of modalities ω → ω that are synonymous when used to

describe the behaviour of a function with domain of depthm and

codomain of depth n. Parametricity is then always the equivalence

class of ⟨1, 2, 3, . . .⟩ : ω → ω. In Fig. 2, we give an exhaustive list

of all modalities of depth at most 1. We can see e.g. that ad hoc

polymorphism, structurality, continuity and parametricity coincide

for functions between depth 0 types (0→ 0).

There are two good reasons to allow only types of finite depth.

First, the depth gives us valuable information about function be-

haviour, allowing us to consider only
(m+n+2)!

(m+1)! (n+1)! different modal-

ities m → n instead of infinitely many modalities ω → ω (we

leave the combinatorics as an exercise to the reader). Secondly,

Proposition 2.10 breaks when considering depth ω, for example it

is not clear what hoc \ con : ω → ω should be. For this reason, our

denotational model also only considers types of finite depth.

3 The Type System

In this section, we present the type system a bit more formally. The

core typing rules — which are essentially the typing rules of MLTT,

annotated with modalities — are listed in Fig. 3 and explained in

§3.1. We omit congruence and equivalence rules for judgemental

equality. For space reasons, we also omit inductive types, including

the identity type. A notion of judgemental relatedness is formalized

using erasure functions in §3.2. In §3.3 we briefly discuss proposi-

tional relatedness and internal parametricity.

3.1 Annotating Martin-Löf Type Theory

Judgements The core type system makes use of the following

judgement forms:

Γ ⊢n Ctx Γ is a context of depth n,

Γ ⊢n T type T is a type of depth n in context Γ,

Γ ⊢n t : T t is a term of type T of depth n,

Γ ⊢n T ≡ T ′ type T and T ′ are judgementally equal types,

Γ ⊢n t ≡ t ′ : T t and t ′ are judgementally equal terms.

The latter 4 judgement forms presuppose other judgements of the

same depth, e.g. Γ ⊢n t : T can only be considered if Γ ⊢n T type,
which in turn presupposes Γ ⊢n Ctx.

Contexts and variables c-em: The empty context can be formed

at any depth. c-ext: A context of depth n can be extended with a

variable x of a typeT of depthm, provided that we make it available

with a well-typed modality µ : m → n. The type T must exist in

context µ \ Γ, so that we can substitute x with µ \ Γ ⊢n t : T later

on. t-var: In order to use a variable (µ p x : T) ∈ Γ, we require
that the identity function satisfies modality µ, i.e. µ ≤ con.

Types and universes t-Uni: For each depth n and each internal
natural number ℓ, we have a universeUn

ℓ
of level s ℓ (the internal

successor of ℓ) and depthn+1. It lives in the universeUn+1

s ℓ of depth

n + 1 types, which in turn has depth n + 2. Hence, the judgement

has depth n + 2. Note that the shape-irrelevant level polymorphism

makes universes of different level but equal depth 1-related, as

1 · shi = ⊤. ty: An element of the universe can be used as a type.

This is the only introduction rule for the type judgement. Bymaking

it parametric, we ensure that the judgement par p X : Un
ℓ
, con p x :

X ⊢ x : X can useX as a type, which corresponds to our expectation

that the polymorphic identity function is parametric. t-cumul:We

6

Degrees of Relatedness LICS ’18, July 9–12, 2018, Oxford, United Kingdom

µ \ () := (),
µ \ (Γ, ν p x : T) :=
(µ \ Γ), (µ \ ν) p x : T .

n ≥ −1

⊢n Ctx
c-em

Γ ⊢n Ctx µ : m → n
µ \ Γ ⊢m T type
Γ, µ p x : T ⊢n Ctx

c-ext

Γ ⊢n Ctx (µ p x : T) ∈ Γ
µ ≤ con : n → n

Γ ⊢n x : T
t-var

Γ ⊢n+2 Ctx n ≥ −1

shi \ Γ ⊢0 ℓ : N

Γ ⊢n+2 U
n
ℓ

: Un+1

s ℓ
t-Uni

par \ Γ ⊢n+1 T : Un
ℓ

Γ ⊢n T type
ty

Γ ⊢n+1 T : Un
ℓ

Γ ⊢n+1 T : Un
s ℓ

t-cumul

Γ ⊢n t : T
Γ ⊢n T ≡ T ′ type

Γ ⊢n t : T ′
t-conv

Γ, µ p x : A ⊢n b : B
Γ ⊢n λ (µ p x : A).b : (µ p x : A) → B
where λ (µ p x : A).f ⟨µ⟩x ≡ f

t-lam

Γ ⊢n t, t ′ : T
⌊t ⌋

0
⊜ ⌊t ′⌋

0

Γ ⊢n t ≡ t ′ : T
t-eq-erase

µ : m → n
µ̄ = par \ (µ ◦ par) : m + 1→ n + 1

µ̄ \ Γ ⊢m+1 A : Um
ℓ

Γ, (par \ µ) p x : A ⊢n+1 B : Un
ℓ

Γ ⊢n+1 (µ p x : A) → B : Un
ℓ

Γ ⊢n+1 (µ p x : A) × B : Un
ℓ

t-Pi, t-Sigma

µ : m → n
Γ ⊢n f : (µ p x : A) → B
µ \ Γ ⊢m a : A
Γ ⊢n f ⟨µ⟩a : B[a/x]

where (λ (µ p x : A).b)⟨µ⟩a ≡ b[a/x]

t-app

µ : m → n
µ \ Γ ⊢m a : A
Γ ⊢n b : B[a/x]

Γ ⊢ (µ p a, b) : (µ p x : A) × B
t-pair

µ : m → n ν : n → p Γ, ν p z : (µ p x : A) × B ⊢p C type Γ, ν ◦ µ p x : A, ν p y : B ⊢p c : C[(µ p x, y)/z] ν \ Γ ⊢n t : (µ p x : A) × B
Γ ⊢p indν× (z .C, x .y .c, t) : C[t/z] where indν× (z .C, x .y .c, (µ p a, b)) ≡ c[a/x, b/y]

t-indpair

Figure 3. Core typing rules

can coerce types to higher-level universes. t-conv: Terms can be

converted between equal types.

Functions and pairs t-Pi, t-Sigma:We have dependent func-

tion and dependent pair types for every modality µ. A µ-modal

dependent function depends µ-modally on its argument (t-lam,

t-app), whereas a µ-modal dependent pair depends µ-modally on

its first component, and continuously on the second (t-pair). We

use the notations f ⟨µ⟩a and f a interchangeably, and denote nested
pairs as a single tuple. The required modality of B in x was already

established in §2.3. To get a feel for the modalities for the function

and pair types inA and B, we can use the parametric type ascription

operator from Example 2.12 and type-check

λ(µ p x : A).(B x ∋ f ⟨µ⟩(A ∋ x)), (µ p A ∋ a,B a ∋ b) (8)

to learn that these terms depend onAwithmodality µ◦par and on B
parametrically. Their type lives behind the colon, which according

to ty is itself a parametric position, so it should depend on A with

modality par \ (µ ◦ par) and on B with modality par \ par = con.
t-indpair:We can use a µ-modal pair ν -modally by using its first

component (ν ◦ µ)-modally and its second component ν-modally.

We will sometimes abbreviate uses of t-indpair by binding a pair

pattern instead of a variable. If the contramodality κ ⊣ µ is a modal-

ity (which is the case precisely when 0 · µ = 0), then we can create

a κ-modal first projection, since κ ◦ µ ≤ con. This allows us to form
the type of the second projection and hence the second projection

itself. In this case, we may instead take the projections as primitives,

add a definitional η-rule for them, and implement indν× in terms of

them. Typing rules for BoxµA are obtained by removing the second

component, i.e. BoxµA � (µ p A) × Unit. Again, a κ-modal unbox
function exists if 0 · µ = 0.

Example 3.1. A contrived example is perhaps most illuminating.

Let µ = ⟨0, 3, 7,⊤⟩ : 7 → 3. The function type (µ p x : A) → B x
depends on A with modality µ̄ = par \ (µ ◦ par) = ⟨0, 1, 4, 8,⊤⟩ :

8→ 4 and continuously on B. Meanwhile, B x depends on x with

modality par \ µ = ⟨0, 0, 3, 7,⊤⟩ : 7→ 4.

3.2 Erasure

Up to this point, the only inference rules that produce equality

judgements, are the β- and η-laws in Fig. 3 and the (omitted) con-

gruence and equivalence rules. However, βη-equality is an unsat-

isfying notion of equality in the current setting: we want to also

identify terms that are equal up to their irrelevant subterms. A

naive solution is to modify the congruence rules corresponding to

inference rules with irrelevant premises. There, we would simply

not require equality of the irrelevant subterms. For example, an

equality rule for t-app would say that f ⟨µ⟩a ≡ f ′⟨µ⟩a′ if f ≡ f ′

and a ≡ a′; except when µ = irr, then we would not require a ≡ a′.
This could be formulated in terms of an erasure function ⌊⌞⌟⌋ for

which

⌊
f ⟨irr⟩a

⌋
:⊜
⌊
f
⌋
⟨irr⟩•, and

⌊
f ⟨µ⟩a

⌋
:⊜
⌊
f
⌋
⟨µ⟩⌊a⌋ for all

other µ (where⊜ denotes syntactic equality of de Bruijn terms). We

could then say that t ≡ t ′ whenever ⌊t⌋ ⊜
⌊
t ′
⌋
. However, in Exam-

ple 1.6, we saw irrelevance arise as the composite irr = par ◦ shi.
Without special treatment of par and shi, the irrelevant subterms

of Example 1.6 will be checked for equality.

For this reason, we need an i-erasure function ⌊⌞⌟⌋i for each
i ∈ {0, . . . ,n,⊤}, such that ⌊t⌋i is the term t , considered up to

syntactically obvious i-relatedness. Then we can set

⌊
f ⟨µ⟩a

⌋
i :⊜⌊

f
⌋
i ⟨µ⟩⌊a⌋i ·µ . If we then apply ⌊⌞⌟⌋0 to two terms to find out if they

are equal, we will end up applying ⌊⌞⌟⌋⊤ to irrelevant subterms,

which we define to always yield • as all terms are ⊤-related. The

rule t-eq-erase then asserts that judgemental equality, and hence

also the conversion rule t-conv, only consider terms up to their

irrelevant subterms.

Note that we sometimes need to compare erased terms from

different types and contexts. For example, when we want to check

that (µ p a,b) ≡ (µ p a′,b ′) : (µ p x : A) × B[x], we will check that

⌊a⌋
0·µ ⊜

⌊
a′
⌋

0·µ and ⌊b⌋
0
⊜
⌊
b ′
⌋

0
. Here, b : B[a] and b ′ : B[a′]

live in different types; however since ⌊a⌋
0·µ ⊜

⌊
a′
⌋

0·µ , the modal-

ity of B guarantees that ⌊B[a]⌋
1
⊜
⌊
B[a′]

⌋
1
, i.e. the types are

1-related so that 0-relatedness of the terms is meaningful. When

erasing λ-expressions, we may even end up comparing erased func-

tion bodies with variables of different type in the context; again,

the appropriate erasures of the types will match.

For this reason, we define the erasure functions not just on terms,

but also on contexts and judgements. They are defined as follows:

for terms, we simply set ⌊t⌋⊤ :⊜ •, while ⌊⌞⌟⌋i is pushed through

to µ-modal subterms as ⌊⌞⌟⌋i ·µ . For variables, we define ⌊x⌋i :⊜ x
if i < ⊤. For contexts, we define ⌊()⌋i := () and

⌊
Γ, µ p x : A

⌋
i :=

(⌊Γ⌋i , µ p ⌊x⌋i ·µ : ⌊A⌋i ·µ ·par). When applying ⌊⌞⌟⌋i to a judgement,

we apply ⌊⌞⌟⌋i to the context and any terms (before the colon) on

the right, and ⌊⌞⌟⌋i ·par to any types (behind the colon or in the type
judgement) on the right. We remark that, if i ≤ j , then i-relatedness
implies j-relatedness and hence ⌊⌞⌟⌋ j factors over ⌊⌞⌟⌋i . Note that
there is no type theory of erased objects; instead erased judgements

should be seen as equivalence classes of non-erased judgements.

The idea of dealing with judgemental i-relatedness as a relation on

derivable judgements is due to Andrea Vezzosi; when this relation

turned out to be an equivalence relation, we chose to present the

partition as an erasure function instead.

Example 3.2. The list terms in Example 1.6 both 0-erase to

cons A • • • a (if (List• A) b (nil A • •) (cons A • • • a′ as)). (9)

Example 3.3. Continuing Example 1.2, we have:

⌊irr p n : N,x : N,xs : Listn N⊢0cons N n (s n) _ x xs : Listsn N⌋0
= (irr p • : •,x : N,xs : List• N ⊢0 cons N • • • x xs : List• N).

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Andreas Nuyts and Dominique Devriese

3.3 Propositional Relatedness and Internal Parametricity

Just as modality-aware equality checking relies on an erasure func-

tion for every i because it needs to detect i-relatedness of subterms,

modality-aware and in particular parametricity-aware equality

proving relies on types encoding the proposition ‘a0 and a1 are

i-related’, and of course operators for constructing and using ele-

ments of those types. For space reasons, we only give a high-level

discussion.

Like earlier accounts of internal parametricity [8, 24, 26] and

univalence [10], we make use of a special interval pseudo-type I
containing constants 0 and 1 that are related. In our setting, I has
depth 1 and the constants 0 and 1 are seen as 1-related, but not

0-related. Write i : 1 → n for the modality such that j · i equals 1

if j ≥ i and 0 otherwise, e.g. 2 = ⟨0, 0, 1, . . . , 1⟩ : 1 → n + 2 and

⊤ = hoc : 1→ n. One can show that µ \ i = i · µ. Then a function

b : (i p α : I) → B α (called an i-edge) can serve as a proof that

b 0 ⌢i b 1 and the codomain B : (par \ i = i + 1 p I) → Un
ℓ

gives us the proof of B 0⌢U
n
ℓi+1
B 1 according to which this is the

case. Triviality of the ⊤-relation is internalized by allowing the

user to create ad hoc functions from I by giving values only for 0
and 1. These simple observations allow us to reason about relations

internally.

Example 3.4. The constant edge λ_.a : (i p I) → A shows that

every object a : A is i-related to itself. If j ≥ i , then j ≤ i , so that

i-edges a : (i p α : I) → A α weaken to j-edges λ(j p α : I).a⟨i⟩α :

(j p α : I) → A α .

Example 3.5 (Pairs). Consider the i-edge of pairs λ(i p α : I).(µ p
a α ,b α) : (i p α : I) → (µ p x : A) × B α x . Using the typing rules

for pair types, we see that this is well-typed if

a : (i · µ p α : I) → A α A : (i · µ + 1 p I) →Um
ℓ

b : (i p α : I) → B α (a α) B : (i + 1 p I) → (par \ µ p A α) →Un
ℓ

where we assume ⊤ + 1 = ⊤. This is exactly as one would expect

from a relational perspective.

Example 3.6 (Functions). Consider an i-edge of functions f : (i p
α : I) → (µ p x : A α) → B α x . For all j ≥ i , it maps (j · µ)-edges
a : (j · µ p α : I) → Aα to j-edges λ(j p α : I). f α (a α). However, we

cannot prove that a term such as f can be constructed by giving f 0,
f 1 and a sensible actions on edges. A generalization of Moulin’s

Φ-operator [24] would prove this, but is not covered by our model.

Example 3.7 (Types). An (i + 1)-edge A : (i + 1 p I) →Un
ℓ
allows

us to consider, for all j ≥ i , the j-edges (j p α : I) → A α . However,

we cannot construct a term such asA by givingA 0,A 1 and notions
of j-edges for j ≥ i . A generalization of Moulin’s Ψ-operator [24]
would allow this, but is again not covered by our model.

As soundness of Moulin’s axioms is not covered by our model,

we resort to the less expressive alternative given by the Glue and

Weld types in our previous work [26]. Among other things, Glue

allows us to compose functions A′ → A and B′ → B with an

i-edge A ⌢U
n
ℓi B, yielding an i-edge A′ ⌢U

n
ℓi B′. Weld allows

composition with functions in reverse direction.

Identity extension Finally, as in our previous work [26], we de-

cree by axiom that all non-dependent 0-edges (0 p I) → B are in fact

constant, so that homogeneous propositional 0-relatedness becomes

equivalent to propositional equality. We leave the computational

content of this axiom for future work, so for now applications of

the J-rule to this axiom are stuck terms.

4 Applications

We briefly discuss three applications of our type system: Church

encoding and algebra, intersection and union types, and sized types.

Church encoding and algebra Let F be a level-preserving func-

tor on types of depth n, i.e. an operator F : Un
ℓ
→ Un

ℓ
for every

level ℓ (irrelevant in ℓ), which also has an action on functions and

which satisfies the functor laws judgementally. The inductive type

with a single continuous constructor FX → X can be mimicked by

the Church encoding

MuFℓ :≡ (par p X : Un
ℓ) → (FX → X) → X . (10)

As in §2.4, this can be uncurried to

(par p (X , boxstr (mkX)) : AlgℓF) → X (11)

where AlgℓF :≡ (X : Un
ℓ) × Box

str (FX → X) (12)

is the type of F -algebras. This reveals the meaning of MuFℓ : to
give an element of the Church encoding, is to give a canonical

(parametric) element that exists in every F -algebra of level ℓ. This
clean algebraic formulation of Church encoding is possible thanks

to the novel structural modality.

One can easily show that MuFℓ is itself an F -algebra; call its
structure mkMuFℓ . Write foldℓ X mkX q :≡ q X mkX . Define
↓ : MuFs ℓ → MuFℓ by restricting the first argument to a smaller

universe. Disregarding predicativity issues, we can see ↓ as the

identity, in which caseMuF really is the initial F -algebra:

Theorem 4.1 (Initiality). Assume we have (par p B : Un
s ℓ), an

algebra structure (con p mkB : FB → B) and an algebra morphism
(con p f : MuFℓ → B) for which f ◦mkMuFℓ ≡ mkB ◦ F⃗ f . Then
we can prove f ◦ ↓ =(MuFs ℓ→B) folds ℓ B mkB propositionally.

We also have the dual theorem for co-algebras. These results are

proven as in our previous work [26]. An important difference is that

previously the internal parametricity operators had a pointwise

dependency, corresponding in the current system to hoc : 1→ 1.

Since this modality has no left inverse, it could not be cancelled,

yielding a proof of the initiality theoremwith an ad hoc dependency

on mkB and f . In the current setting, we can instead use the finer

structural modality, which is left inverted by parametricity, yielding

a proof continuous in mkB and f , to which we can apply further

parametricity arguments.

Theorem 4.2. We have a continuous dependent eliminator

indMuF : (par p C : (str p MuFℓ) →U
n
s ℓ) →((

p∗ : F ((q : MuFℓ) ×C q)
)
→ C (mkMuFℓ (F⃗ fst p

∗))
)
→

(q : MuFs ℓ) → C (↓ q).

Observe how the eliminated q comes from a higher-level type

than the one used in the elimination clause. A somewhat dual

result is that we can prove, up to predicativity issues, that bisimilar

Church-encoded streams are equal.

Sized types Let F be a functor as before. Write ∃ and ∀ for irrele-

vant quantification over the naturals. A sized F -algebra is defined

to be a type family T : (shi p σ : N) → Un
ℓ
equipped with an

operation mkT : ∀σ .F (∃(τ < σ).T τ) → T σ . We define

M̂uFℓ σ :≡ (par p X : (shi p ω : N) →Un
ℓ) →

(∀ω .F (∃(τ < ω).X τ) → X ω) → X σ . (13)

Using proof techniques by Vezzosi [26], one can show that under

reasonable conditions (e.g. F is a finitely branching container func-

tor) and ignoring predicativity issues, we have ∃σ .M̂uF σ � MuF .
8

Degrees of Relatedness LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Dually, if F is any container functor, then up to predicativity issues

we have ∀σ .N̂uF σ � NuF . The main novelty here with respect to

our previous work [26] is that we now use (shape-)irrelevant quan-

tification over N instead of continuous/parametric quantification

over a special Size type; and that many propositional equalities

become definitional thanks to the erasure system. In practice, we

will instead add size-indexed inductive types to our type system

as primitives. In other words, our account of shape-irrelevance

supports the applications that Abel et al. [4] introduced it for.

Intersection and Union Types A line of work for which we can

cite [11, 21] treats intersection (S ∩T) and union (S ∪T) types in a

manner similar to the product (S ×T) and the disjoint union (S ⊎T)
respectively, in order to achieve type inference in the presence of in-

tersection and union types. Concretely, the type system is equipped

with an erasure function which erases annotations required only

for type inference, and A ∩ B is inhabited by pairs (s, t) for which
s : S and t : T have equal erasure; the pair then also erases to the

same expression. Similarly, in S ∪T we find terms (inl s) and (inr t)
which are indistinguishable when s : S and t : T have equal erasure;

the tags inl and inr are erased.
Remarkably, we can mimick this approach using irrelevant quan-

tification over the booleans, if we make the sound assumption that

we can create a function λb .(if ν p b then ctrue else cfalse) : (ν p b :

Bool) → C b by giving terms ctrue : C true and cfalse : C false such
that ⌊ctrue⌋i ⊜

⌊
cfalse

⌋
i whenever i · ν = ⊤. Define:

S ∩T :≡ (irr p b : Bool) → (if shi p b then S else T),
(s, t) :≡ λ (irr p b : Bool).(if irr p b then s else t),
fst p :≡ p⟨irr⟩true
snd p :≡ p⟨irr⟩false
S ∪T :≡ (irr p b : Bool) × (if shi p b then S else T),
inl s :≡ (irr p true, s),
inr t :≡ (irr p false, t).

Clearly then, ∩ and ∪ do not satisfy any definitional commutativity,

associativity, distributivity or idempotency laws. Moreover, types

need to have equal 1-erasure before we can take their intersection

or union, e.g. we cannot considerN∪Bool as the shape-irrelevant if-
expression that implements ∪ will reject these operands for having

different 1-erasure, but we can take the union of List4 A→ List4 A
and List6 A→ List6 A. We see this as a feature: it would be equally

sensible to expect N∪Bool � N⊎Bool as it is to expect N∪Bool �
Unit. We prefer to err on the safe side and reject the type altogether.

When we consider terms, we see that if ⌊s⌋
0
⊜ ⌊t⌋

0
, then inl s ≡

inr t as both terms 0-erase to (irr p •, ⌊s⌋
0
) via their implementation.

Unfortunately ⌊S ∪T ⌋
1
̸⊜ ⌊S⌋

1
and ⌊inl s⌋

0
̸⊜ ⌊s⌋

0
, i.e. comparison

between unions and non-unions is not presently supported as it is

more difficult to prove it sound. Dually, we obtain similar results.

5 Soundness: The Presheaf Model

We give here a high-level discussion of the denotational model, and

refer to our technical report [25] for details.

We define a depth n reflexive graph Γ to be a diagram in Set

of the form

Γ⊥ r // Γ0
w1

0

// Γ1
w2

1

// . . . wn
n−1

// Γn

s
vv

t

hh (14)

which need not be commutative but should satisfy s ◦wn
n−1
◦ . . . ◦

w1

0
◦ r = id and similar for t. For n = 0, this is just a reflexive graph.

A depth −1 reflexive graph Γ is defined to be just any set Γ⊥. An
element of Γ⊥ is called a point, an element of Γi an i-edge. A depth

n reflexive graph can be seen as a (contravariant) presheaf over

a category RGn with n + 2 objects ⊥, 0, 1, . . . ,n. By considering

presheaves over a somewhat bigger category that also contains

monoidal products such as 0 ⊗ 2 ⊗ 1 with ⊥ as the monoidal unit,

we can define various notions of depthn cubical sets. The reasons
for using cubical sets rather than graphs are all technical; for the

sake of the exposition here one may think of cubical sets as graphs.

Every presheaf category constitutes a model of dependent type

theory with basic type formers and universes [12, 13]. We model

judgements of depthn in the category of depthn cubical sets. Modal-

ities and contramodalities are interpreted as functors that preserve

the structural rules of type theory. Their definition is conceptually

straightforward: for a (contra)modality µ, we set (µΓ)⊥ = Γ⊥ and

(µΓ)i := Γi ·µ where Γ⊤ := Γ⊥ × Γ⊥.
We show that the entire type system can be modelled using only

semantic types that are discrete. A graphA is discrete if r : A⊥ → A0

(or, in the depth−1 case (id, id) : A⊥ → A⊥×A⊥) is an isomorphism.

This is generalized to ‘dependent graphs’ using a lifting property.

Erasure Unfortunately, we do not expect that the erasure func-

tions can be given meaning directly in the current model. For this

reason, we take an intermediate step where we synthesize a proof

of a ⌢i b whenever ⌊a⌋i ⊜ ⌊b⌋i in a slightly extended but erasure-

free type system. This system can then be properly interpreted in

the model.

6 Related and Future Work

Relation to some other type systems MLTT without universe

cumulativity embeds into our system if we interpret Uℓ as U ℓ
ℓ

and annotate every dependency with continuity (adjusted using up
and dn as in §2.6). Functions to small types are then automatically

parametric, as several authors showed [6, 15, 31]. The core type

system of ParamDTT [26] with cumulativity but without function

extensionality, embeds if we interpret Uℓ as Box⟨0,1⟩ U1

ℓ
, i.e. all

types have depth 1 and the universe is forced to have depth 1 as

⟨0, 1⟩ : 2→ 1 forgets the 2-relation. Moreover, the judgement Γ ⊢
T type is mapped to hoc\ Γ ⊢1 T type, which entails µ \ Γ ⊢1 T type
for every µ : 1 → 1. The pointwise, continuous and parametric

modalities map to hoc = ⟨0, 0⟩, con = ⟨0, 1⟩, up ◦ par = ⟨1, 1⟩ : 1→

1 respectively. Predicative System Fω (see [16] for predicative

System F) embeds into our system if we give types depth 0 and kinds

depth 1, interpreting ∗ℓ asU
0

ℓ
, and annotating every dependency

with con = hoc : 0 → 0, con : 1 → 1 or dn = par : 1 → 0.

Church-style versions of the implicit calculus of constructions

[7, 22, 23] do not embed into our system if we want to map the

implicit modality to irrelevance, as the type may not be shape-

irrelevant, but we may map implicitness to parametricity if we

disable the special conversion rule which allows type-checking

time erasure. Pfenning’s notion of irrelevance [27] does map to

irrelevance in our system, but we do not support intensionality.

Modalities andmodes Modalities describing function behaviour

in type theory have been applied to: modal logic (eponymously)

[28], variance of functors [1, 2, 17], intensionality vs. extensional-

ity [27], irrelevance [3, 4, 7, 22, 23, 27, 29], shape-irrelevance [4],

parametricity [26], globality [18] and more.

The treatment in terms of order, composition and left division has

been developed by Pfenning [27] and Abel [1, 2] and is the basis for

the Agda implementation of (shape)-irrelevance. A generalization

to a multi-mode system, where every type gets assigned a mode (in

our case, a depth) which defines the set of available modalities for

functions from/to that type, is described by Licata et al. [19, 20].

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Andreas Nuyts and Dominique Devriese

Irrelevance and erasure We are aware of two approaches to

type-checking time erasure of irrelevant data. One is to view ir-

relevance as a property of dependencies, i.e. as a modality; see

the previous paragraphs for related work and Example 1.4 for a

more detailed comparison. The other is to view irrelevance as a

property of types, leading to a universe of propositions (as in Coq)

whose proofs may be erased (which Coq does not currently do);

this corresponds to our types of depth −1. Note that there is no

analogue of shape-irrelevance for the latter approach. Compile-time
erasure, which uses different techniques to achieve different goals

(efficiency vs. ease of proving) is beyond the scope of this section.

Parametricity in and of dependent type theory It is known

[6, 9, 15, 31] that all functions in dependent type theory (DTT)

preserve relatedness — in our terminology: that DTT is continuous.

Takeuti [31] and Atkey et al. [6] moreover prove the identity ex-

tension lemma for small types, a result that can be phrased in our

setting as: all continuous functions with small (depth 0) codomain

are parametric (see Fig. 2). Bernardy, Coquand, and Moulin [8, 24]

devise internal operators for building ‘cheap’ proofs of ‘free’ the-

orems [33]; however these operators only exploit continuity, not

parametricity. In our previous work [26] we used a parametricity

modality to allow for internal operators that do exploit parametric-

ity. Atkey et al. [6] prove their results in a reflexive graph model,

which has been enhanced by Bernardy, Coquand, andMoulin [8, 24]

to a cubical set model (cubical sets can be seen as iterated reflexive

graphs). We previously further enhanced the model by annotating

every edge with whether it witnesses 0-relatedness (a ‘path’) or

1-relatedness (a ‘bridge’) [26]; now instead we annotate every edge

with the degree of relatedness it witnesses.

Computation, and cubical homotopy type theory (HoTT) Our

type system is a sound proof environment, but not a good program-

ming language: when we apply the J-rule to the identity extension

axiom (§3.3), we get a stuck term. In order to achieve a canonicity

result, we likely need to use operators similar to the path compo-

sition operator from cubical HoTT [10], that allow us to compute

transport along equality proofs obtained from the identity exten-

sion axiom. From there, we believe it should be possible to merge

our system with cubical HoTT into a system for relational HoTT.

Acknowledgments

Thanks to Andreas Abel, Paolo Capriotti, Luigi Liquori, Claude

Stolze and Andrea Vezzosi for related discussions, and to the anony-

mous reviewers for valuable feedback. Andreas Nuyts and Do-

minique Devriese hold a Ph.D. Fellowship and a Postdoctoral Man-

date (resp.) from the Research Foundation - Flanders (FWO).

References

[1] Andreas Abel. 2006. A Polymorphic Lambda-Calculus with Sized Higher-Order
Types. Ph.D. Dissertation. Ludwig-Maximilians-Universität München.

[2] Andreas Abel. 2008. Polarised subtyping for sized types. MSCS 18, 5 (2008),

797–822. https://doi.org/10.1017/S0960129508006853
[3] Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality

in Predicative Type Theory. Logical Methods in Computer Science 8, 1 (2012), 1–36.
https://doi.org/10.2168/LMCS-8(1:29)2012 TYPES’10 special issue.

[4] Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017. Normalization by

Evaluation for Sized Dependent Types. Proc. ACM Program. Lang. 1, ICFP, Article
33 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110277

[5] Andreas M. Abel and Brigitte Pientka. 2013. Wellfounded Recursion with Copat-

terns: A Unified Approach to Termination and Productivity. In ICFP ’13. ACM,

New York, NY, USA, 185–196. https://doi.org/10.1145/2500365.2500591
[6] Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A Relationally Parametric

Model of Dependent Type Theory. In POPL ’14. https://doi.org/10.1145/2535838.
2535852

[7] Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions

as a Programming Language with Dependent Types. In FOSSACS ’08. https:
//doi.org/10.1007/978-3-540-78499-9_26

[8] Jean-Philippe Bernardy, Thierry Coquand, and GuilhemMoulin. 2015. A Presheaf

Model of Parametric Type Theory. Electron. Notes in Theor. Comput. Sci. 319
(2015), 67 – 82. https://doi.org/10.1016/j.entcs.2015.12.006

[9] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for Free

— Parametricity for Dependent Types. Journal of Functional Programming 22, 02

(2012), 107–152. https://doi.org/10.1017/S0956796812000056
[10] Cyril Cohen, Thierry Coquand, SimonHuber, andAndersMörtberg. 2015. Cubical

Type Theory: A Constructive Interpretation of the Univalence Axiom. In TYPES
’15. https://doi.org/10.4230/LIPIcs.TYPES.2015.5

[11] Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze. 2016. A

Realizability Interpretation for Intersection and Union Types. In APLAS 2016.
187–205. https://doi.org/10.1007/978-3-319-47958-3_11

[12] Martin Hofmann. 1997. Syntax and semantics of dependent types. Springer London,
London, Chapter 4, 13–54. https://doi.org/10.1007/978-1-4471-0963-1_2

[13] Martin Hofmann and Thomas Streicher. 1997. Lifting Grothendieck Universes.

Unpublished note. (1997).

[14] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of

Reactive Systems Using Sized Types. In POPL ’96. ACM, New York, NY, USA,

410–423. https://doi.org/10.1145/237721.240882
[15] Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational

Parametricity in the Extensional Calculus of Constructions. In CSL 2013 (LIPIcs),
Vol. 23. Dagstuhl, Germany, 432–451. https://doi.org/10.4230/LIPIcs.CSL.2013.432

[16] Daniel Leivant. 1991. Finitely stratified polymorphism. Information and Compu-
tation 93, 1 (1991), 93 – 113. https://doi.org/10.1016/0890-5401(91)90053-5

[17] Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory.

Electr. Notes Theor. Comput. Sci. 276 (2011), 263–289. https://doi.org/10.1016/j.
entcs.2011.09.026

[18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018. Internal

Universes in Models of Homotopy Type Theory. In FSCD ’18.
[19] Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a 2-Category of

Modes. In LFCS ’16. https://doi.org/10.1007/978-3-319-27683-0_16
[20] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibrational

Framework for Substructural and Modal Logics. In FSCD ’17. 25:1–25:22. https:
//doi.org/10.4230/LIPIcs.FSCD.2017.25

[21] Luigi Liquori and Simona Ronchi Della Rocca. 2007. Intersection-types à la

Church. Inf. Comput. (2007). https://doi.org/10.1016/j.ic.2007.03.005
[22] Alexandre Miquel. 2001. The Implicit Calculus of Constructions. In TLCA. 344–

359. https://doi.org/10.1007/3-540-45413-6_27
[23] Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure

Type Systems. 350–364. https://doi.org/10.1007/978-3-540-78499-9_25
[24] Guilhem Moulin. 2016. Internalizing Parametricity. Ph.D. Dissertation. Chalmers

University of Technology, Sweden.

[25] Andreas Nuyts. 2018. Presheaf Models of Relational Modalities in Dependent Type
Theory. Technical Report. KU Leuven, Belgium.

[26] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric

quantifiers for dependent type theory. PACMPL 1, ICFP (2017), 32:1–32:29. https:
//doi.org/10.1145/3110276

[27] Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in

Modal Type Theory. In LICS ’01. https://doi.org/10.1109/LICS.2001.932499
[28] Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal

logic. MSCS 11, 4 (2001), 511–540. https://doi.org/10.1017/S0960129501003322
[29] Jason Reed. 2003. Extending Higher-Order Unification to Support Proof Irrele-

vance. In TPHOLs 2003. 238–252. https://doi.org/10.1007/10930755_16
[30] John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism.. In

IFIP Congress. 513–523.
[31] Izumi Takeuti. 2001. The Theory of Parametricity in Lambda Cube. Technical

Report 1217. Kyoto University.

[32] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, IAS.

[33] Philip Wadler. 1989. Theorems for Free!. In FPCA ’89. ACM, New York, NY, USA,

347–359. https://doi.org/10.1145/99370.99404

10

https://doi.org/10.1017/S0960129508006853
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3110277
https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1016/j.entcs.2015.12.006
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1007/978-3-319-47958-3_11
https://doi.org/10.1007/978-1-4471-0963-1_2
https://doi.org/10.1145/237721.240882
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.1016/0890-5401(91)90053-5
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1016/j.ic.2007.03.005
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/10930755_16
http://homotopytypetheory.org/book
https://doi.org/10.1145/99370.99404

	Abstract
	1 Introduction
	2 Depths and Modalities
	2.1 Types, Depth and Relations
	2.2 Modalities
	2.3 Modality of the Codomain
	2.4 Modalities Worthy of a Name
	2.5 Left Division and Contramodalities
	2.6 Depth as information

	3 The Type System
	3.1 Annotating Martin-Löf Type Theory
	3.2 Erasure
	3.3 Propositional Relatedness and Internal Parametricity

	4 Applications
	5 Soundness: The Presheaf Model
	6 Related and Future Work
	Acknowledgments
	References

