
ar
X

iv
:1

80
5.

11
02

1v
2

 [
cs

.P
L

]
 3

 A
ug

 2
02

0

A Generalized Modality for Recursion
Extended Version

Adrien Guatto
University of Bamberg
adrien@gua�o.org

Abstract

Nakano’s later modality allows types to express that the output
of a function does not immediately depend on its input, and thus
that computing its fixpoint is safe. This idea, guarded recursion,
has proved useful in various contexts, from functional program-
ming with infinite data structures to formulations of step-indexing
internal to type theory. Categorical models have revealed that the
later modality corresponds in essence to a simple reindexing of the
discrete time scale.

Unfortunately, existing guarded type theories suffer from sig-
nificant limitations for programming purposes. These limitations
stem from the fact that the later modality is not expressive enough
to capture precise input-output dependencies of functions. As a
consequence, guarded type theories reject many productive defini-
tions.

Combining insights from guarded type theories and synchro-
nous programming languages, we propose a new modality for
guarded recursion. This modality can apply any well-behaved rein-
dexing of the time scale to a type. We call such reindexings time

warps. Several modalities from the literature, including later, corre-
spond to fixed time warps, and thus arise as special cases of ours.

Keywords Guarded Recursion; Functional Programming;
Streams; Type Systems; Category Theory; Synchronous Program-
ming.

1 Introduction

Consider the following piece of pseudocode.

nat = fix natrec where natrec xs = 0 :: (map (λx.x + 1) xs)

This defines nat, the stream of natural numbers, as the fixpoint
of a function natrec. How does one make sure that this definition
is productive, in the sense that the next element of nat can always
be computed in finite time?

Guarded recursion, due to Nakano [27], provides a type-based
answer to this question. In type systems such as Nakano’s, types
capture precedence relationships between pieces of data, ex-
pressed with respect to an implicit discrete time scale. For ex-
ample, natrec would receive the type natrec : ◮ Stream Int →

Stream Int. The type Stream Int describes streams which un-
fold in time at the rate of one new element per step. The later (◮)
modality shifts the type it is applied to one step into the future;
thus, ◮ Stream Int also unfolds at the rate of one element per
step, but only starts unfolding after the first step. Hence, the type
of natrec expresses that thenth element of its output stream, which
is produced at the nth step, does not depend on the nth element

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

2018. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Recordwas published in LICS ’18: 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,
United Kingdom, h�ps://doi.org/10.1145/3209108.3209148.

of its input stream, since the latter arrives at the (n + 1)th step.
This absence of instantaneous input-output dependence guaran-
tees the productivity of fix natrec. Guarded recursion enforces this
uniformly: fixpoints are restricted to functions with a type of the
form ◮ τ → τ .

Nakano’s original insight has led to a flurry of proposals [3, 4, 6–
8, 13, 20, 21, 26, 31]. Recent developments have integrated sev-
eral advances—such as clock variables [3] or the constant (�)
modality [13]—into expressive languages capturing many recur-
sive definitions out of reach of more syntactic productivity checks.
The topos of trees [7] provides an elegant categorical setting where
such languages find their natural home.

Unfortunately, guarded recursion is currently limited by the in-
ability of existing languages to capture fine-grained dependencies.
Consider the following function, which returns a pair of streams.

natposrec = fun (xs, ys).(0 :: ys,map (λx.x + 1) xs)

Its fixpoint is productive. This can be seen in the table below,which
gives the first iterations of (nat, pos) = natposrec(nat, pos).

nat ⊥ 0 :: ⊥ 0 :: ⊥ 0 :: 1 :: ⊥ 0 :: 1 :: ⊥ . . .

pos ⊥ ⊥ 1 :: ⊥ 1 :: ⊥ 1 :: 2 :: ⊥ . . .

Each stream grows infinitely often but only by one element every
two steps. The later modality, by itself, cannot capture this growth
pattern, and thus this program cannot be expressed as is in the
guarded languages we know of. Since natposrec is simply natrec

modified to expose the result of a subterm, this shows that existing
systems can be overly rigid. Clouston et al. [13, p. 12] give other
examples hampered by similar problems.

In our view, the example above does not indicate a problem
with guarded recursion per se, but rather illustrates the need for
other temporal modalities beyond later (and constant). Like later
and constant, these new modalities would apply temporal trans-
formations onto types, reindexing them to change how much data
is available at each step. In the example above, one would use a
modality expressing growth at even time steps, and another for
growth at odd time steps. Moreover, these new modalities should
be interrelated, generalizing the known interactions between later
and constant.

Contribution In this paper, we propose a theory of temporal
modalities subsuming later and constant. Rather than studying a
fixed number of modalities, we merge all of them into a single
modality ∗ parameterized by well-behaved reindexings of the dis-
crete time scale. We call such reindexings time warps and speak
of the warping modality. The later and constant modalities corre-
spond to specific time warps, and thus arise as special cases of ∗.

We build a simply-typed λ-calculus, Core λ∗, around the warp-
ing modality. Core λ∗ integrates a notion of subtyping which in-
ternalizes the mathematical structure of time warps. We describe
its operational semantics, as well as a denotational semantics
in the topos of trees. We show that the type-checking problem

1

http://arxiv.org/abs/1805.11021v2
https://doi.org/10.1145/3209108.3209148

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

for Core λ∗ terms, while delicate because of subtyping, is actually
decidable.

2 The Calculus

2.1 TimeWarps

Let ω denote the first infinite ordinal and ω + 1 denote its succes-
sor, which extends ω with a maximal element ω. It is technically
convenient to see 0 as a special vacuous time step, and thus we
assume that ω begins at 1. (Clouston et al. [13] follow the same
convention.) However, ω + 1 still begins with 0. If P is a preorder,
we denote by P̂ the set of its downward-closed subsets ordered by
inclusion, and write y : P → P̂ for the order embedding sending x
to {x ′ | x ′ ≤ x}. Observe that ω̂ is isomorphic toω+1, with the iso-
morphism sending the empty subset to 0 and the maximal subsetω
to itself inω+1. Thus, abusing notation, we write y : ω → ω+1 for
the map sending positive natural numbers to their image in ω + 1.

Definition 1 (Time Warps). A time warp is a cocontinuous (sup-

preserving) function from ω + 1 to itself. Equivalently, it is a mono-

tonic function p : ω + 1 → ω + 1 such that p(0) = 0 and p(ω) =⊔
n<ω p(n).

We write p ≤ q when p is pointwise smaller than q, that is,
when p(n) ≤ q(n) holds for all n. Given time warps p and q, we
write p ∗q for q ◦p, which is cocontinuous. So is the identity func-
tion. Moreover, function composition is left- and right-monotonic
for the pointwise order. As a consequence,

Property 1. Timewarps, ordered pointwise and equippedwith com-

position, form a partially-ordered monoid, denotedW.

The following time warps play a special role in our develop-
ment.

id(n) = n 0(n) = 0 −1(n) = n − 1 ω(n) = ω

The definitions above are given for 0 < n < ω since the values
at 0 and ω follow from cocontinuity. The time warps 0 and ω are
respectively the least and greatest elements ofW.

2.2 Syntax and Declarative Type System

Core λ∗ is a two-level calculus distinguishing between implicit

terms and explicit terms. Implicit terms correspond to source-level
programs. Explicit terms decorate implicit terms with type co-
ercions. Coercions act as proof terms for the subtyping judg-
ment [9, 16]. They offer a convenient alternative to the manipu-
lation of typing derivations in non-syntax-directed type systems
such as ours.

Ground types and scalars We assume given a finite set of
ground types G and a family of pairwise disjoint sets (Sν)ν ∈G . The
elements of Sν are the scalars (ground values) of type ν ∈ G. We
denote by s the elements of S ,

⋃
ν ∈G Sν .

Types The types of Core λ∗ are those of simply-typed λ-calculus,
including products and sums, together with ground types, streams,
and our warping modality ∗p :

τ F ν | Stream τ | τ → τ | τ × τ | τ + τ | ∗p τ .

Informally, ∗p τ should be seen as a “p-times” faster version of τ ,
in the sense of providing p-times more data than τ per step, with
the caveat that if p is less than id, ∗p τ is actually “slower” than τ .

Γ ⊢ e : τ
Var

Γ, x : τ ⊢ x : τ

Fun

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun (x : τ1).e : τ1 → τ2

App

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Pair

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Proji∈{1,2}

Γ ⊢ e : τ1 × τ2

Γ ⊢ proji e : τi

Inji∈{0,1}

Γ ⊢ e : τ1+i

Γ ⊢ inj
τ2−i
1+i e : τ1 + τ2

Case

Γ ⊢ e : τ1 + τ2 Γ, xi : τi ⊢ ei : τ for i ∈ {1, 2}

Γ ⊢ casee of{inj1 x1 .e1 | inj2 x2 .e2} : τ

Head

Γ ⊢ e : Stream τ

Γ ⊢ head e : τ

Tail

Γ ⊢ e : Stream τ

Γ ⊢ tail e : ∗−1 Stream τ

Cons

Γ ⊢ e1 : τ Γ ⊢ e2 : ∗−1 Stream τ

Γ ⊢ e1 :: e2 : Stream τ

Const

s ∈ Sν

Γ ⊢ s : ν

Rec

Γ,x : ∗−1 τ ⊢ e : τ

Γ ⊢ rec (x : τ).e : τ

Warp

Γ ⊢ e : τ

∗p Γ ⊢ e by p : ∗p τ

SubR

Γ ⊢ e : τ α : τ <: τ ′

Γ ⊢ e ;α : τ ′

SubL

β : Γ <: Γ′ Γ
′ ⊢ e : τ

Γ ⊢ β ; e : τ

Struct

Γ ⊢ e : τ σ ∈ Σ(Γ; Γ′)

Γ
′ ⊢ σ [e] : τ

Figure 1. Typing Judgment

Typing Contexts Typing contexts are lists of bindings xi : τi
with the xi pairwise distinct. We use “·” for the empty context
and dom(Γ) for the finite set of variables present in Γ. Wewrite Γ(x)
for the unique τ such that (x : τ) occurs in Γ, if it exists.

Explicit Terms The typing judgment for explicit terms e

of Core λ∗ is given in Figure 1. Every typing rule from Var toCase
is a standard one from simply-typed λ-calculus with products and
sums. We describe every other rule in turn, introducing the corre-
sponding term formers as we go.

The typing rules for stream destructors (head e , tail e) and the
stream constructor (e1 :: e2) capture the fact that streams unfold
at the rate of one element per step. As a consequence, the tail of
a stream exists not now but later. Since the later modality corre-
sponds in our setting to the time warp −1, the result of tail and the
second argument of (::) must be of type ∗−1 Stream τ .

Core λ∗ terms include scalars from S. A scalar s is assigned the
unique ground type ν such that s ∈ Sν , as specified in rule Const.

Recursive definitions rec (x : τ).e follow the insight of Nakano:
the self-reference to x is only available later in the body e , and thus
here receives type ∗−1 τ in rule Rec.

The term e by p marks an introduction point for the warp-
ing modality. Intuitively, it runs e in a local time scale whose
relationship to the surrounding time scale is goverened by the
time warp p: the nth tick of the external time scale corresponds
to the p(n)th tick of the internal one. Thus, assuming e has
type τ , e by p has type ∗p τ . This change in the amount of data
produced comes at the price of a change in the amount of data con-
sumed: the free variables of e should themselves be under the ∗p
modality. The context ∗p Γ denotes Γ with ∗p applied to each of
its types.

Explicit terms may include type coercions, applied either co-
variantly or contravariantly. Covariant coercion application e ;α
applies the type coercion α to the result of e . Contravariant coer-
cion application β ;e coerces the free variables of e using the con-
text coercion β . We will describe both kinds of coercions in a few
paragraphs.

2

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

α : τ <: τ ′
id : τ <: τ

α1 : τ1 <: τ2 α2 : τ2 <: τ3

α1;α2 : τ1 <: τ3

α : τ <: τ ′

Stream α : Stream τ <: Stream τ ′

α1 : τ
′
1 <: τ1 α2 : τ2 <: τ

′
2

α1 → α2 : τ1 → τ2 <: τ
′
1 → τ ′2

α1 : τ1 <: τ
′
1 α2 : τ2 <: τ

′
2

α1 × α2 : τ1 × τ2 <: τ
′
1 × τ ′2

α1 : τ1 <: τ
′
1 α2 : τ2 <: τ

′
2

α1 + α2 : τ1 + τ2 <: τ
′
1 + τ

′
2

α : τ <: τ ′

∗p α : ∗p τ <: ∗p τ ′ (wrap, unwrap) : τ ≡ ∗id τ

(concatp,q , decatp,q) : ∗p ∗q τ ≡ ∗p ∗q τ inflate : ν <: ∗ω ν

(dist×, fact×) : ∗p (τ1 × τ2) ≡ ∗p τ1 × ∗p τ2

q ≤ p

delayp,q : ∗p τ <: ∗q τ

Figure 2. Subtyping Judgment

Structure maps Rule Struct is the only non-syntax-directed
rule in our system. It performs weakening, contraction, and ex-
change in a single step, depending on the chosen structure map be-
tween contexts [2, 15]. Structure maps σ ∈ Σ(Γ; Γ′) are functions
from dom(Γ) to dom(Γ′) such that Γ′(σ (x)) = Γ(x) for all x ∈ Γ.
The application of a structure map σ , seen as a variable substitu-
tion, to an explicit term e is written σ [e].

Type annotations Both λ-abstractions and injections must con-
tain type annotations. This technical choice ensures that explicit
terms are in Church style, and makes their typing judgment essen-
tially syntax directed (up to rule Struct).

Type Coercions A coercion α : τ <: τ ′ performs a type con-
version, transforming input values of type τ into output values
of type τ ′. The rules for this syntax-directed subtyping judgment
are given in Figure 2, where (α ,α ′) : τ ≡ τ ′ is a shorthand
for α : τ <: τ ′ and α ′ : τ ′ <: τ . They fit into three groups.

The first group contains the identity coercion and sequential
coercion composition. The identity coercion id does nothing. Two
coercions α1 and α2 can be composed to obtain α1;α2, assuming
the output type of α1 matches the input type of α2.

The second group contains one coercion former for each type
former. Such coercions allow us to coerce values in depth. Their
typing rules express that subtyping is a congruence for all type
formers in the language.

The third group is where the interest of our subtyping relation-
ship lies. It contains coercions reflecting the mathematical struc-
ture of the warping modality as subtyping axioms, including its in-
teractionwith other type formers. This group can be divided again,
now between several invertible coercions and a non-invertible one.

• Coercions wrap, unwrap, concatp,q , and decatp,q reflect
the monoidal structure of time warps at the type level. The
coercions dist× and fact× ensure that the warping modal-
ity commutes with products. The coercion inflate expresses
that ground types stay constant through time, i.e., ν <:

∗ω ν .
• The remaining coercion, delayp,q : ∗p τ <: ∗q τ , reflects
the ordering of time warps. Intuitively, it pushes data fur-
ther into the future, and must thus ensure that p(n) ≥ q(n)

at any step n. Its action cannot be undone when p , q; for
example, the coercion next , wrap; delayid,−1 : τ <: ∗−1 τ

has no inverse. (This coercion appears an an operator in
some guarded type theories [7, 13, . . .].)

Note that we did not need to introduce an explicit inverse
for inflate since one is already derivable as delayω, id ; unwrap :

∗ω ν <: ν .

Context Coercions A context coercion β is a finite map from
variables to coercions. We have β : Γ <: Γ′ iff dom(Γ) = dom(Γ′) ⊆

dom(β), and for every variable x ∈ dom(Γ), β(x) coerces Γ(x)

into Γ′(x). Context subtyping preserves the order of bindings. This
definition implies that rule SubL in Figure 1 can only be applied
when β(x) is defined for every free variable x of e .

Implicit Terms and Erasure We define implicit terms, de-
noted t , as explicit terms that do not contain any coercions. Each
explicit term e thus corresponds to a unique implicit term obtained
by removing every coercion present in e . We adopt the notations
of Melliès and Zeilberger [24], and writeU(e) for this implicit term.
We also write that e refines t , noted e < t , when U(e) = t .

An implicit term is well-typed simply if it has a well-typed re-
finer, in the sense expressed by the definition below.

Γ ⊢ t : τ ⇔ ∃e < t , Γ ⊢ e : τ (1)

2.3 Type-Checking Explicit Terms

The language of coercions and explicit terms enjoys uniqueness of
typing. The following result reflects this fact for coercions.

Property 2 (Uniqueness of Types for Coercions). For any coer-

cion α , for any type τ (resp. τ ′) there is at most one type τ ′ (resp. τ)

such that α : τ <: τ ′ holds.

The analogous result for explicit terms is more delicate since
rule Struct is not syntax-directed. Furthermore, the rule is not
admissible: its use is sometimes required in order to be able to
use another rule. One can prove that there are only three cases
where rule Struct is needed, establishing the following result.

Property 3. Any well-typed explicit term Γ ⊢ e : τ has a canonical

derivation where rule Struct is only used exactly once before every

instance of rules Var,Warp, and SubL.

This characterization provides almost immediately an abstract
deterministic algorithm to type-check explicit terms; see Appen-
dix B for details. Its correctness implies the expected result.

Property 4 (Uniqueness of Types for Explicit Terms). For any

fixed Γ and e , there is at most one type τ such that Γ ⊢ e : τ holds.

Type-checking an implicit term t is a much harder problem,
since it involves finding a well-typed refiner e < t . Moreover, this
refiner should be canonical in a certain sense. We study it in Sec-
tion 5.

2.4 Examples

We finish this section with a few examples illustrating the type sys-
tem, given mostly as implicit terms. We also assume that ground
values and types include the integers.

Example 2.1 (Constant Stream). This prototypical example de-
fines a constant stream of zeroes.

rec (zeroes : Stream Int).(0 :: zeroes) : Stream Int

3

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

This works as in other guarded-recursive languages: the stream
constructor (::) expects its second argument to have a type of the
form ∗−1 Stream τ (◮ Stream τ in other guarded type theories),
which is exactly the one provided by guarded recursion.

Example 2.2 (Non-productive Stream). The non-productive defi-
nition below does not define a stream, which by definition should
hold an infinite number of values.

rec (nothing : Stream Int).nothing – ill-typed!

This definition is ill-typed in Core λ∗ since, in the absence of a
coercion ∗−1 Stream Int <: Stream Int, we cannot apply rule Rec.

Example 2.3 (Silent Stream). While Example 2.2 does not define
a real stream holding an infinite number of values, it could be said
to define a “silent” stream holding no value at all. Such streams are
captured in Core λ∗ as inhabitants of ∗0 Stream τ , e.g.,

rec (nothing : ∗0 Stream Int).nothing : ∗0 Stream Int.

This definition is well-typed since the explicit term rec (nothing :

∗0 Stream Int).(nothing; concat−1,0) refines it and has

the expected type. Here, concat−1,0 coerces values of
type ∗−1∗0 Stream Int to values of type ∗−1 ∗ 0 Stream Int =

∗0 Stream Int.

Example 2.3 illustrates how Core λ∗ shifts the focus away from
productivity, seen as a yes-or-no question, to a more quantitative
aspect of program execution: the amount of data produced. Other
warps make it possible to capture other forms of partial defini-
tions, beyond completely silent streams. For example, writing 5
for the warp sending any finite n to 5, the type ∗5 Stream Int de-
scribes streams containing only 5 elements, all of them available
starting at the first time step. The type system of Core λ∗ ensures
that the non-existent elements in such partial streams can never
be accessed; in particular, in a well-typed program deconstructing
a silent stream xs (via head or tail) can only happen under a con-
text of the form C1[C2[−] by 0]. We will see in Section 3 that the
expression e in e by 0 is never actually executed.

Example 2.4. The example below implements the classic higher-
order functionmap on streams, specialized for streams of integers
since Core λ∗ is monomorphic. As usual, let x : τ = t1 in t2 is
shorthand for (fun (x : τ).t2) t1. We assume that function applica-
tion and by bind tighter than stream construction (::).

rec (map : (Int → Int) → Stream Int → Stream Int).

fun (f : Int → Int) (xs : Stream Int).

let ys : ∗−1 Stream Int = tail xs in f (head xs) :: (map f ys) by −1

Here, using by allows us to temporarily remove the ∗−1 modal-
ity from the type of map in order to perform the recursive call.
RuleWarp requiresmap, ys, and f to have types of the form ∗−1 τ .
This is already the case for map and ys, and can be achieved
for f using rule SubL with a context coercion sending f to next :
Int → Int <: ∗−1 (Int → Int) and the other variables to id.

Example 2.5. The definition given in Example 2.4, since it is
closed, can be put inside a local time scale driven by ω. It thus
receives the type ∗ω ((Int → Int) → Stream Int → Stream Int).
Such a type is in effect not subject to the context restriction
in ruleWarp, since for any p we have ∗ω τ <: ∗p ∗ω τ . Thus, ∗ω
corresponds to the constant (�) modality used in some guarded
type theories [13].

In the remaining examples, we represent certain time warps
as running sums of ultimately periodic sequences of numbers,
following ideas from n-synchrony [14, 29]. For example, the se-
quence (1 0)∞ represents the time warp sending 2n to n and 2n + 1
to n + 1 for any finite positive n, while the sequence (0 1)∞ rep-
resents the time warp sending both 2n and 2n + 1 to n. All
the time warps we have used up to now can be represented in
this way: id, 0, −1, and ω are represented by (1)∞, (0)∞, 0 (1)∞,
and ω (0)∞ respectively.

Example 2.6 (Mutual Recursion). As announced in Section 1,
the streams of natural and positive numbers can be defined in a
guarded yet mutually-recursive way in Core λ∗. This is achieved
by reflecting the rate at which each stream grows during a fixpoint
computationwithin its type. (In the definition below, we represent
the time warp −1 by the sequence 0 (1)∞ for consistency; in partic-
ular, the types of (::) becomes τ → ∗0 (1)∞ Stream τ → Stream τ .)

rec natpos : ∗(1 0)∞ Stream Int × ∗(0 1)∞ Stream Int.

let nat : ∗0 (1)∞ ∗(1 0)∞ Stream Int = proj1 natpos in

let pos : ∗0 (1)∞ ∗(0 1)∞ Stream Int = proj2 natpos in

((0 ::pos) by (1 0)∞, (map (fun (x : Int).x + 1) nat) by (0 1)∞

The uses of projections are well-typed since the warping modal-
ity distributes over products via the dist× coercion. We assume
that map has received the type given in Example 2.5, and thus its
use below by (0 1)∞ is well-typed. Since 0 (1)∞ ∗ (1 0)∞ = (0 1)∞, co-
ercing nat by concat0 (1)

∞
, (1 0)∞ gives the type ∗(0 1)∞ Stream Int,

which lets us use natwith type Stream Int under by (0 1)∞. For pos,
since 0 (1)∞ ∗ (0 1)∞ = 0 (0 1)∞ = (1 0)∞ ∗ 0 (1)∞, applying the
coercion concat0 (1)

∞
, (0 1)∞ ; decat(1 0)

∞
,0 (1)∞ lets us use pos with

type ∗0 (1)∞ Stream Int below by (1 0)∞.

Example 2.7. Clouston et al. [13, Example 1.10] present the Thue-
Morse sequence as a recursive stream definition which is difficult
to capture in guarded calculi. The productivity of this definition
follows from the fact that a certain auxiliary stream function h pro-
duces two new elements of its output stream for each new element
of its input stream. In Core λ∗, h can be given type Stream Bool →

∗(2)∞ Stream Bool, allowing us to implement the Thue-Morse se-
quence with guarded recursion. (See Appendix A.)

3 Operational Semantics

In this section, we present an operational semantics for explicit
terms in the form of a big-step, call-by-value evaluation judgment.
Intuitively, the evaluation judgment e ;γ ⇓n v expresses that the
value v is a finite prefix of length n of the possibly infinite result
computed by e in the environment γ . We will say that the evalua-
tion of e occurred “at step n”, or simply “at n” following the intu-
ition that n is a Kripke world. Another intuition is that this judg-
ment describes an interpreter receiving a certain amountn of “fuel”
which controls how many times recursive definitions have to be
unrolled [1].

In most fuel-based definitional interpreters, the fuel parame-
ter only decreases along evaluation, typically by one unit at each
recursive unfolding. In our case, its evolution is much less con-
strained: the amount of fuel may actually increase or decrease by
an arbitrary amount many times during the execution of a single
term. This behavior follows from the presence of time warps: to
evaluate e by p atn, one evaluates e at p(n). Nevertheless, we show

4

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

v : τ @ n

VScal

s ∈ Sν

s : ν @ n + 1

VCons

v1 : τ @ n + 1 v2 : Stream τ @ n

v1 ::v2 : Stream τ @ n + 1

VClosure

Γ, x : τ1 ⊢ e : τ2 γ : Γ @ n

(x .e){γ } : τ1 → τ2 @ n

VPair

v1 : τ1 @ n v2 : τ2 @ n

(v1,v2) : τ1 × τ2 @ n

VInji∈{1,2}

v : τi @ n

injiv : τ1 + τ2 @ n

VStop

stop : τ @ 0

VThunk

Γ ⊢ e : τ γ : Γ @ ω

box(e){γ } : τ @ ω

VWarp

v : τ @ p(n)

w(p,v) : ∗p τ @ n
γ : Γ @ n

dom(γ) = dom(Γ)

∀x ∈ dom(γ),γ (x) : Γ(x) @ n

γ : Γ @ n

Figure 3. Typing Judgment for Values and Environments

that the evaluation of a well-typed term always terminates regard-
less of the quantity of fuel initially provided.

Since the evaluation of a term at n might involve the evaluation
of one of its subterms at p(n) with p an arbitrary warp, we may
need to evaluate a term at 0 or ω. The former case is dealt with
using a dummy value stop which inhabits all types at 0. The lat-
ter case might seem problematic, as evaluating a term at ω should
intuitively result in an infinite object rather than a finite one. We
represent such results by suspended computations (thunks) to be
forced only when used at a finite n. This is a standard operational
interpretation of the constant modality [5, 13].

3.1 Values and Environments

The judgmentv : τ @ n expresses that a valuev is a prefix of some
infinite object of type τ at n ∈ ω + 1. Its rules are given in Figure 3.
For instance, if τ is of the form Stream τ ′, the number of elements
of type τ ′ contained in v is exactly n.

Closures, pairs, and injections are unremarkable. Stream pre-
fixes v1 ::v2 can only be well-typed at some n > 0, in which
case v2 is well-typed at n − 1. The dummy value stop inhabits all
types but only at 0. Thunks box(e){γ } inhabit types only at ω. Fi-
nally, warped values w(p,v) inhabit the warping modality, mark-
ing that v has been computed at p(n).

An environment γ has type Γ at n if all its constituent values
have types at n matching those prescribed by Γ.

3.2 Evaluation Judgment

The evaluation relation depends on several auxiliary judgments,
which depend on evaluation themselves. They are all parameter-
ized by a step n ∈ ω + 1. Several of these judgments have to be
extended from values to environments pointwise; since this exten-
sion is always completely unremarkable, we omit the correspond-
ing rules.

Truncation The value typing judgment is not monotonic, in the
sense that v : τ @ n + 1 does not entail v : τ @ n in general.
This choice makes value typing more precise, making sure that
the result of a program of type Stream Int at n is exactly a list
containing n elements. However, evaluation sometimes needs to
turn a value atm into a value at n <m in order to mediate between
different steps. Thus, we introduce a truncation judgment ⌊v ⌋n ⇓

v ′ expressing that removing all information pertaining to steps

⌊v ⌋n ⇓ v ′
⌊ s ⌋n+1 ⇓ s

⌊v1 ⌋n+1 ⇓ v ′
1 ⌊v2 ⌋n ⇓ v ′

2

⌊v1 ::v2 ⌋n+1 ⇓ v ′
1 ::v

′
2

⌊ γ ⌋n+1 ⇓ γ ′

⌊ (x .e){γ } ⌋n+1 ⇓ (x .e){γ ′}

⌊v1 ⌋n+1 ⇓ v ′
1 ⌊v2 ⌋n+1 ⇓ v ′

2

⌊ (v1,v2) ⌋n+1 ⇓ (v ′
1,v

′
2)

⌊v ⌋n+1 ⇓ v ′

⌊ injiv ⌋n+1 ⇓ injiv
′

⌊ γ ⌋n+1 ⇓ γ ′ e ;γ ′ ⇓n+1 v

⌊ box(e){γ } ⌋n+1 ⇓ v

⌊v ⌋p(n+1) ⇓ v ′

⌊w(p,v) ⌋n+1 ⇓ w(p,v ′)

⌊v ⌋0 ⇓ stop ⌊v ⌋ω ⇓ v

Figure 4. Truncation of Values

greater than n from the valuev gives a valuev ′. Its rules are given
in Figure 4.

Most rules apply when v is to be truncated to a step of the
form n + 1. Scalars contain the same amount of information at all
finite steps, and thus remain themselves. The tail v2 of a stream
constructorv1 ::v2 is truncated to n, ensuring that the final stream
contains n + 1 elements. Closures, pairs, and injections are trun-
cated structurally; for closures, we truncate the environment. To
truncate a thunk to a positive finite step is to evaluate it, obtain-
ing a finite result; this is why truncation depends on evaluation,
defined below. To truncate a value warped by p at n, truncate it
at p(n).

Finally, truncation to 0 and truncation toω are symmetric. Trun-
cation to 0 erases the value completely, leaving only stop. Trunca-
tion to ω keeps the value completely intact.

Coercion Application The judgment α[v] ⇓n v ′ expresses
that v ′ is the result of coercing v by α . Its rules are given in Fig-
ure 5.

As for truncation, most rules here deal with finite positive n.
The identity coercion does nothing, α1;α2 first applies α1 then α2.
The remaining composite coercions apply coercions in depth, as ex-
pected; note that∗p α applies α atp(n+1). The wrapping (resp. un-
wrapping) coercion adds (resp. removes) a constructor w(id,−).
The coercions concatp,q and dist× implement the transformations
and commutations corresponding to their types, but have to deal
with the cases where p(n + 1) = 0 or p(n + 1) = ω explicitly. The
coercions decatp,q and fact× are similar but simpler. Inflation cre-
ates a dummy thunk around a scalar; this is type safe since scalars
are well-typed at any finite n. A delay coercion delayp,q receives
an input at p(n + 1) and truncates it to q(n + 1), which is smaller or
equal to p(n + 1) if delayp,q is well-typed.

Evaluating a coercion at 0 immediately returns stop, as for trun-
cation. On the other hand, a coercion applied at ω is necessarily
applied to a thunk, and must be delayed itself. We accomplish this
by pushing the coercion inside the thunk.

We have elided the context-coercion application judgment,
which simply lifts coercion application componentwise to environ-
ments.

Evaluation The evaluation judgment is given in Figure 6.
Again, most of the work is done at 0 < n < ω, so we begin

by decribing the corresponding rules. The rules for variables, func-
tions, application, pairs, projections, injections, pattern-matching,
and scalars are the standard ones of call-by-value λ-calculus. We

5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

α[v] ⇓n v ′

ECId

id[v] ⇓n+1 v

ECSeq

α1[v1] ⇓n+1 v2 α2[v2] ⇓n+1 v3

(α1;α2)[v1] ⇓n+1 v3

ECStream

α[v1] ⇓n+1 v
′
1 Stream α[v2] ⇓n v ′

2

(Stream α)[(v1 ::v2)] ⇓n+1 (v
′
1 ::v

′
2)

ECFun

(α1 → α2)[(x .e){γ }] ⇓n+1 (x .(e (x ;α1));α2){γ }

ECProd

α1[v1] ⇓n+1 v
′
1 α2[v2] ⇓n+1 v

′
2

(α1 × α2)[(v1,v2)] ⇓n+1 (v
′
1,v

′
2)

ECSum

αi [v] ⇓n+1 v
′

(α1 + α2)[injiv] ⇓n+1 injiv
′

ECWarp

α[v] ⇓p(n+1) v
′

(∗p α)[w(p,v)] ⇓n+1 w(p,v ′)

ECWrap

wrap[v] ⇓n+1 w(id,v)

ECUnwrap

unwrap[w(id,v)] ⇓n+1 v

ECConcat

concatp,q[w(p,w(q,v))] ⇓n+1 w(p ∗q,v)

ECConcatStop

concatp,q[w(p, stop)] ⇓n+1 w(p ∗q, stop)

ECConcatBox

concatp,q[w(p, box(e){γ })] ⇓n+1 w(p ∗q, box(e){γ })

ECDecat

decatp,q[w(p ∗q,v)] ⇓n+1 w(p,w(q,v))

ECDist

dist×[w(p, (v1,v2))] ⇓n+1 (w(p,v1),w(p,v2))

ECDistStop

dist×[w(p, stop)] ⇓n+1 (w(p, stop),w(p, stop))

ECDistBox

dist×[w(p, box(e){γ })] ⇓n+1 (w(p,box(e){γ }),w(p, box(e){γ }))

ECFact

fact×[(w(p,v1),w(p,v2))] ⇓n+1 w(p, (v1,v2))

ECInfl

inflate[c] ⇓n+1 w(ω, box(c){∅})

ECDelay

⌊v ⌋q(n+1) ⇓ v
′

delayp,q[v] ⇓n+1 v
′

ECZero

α[v] ⇓0 stop

ECOmega

α[box(e){γ }] ⇓ω box(e ;α){γ }

Figure 5. Coercion Application Judgment

e ;γ ⇓n v

EVar

x ;γ ⇓n+1 γ (x)

EFun

fun (x : τ).e ;γ ⇓n+1 (x .e){γ }

EApp

e1;γ ⇓n+1 (x .e){γ
′} e2;γ ⇓n+1 v e ;γ ′[x 7→ v] ⇓n+1 v

′

e1 e2;γ ⇓n+1 v
′

EPair

e1;γ ⇓n+1 v1 e2;γ ⇓n+1 v2

(e1, e2);γ ⇓n+1 (v1,v2)

EProji∈{1,2}

e ;γ ⇓n+1 (v1,v2)

proji e ;γ ⇓n+1 vi

EInji∈{1,2}

e ;γ ⇓n+1 v

injτi e ;γ ⇓n+1 injiv

ECasei∈{1,2}

e ;γ ⇓n+1 injiv ei ;γ [xi 7→ v] ⇓n+1 v
′

casee of{inj1 x1 .e1 | inj2 x2 .e2};γ ⇓n+1 v
′

EConst

c;γ ⇓n+1 c

ERec

x ; e ;γ ; stop ⇑n+10 v

rec (x : τ).e ;γ ⇓n+1 v

EBy

e ; purge(γ) ⇓p(n+1) v

e by p;γ ⇓n+1 w(p,v)

EHead

e ;γ ⇓n+1 v1 ::v2

head e ;γ ⇓n+1 v1

ETail

e ;γ ⇓n+1 v1 ::v2

tail e;γ ⇓n+1 w(−1,v2)

ECons

e1;γ ⇓n+1 v1 e2;γ ⇓n+1 w(−1,v2)

e1 :: e2;γ ⇓n+1 v1 ::v2

ECoeR

e ;γ ⇓n+1 v α[v] ⇓n+1 v
′

e ;α ;γ ⇓n+1 v
′

ECoeL

β[γ] ⇓n+1 γ
′ e ;γ ′ ⇓n+1 v

(β ;e);γ ⇓n+1 v

EZero

e ;γ ⇓0 stop

EOmega

e ;γ ⇓ω box(e){γ }

Figure 6. Evaluation Judgment

x ; e ;γ ;v ⇑nm v′

IFinish

x ; e ;γ ;v ⇑nn v

IStep

m < n ⌊ γ ⌋m+1 ⇓ γ ′

e ;γ ′[x 7→ w(−1,v)] ⇓m+1 v
′

x ; e ;γ ;v ′ ⇑nm+1 v
′′

x ; e ;γ ;v ⇑nm v ′′

Figure 7. Iteration Judgment

will explain recursion shortly. To evaluate e by p at n + 1, evalu-
ate e at p(n + 1). Its result should be wrapped in w(p,−) to mark
its provenance, and symmetrically the environment γ should be
purged of a layer of w(p,−) value formers. The latter operation is

denoted by purge(γ); it also removes bindings (x,v)wherev is not
of the formw(p,v) from γ . Coercions rely on the coercion applica-
tion judgment and its lifting to context coercions.

All terms evaluate to stop at 0. The evaluation of a term e at ω
suspends its execution, building a thunk box(e){γ } pairing it with
the current environment γ .

Recursion and Iteration Rule ERec depends on the iteration

judgment x ; e ;γ ;v ⇑nm v ′. To explain this judgment informally, let
us write f for fun (x : _).e and assume thatm ≤ n. Then, this judg-
ment computes v ′

= f n−m (v). Its use in rule ERec with m = 0
and v = stop ensures that v = f n(stop). Thus iteration can be
viewed as an operational approximation of Kleene’s fixpoint theo-
rem if one identifies stop with ⊥ from domain theory.

Rule IFinish terminates the iteration sequence when m = n.
Rule IStep computes f (fm (stop)) = fm+1(stop) if m < n. The
environment γ is well-typed at n and so must be truncated tom+1.

3.3 Metatheoretical Results

Our evaluation judgments represent runtime errors by the absence
of a result, as is common in big-step semantics. Thus, our judg-
ments define partial functions: there is at most one value v such
that e ;γ ⇓n v , and similarly for all the other judgments.

Type Safety The following basic type safety result ensures that
if a closed program of type τ evaluates to a value v at n, then v

is of type τ at n. Given the typing rules for values, this ensure in
particular that streams have the length described by their types.

Theorem 3.1 (Type Safety). If Γ ⊢ e : τ , γ : Γ @ n, and e ;γ ⇓n v ,

then v : τ @ n.

Since the evaluation judgment depends on the truncation, coer-
cion application, and iteration judgments and vice-versa, the proof
must proceed by mutual induction, using the relevant type safety
lemmas for auxiliary judgments.

Lemma 3.2 (Type Safety, Truncation). If v : τ @ m and ⌊v ⌋n ⇓

v ′ with n ≤ m, then v ′ : τ @ n.

6

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Lemma 3.3 (Type Safety, Coercion Application). If α : τ <: τ ′, v :
τ @ n, and α[v] ⇓n v ′, then v ′ : τ ′ @ n.

Lemma 3.4 (Type Safety, Iteration). If Γ, x : ∗−1 τ ⊢ e : τ , γ : Γ @
n, v : τ @m and x ; e ;γ ;v ⇑nm v ′, then v : τ @ n.

Totality In addition to the usual type errors, in our setting par-
tiality may also arise from time-related operations. For instance,
a term might try to truncate a value at n to m > n, or to evalu-
ate e by p in an environment which contains values that are not of
the form w(p,−). The following theorem asserts that this cannot
occur with well-typed terms.

Theorem 3.5 (Totality). If Γ ⊢ e : τ and γ : Γ @ n, then there

exists v such that e ;γ ⇓n v .

The proof uses a realizability predicate, as explained in Appen-
dix B. It also requires the following result, also used in Section 4.

Property 5 (Functoriality of Truncation). If ⌊v ⌋n ⇓ v ′

and ⌊v ⌋m ⇓ v ′′ withm ≤ n, then ⌊v ′ ⌋m ⇓ v ′′.

Monotonicity Finally, we prove that evaluation indeed com-
putes longer and longer prefixes of the same object.

Property 6 (Monotonicity). If e ;γ ⇓n v and e ;γ ′ ⇓m v ′ withm ≤

n and ⌊ γ ⌋m ⇓ γ ′, then ⌊v ⌋m ⇓ v ′.

Coherence We have defined evaluation only on explicit terms,
and indeed coercions play a crucial role in determining the result of
a computation. Thus the question of coherence arises: do all refiners
of the same implicit term having the same type compute the same
results? We give a positive answer to this question in Section 5
using the denotational semantics developed in the next section.

4 Denotational Semantics

4.1 Preliminaries

Let Bool denote the category with two objects ⊥,⊤ and a sin-
gle non-identity morphism t : ⊥ → ⊤, equipped with the
strict monoidal structure given by conjunction. Then, preorders
are Bool-enriched categories, and P̂ is isomorphic to Pop → Bool.
Let P denote the strict monoidal functor P : Bool → Set send-
ing ⊥ to ∅ and ⊤ to {∗}. We write P[P] for the degenerate category
associatedwith a preorder P ; its hom-sets contain at most onemor-
phism.

Given a categoryC , we denote by Ĉ = C op → Set the category

of contravariant presheaves over C . Note that P̂ differs from P̂[P],
hence our unusal choice of to formally distinguish preorders from
ordinary categories.

4.2 The Topos of Trees

In this section we sketch a model of Core λ∗ in the topos of trees.
Birkedal et al. [7] show that this category is a convenient setting
for modeling guarded recursion and synthetic step-indexing. We
follow their terminology and notations.

Definition 2. The topos of trees, denoted S, is P̂[ω].

Briefly, an object X in the topos of trees can be described as
a family of sets (X (n))n∈ω , together with a family of restriction
functions (rXn : X (n+1) → X (n))n∈ω . The set X (n) describes what
can be observed of X at step n, and the restriction functions define
how future observations extend current ones. Morphisms f : X →

Y are collections of functions (fn : X (n) → Y (n))n∈ω commuting
with restriction functions.

As a topos, this category naturally has all the structure required
for interpreting simply-typed λ-calculus with products and sums.

_× _ : S×S → S _+ _ : S×S → S (_)(_) : Sop ×S → S

This structure follows from general constructions in presheaf cat-
egories. Products and sums, as limits and colimits, are given point-
wise. Exponentiation can be deduced from the Yoneda lemma.

The later modality is interpreted in S by the functor ◮ such
that (◮X)(0) = {∗} and (◮X)(n + 1) = X (n). A certain family of
morphisms fixX : X◮ X → X of S provide fixpoint combinators,
and are used to interpret guarded recursion. We refer to Birkedal
et al. [7] for additional information.

4.3 Interpreting the Warping Modality

In order to interpret the warping modality, we need to equip the
topos of trees with a functor ∗p : S → S for every time warp p.
Intuitively, (∗p X)(n) should contain “p-times” more information
than X (n). Moreover, the family of functors ∗(−) should come
equipped with enough structure to interpret atomic coercions.

Pulling Presheaves along Functions To understand what this
operation should look like, let us first consider a restricted class of
time warps. By definition, time warps p such that 0 < p(n) < ω for
all 0 < n < ω are in a one-to-one correspondence with mono-
tonic functions f : ω → ω. In this case, one can simply de-
fine (∗p X)(n) = X (f (n)). Thus, if p happens to be equivalent to
a function ω → ω, the functor ∗p : S → S is simply given by
precomposition with p. From a categorical logic perspective, com-
puting ∗p X corresponds to pulling X along p.

This special case already captures some examples from the lit-
erature. For instance, Birkedal et al. [7] study the left adjoint ◭
of ◮ given by (◭X)(n) , X (n + 1), which would thus cor-
respond to ∗n 7→n+1. However, most interesting time warps are
not ω-valued, including those corresponding to the later and con-
stant modalities, and thus cannot be naively precomposed with
presheaves from S.

Pulling Presheaves along Distributors A solution to the above
problem is provided by the theory of distributors, which are to func-
tors what relations are to functions. A distributor P : C −7−→ D from
a category C to a category D is a functor P : Dop × C → Set.
Distributors form a (bi)category, and enjoy properties that plain
functors lack. We refer to Bénabou [10] for an introduction.

Any presheaf X : C op → Set is by definition equivalent to a
distributor 1 −7−→ C , with 1 the category with a single object and
morphism. Postcomposing a distributorM : C −7−→ D with X gives
a presheaf MX : 1 −7−→ D which, intuitively, is X pushed along M .
It is a crucial characteristic of distributors that post-composition
withM always has a right adjoint, which we will write (−)/M . This
right adjoint can be described by the end formula

Y/M ,

∫

d ∈D

Y (d)M(d,−)
. (2)

The presheaf Y/M is the result of pulling Y along M , as recently
expounded by Melliès and Zeilberger [25].

Pulling Presheaves along TimeWarps We can extend the con-
struction given above to time warps by realizing that the latter are
miniature distributors.

7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

It is a consequence of the Yoneda lemma that every distribu-

tor C −7−→ D can be seen as a cocontinuous functor Ĉ → D̂

and vice-versa. A similar result holds for preorders: every co-
continuous function P̂ → Q̂ corresponds to a monotonic func-
tionQop ×P → Bool, and vice-versa. We call such functions linear
systems, adopting the terminology attributed to Winskel by Hy-
land [19, §4.1]. Given a time warp p : ω̂ → ω̂, we refer to the
corresponding linear system as p : ω −7−→ ω. We have (m,n) ∈ p if
and only if y(m) ≤ p(y(n)).

Pulling a presheaf along a timewarp is now possible since linear
systems are nothing butBool-enriched distributors. Precomposing
the linear system p with P : Bool → Set, we obtain a standard
distributor Pp : ω −7−→ ω, which we then combine with Equation (2).

Definition 3 (Warping Functor). Given a time warp p, we define

the warping functor ∗p : S → S as

∗p , (−)/(Pp). (3)

Unfolding and simplifying the above definition, we obtain an
explicit formula for the observations of ∗p X at n.

(∗p X)(n) =

(xm) ∈

p(n)∏

m=1

X (m)

������
xm = rXm (xm+1)

(4)

The reader may check using the above formula that (∗−1 X)(n)

coincides with ◮X (n). The same is true for ∗ω and �.
Once the relatively intuitive Equation (4) has been found, it

might seem that the abstract Definition 3 becomes unnecessary.
However, the abstract approach gives insight into the structure
of ∗(−). In particular, routine categorical considerations imply the
following.

Property 7. Warping defines a strong monoidal functor

∗(−) : W
op(0,1) → End(S).

Here W and End(S) are considered as monoidal categories
whose objects are respectively time warps and endofunctors of S,
and where the monoidal structure is given by composition in both
cases. The category W is preordered. Property 7 entails the exis-
tence of the following structure.

∗p≥q : ∗p → ∗q ϵ : ∗1 � Id µp,q : ∗p∗q � ∗p∗q
Moreover, every functor ∗p is a right adjoint, hence limit-
preserving.

4.4 The Interpretation

Ground types are interpreted using the functor ∆ : Set → S

mapping every set to a constant presheaf. The interpretation
of Stream τ is characterized by JStream τ K(n) =

∏n
m=1Jτ K(m). We

have already given the interpretation of all other types. Typing
contexts are interpreted as cartesian products.

Coercions α : τ <: τ ′ give rise to morphisms JαK : Jτ K → Jτ ′K.
Composite coercions are interpreted by the functorial actions of
type constructors, plus plain composition. Atomic coercions take
advantage of the structure arising from Property 7. For example,
Jconcatp,q : ∗p ∗q τ <: ∗p ∗q τ K = µ

p,q

Jτ K
and Jdelayp,q : ∗p τ <:

∗q τ K = (∗p≥q)Jτ K. The inflate coercion is interpreted by the gen-
eral isomorphism between ∆(S) and ∗ω ∆(S). The dist× and fact×
coercions are interpreted by the natural isomorphisms arising
from the limit-preservation property of ∗p .

Since the type system of Figure 1 is not exactly syntax-directed,
we will interpret typing derivations rather than terms. Guarded
recursion is interpreted using the fixJτ K morphisms. We interpret

structure maps σ ∈ Σ(Γ; Γ′) as morphisms JσK : JΓ′K → JΓK
and rule Struct by precomposition. Other cases are standard [22].

Property 8 (Coherence for Explicit Terms). Any two derivations

of Γ ⊢ e : τ are interpreted by the same morphism in S.

The proof shows that the interpretation of any derivation of e
is equal to the interpretation of the canonical derivation for e built
in Property 3. Since this canonical derivation is unique, this entails
the coherence of the interpretation for explicit terms.

4.5 Adequacy

The interpretation reflects operational equivalence, which
in Core λ∗ consists in observing scalars at the first step.

Theorem 4.1. If JΓ ⊢ e : τ K = JΓ ⊢ e ′ : τ K then Γ ⊢ e �ctx e
′ : τ .

To prove the result, we remark that the values described in Sec-
tion 3 can be organized as an object ofS, using results such as Prop-
erty 6. The details can be found in Appendix B.

5 Algorithmic Type Checking

The abstract type-checking algorithm we present in this section
builds an explicit term from an implicit one in a canonical way.
This involves two main challenges: deciding the subtyping judg-
ment, and dealing with the context restriction arising in ruleWarp.

5.1 Deciding Subtyping

To decide subtyping, we start with the observation that most
atomic coercions α : τ <: τ ′ from Figure 2 come in pairs, in the
sense that there exists α−1 such that α−1 : τ ′ <: τ . This is even true
for inflate, since we can take inflate−1 to be delayω, id ; unwrap.
The only atomic coercion for which this is not the case is delayp,q

when q < p. This suggests dealing with delays separately.

Normalizing Types To deal with invertible coercions, we define
a function τ mapping each type to an equivalent but simpler form.
Such normal types τn obey the following grammar.

τ n F ∗p τ r | τ n × τ n τ r F ν | Stream τ n | τ n → τ n | τ n + τ n

In other words, normal types feature exactly one warping modal-
ity immediately above every non-product type former.

The total function HτI returns the normalized form of τ . It is
defined by recursion on τ in Figure 8-A. For every τ , there are co-
ercions (HτIin, HτIout) : τ ≡ HτI, defined in Appendix A.

Deciding Precedence We now decide subtyping in the special
case where the only atomic coercions allowed are delays, a case
we call precedence. The corresponding partial computable func-
tion Prec(−;−), when defined, builds a coercion Prec(τ ; τ ′) : τ <: τ ′.
It is given in Figure 8-B. In the absence of concatp,q and decatp,q

coercions, it is enough to traverse τ and τ ′ in lockstep, checking
whether p ≥ q holds when comparing ∗p τ and ∗q τ ′.

Pu�ing it all together We decide subtyping in the general case
by combining precedence with normalization:

Coe(τ ; τ ′) , HτIin; Prec(HτI; Hτ
′I); Hτ ′Iout.

We write Coe(Γ; Γ′) for the pointwise extension to contexts.

8

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

HνI = ∗ω ν

HStream τ I = ∗id Stream Hτ I

Hτ1 → τ2I = ∗id (Hτ1I → Hτ2I)

Hτ1 × τ2I = Hτ1I × Hτ2I

Hτ1 + τ2I = ∗id (Hτ1I + Hτ2I)

H∗p (τ1 × τ2)I = H∗p τ1I × H∗p τ2I
H∗p τ I = ∗p ∗q τ

′ where τ , (_ × _)
and ∗q τ ′ = Hτ I

(A) Type Normalization

Prec(ν ; ν) = id

Prec(Stream τ1 ; Stream τ2) = Stream Prec(τ1 ; τ2)

Prec(τ ′1 → τ ′′1 ; τ
′
2 → τ ′′2) = Prec(τ ′2 ; τ

′
1) → Prec(τ ′′1 ; τ

′′
2)

Prec(τ ′1 × τ ′′1 ; τ
′
2 × τ ′′2) = Prec(τ ′1 ; τ

′
2) × Prec(τ ′′1 ; τ

′′
2)

Prec(τ ′1 + τ
′′
1 ; τ

′
2 + τ

′′
2) = Prec(τ ′1 ; τ

′
2) + Prec(τ ′′1 ; τ

′′
2)

Prec(∗p τ1;∗q τ2) = delayp,q ;∗q Prec(τ1; τ2) if p ≥ q

(B) Type Precedence

Figure 8. Type Normalization and Precedence

5.2 Adjoint Typing Contexts

Consider the type-checking problem for t by p in a given con-
text Γ. If every type τ = Γ(x), with x a free variable of t , is of the
form ∗p τ ′, we may apply ruleWarp. Otherwise, we have to find
a type τ ′ such that τ <: ∗p τ ′. There are several choices for τ ′,
and they are far from equivalent. For instance, taking τ ′ , ∗0 τ

would work since τ <: ∗0 τ <: ∗p ∗0 τ always holds, but will in
general impose artificial constraints on the type of t . For τ ′ to be
a canonical choice,

τ <: ∗p τ ′′ ⇔ τ ′ <: τ ′′ (5)

needs to hold for any type τ ′′. Now, assume that τ and τ ′′ are nor-
malized types which are not products, and thus necessarily start
with a warping modality. Equivalence (5) becomes

∗q τ <: ∗p ∗r τ ′′ ⇔ τ ′ <: ∗r τ ′′. (6)

Then, a solution satisfying (5) is given by τ ′ = ∗q \p τ , with q \p

a hypothetical time warp such that

r ◦ p ≤ q ⇔ r ≤ q \p. (7)

We are thus looking for an operation (−) \p right adjoint to pre-
composition (−) ◦ p. Right adjoints to precomposition (and post-
composition, cf. Section 4) always exist for distributors [10, §4],
and thus linear systems. The general formula, specialized to linear
systems and time warps, gives

(q \p)(n) = p(min{m ∈ ω + 1 | n ≤ q(m)}). (8)

Thus, we define normal-type division as

(τ1 × τ2) \n p = (τ1 \n p) × (τ2 \n p) and (∗q τ) \n p = ∗q \p τ

and general type division as τ \p , HτI \n p.

5.3 The Algorithm

The partial computable function Elab(Γ; t) returns a pair (τ , e)

with e < t such that Γ ⊢ e : τ holds. Its definition is given
in Figure 9. It uses the algorithmic subtyping judgment when type-
checking destructors, and the context division judgment when ap-
plying ruleWarp. The case of pattern-matching relies on the exis-
tence of type suprema, which are easy to compute structurally for
normal types; see Appendix A.

5.4 Metatheoretical Results

Lemma 5.1. If α : τ <: τ ′ then Coe(τ ; τ ′) is defined and

Jα : τ <: τ ′K = JCoe(τ ; τ ′) : τ <: τ ′K.

Theorem 5.2 (Completeness of Algorithmic Typing). If Γ ⊢ e : τ ,
there is em , τm ,αm with (τm , em) = Elab(Γ; t), αm : τm <: τ , and

JΓ ⊢ e : τ K = JΓ ⊢ e : τmK; Jα : τm <: τ K.

The fact that algorithmic subtyping is deterministic together
with Lemma 5.1 and Theorem 5.2 immediately entails coherence.

Corollary 1 (Denotational Coherence). For any e1, e2 < t such

that Γ ⊢ e1 : τ and Γ ⊢ e2 : τ , we have JΓ ⊢ e1 : τ K = JΓ ⊢ e2 : τ K.

Corollary 2 (Operational Coherence). For any e1, e2 < t such

that Γ ⊢ e1 : τ and Γ ⊢ e2 : τ , we have Γ ⊢ e1 �ctx e2 : τ .

6 Discussion and Related Work

6.1 Guarded Type Theories

Expressiveness On the one hand, Core λ∗ captures finer-grained
temporal information than existing guarded type theories, and
also recasts their modalities in a uniform setting. We illustrate
this point by comparing Core λ∗ to the gλ-calculus [13], since
they are relatively close. The later and constant modality cor-
respond respectively to ∗−1 and ∗ω . The gλ-calculus opera-
tions next : τ → ◮ τ and unbox : � τ → τ correspond
to the coercions wrap; delayid,−1 and delayω, id ; unwrap. Eras-
ing later modalities in the gλ-calculus happens via the term for-
mer prev, which restricts the context to be constant (essentially,
under�); inCore λ∗, this would arise from the implicit type equiva-
lence∗ω ∗−1 τ ≡ ∗ω ∗ −1 τ = ∗ω τ . Additionally, the introduction
rule for � in the gλ-calculus is more restrictive than rule Warp

for t by ω, since the latter allows the free variables of t to have
types ∗p τ where p is constant but not necessarily ω. The gλ-
calculus makes ◮ into an “applicative functor” [23], implementing
only the left-to-right direction of the type isomorphism∗−1 (τ1 →

τ2) � ∗−1 τ1 → ∗−1 τ2. In Core λ∗, both directions are definable,
the right-to-left one as

fun (f : ∗−1 τ1 → ∗−1 τ2).((fun (x : τ1).(f x) by +1) by −1)

where +1 is is the time warp which is left adjoint to −1 (◭ in [7]).
On the other hand Core λ∗ lacks many features present in other

guarded type theories (including the gλ-calculus). It would be use-
ful, for instance, to replace the fixed stream type with general
guarded recursive types [7, 13]; this requires designing a guard-
edness criterion in the presence of the warping modality. Clock
variables [3] would allow types to express that unrelated program
pieces may operate within disjoint time scales. Core λ∗ enjoys de-
cidable type-checking, but not type inference; in contrast, type in-
ference for the later modality has been studied by Severi [31]. Fi-
nally,Core λ∗might be difficult to extend to dependent types, since
it is inherently call-by-value, whereas several dependent type the-
ories with later have been proposed [6, 8].

Metatheory Core λ∗ also stands out among guarded type the-
ories by the design of its metatheory. First, as mentioned above,
its semantics fixes a call-by-value evaluation strategy, in contrast

9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

Elab(Γ; x) = (Γ(x), x)

Elab(Γ; fun (x : τ).t) = (τ → τ ′, fun (x : τ).e) where (τ ′, e) = Elab(Γ, x : τ ; t)

Elab(Γ; t1 t2) = (τ ′′
1
, (e1 ;Coe(τ1; τ

′
1
→ τ ′′

1
)) (e2 ;Coe(τ2; τ

′
1
)))

where (τi , ei) = Elab(Γ; ti) and ∗− (τ ′
1
→ τ ′′

1
) = Hτ1I

Elab(Γ; (t1, t2)) = (τ1 × τ2, (e1, e2)) where (τi , ei) = Elab(Γ; ti)

Elab(Γ; proji t) = (τi , proji (e ; Coe(τ ; τ1 × τ2))) where (τ , e) = Elab(Γ; t) and τ1 × τ2 = Hτ I
Elab(Γ; inj

τ2−i
1+i t) = (τ1 + τ2, inj

τ2−i
1+i e) where (τ1+i , e) = Elab(Γ; t)

Elab(Γ; case t of {inj
1
x1 .t1 | inj

2
x2 .t2 }) = (τ ′

1
⊔ τ ′

2
, casee ; Coe(τ ; τ1 + τ2) of {inj1 x1 .e1 ;Coe(τ

′
1
; τ ′

1
⊔ τ ′

2
) | inj

2
x2 .e2 ;Coe(τ

′
2
; τ ′

1
⊔ τ ′

2
)})

where (τ , e) = Elab(Γ; t) and ∗− (τ1 + τ2) = Hτ I and (τ ′i , ei) = Elab(Γ, x : τi ; ti)

Elab(Γ; s) = (ν, s) where s ∈ Sν
Elab(Γ; rec (x : τ).t) = (τ , rec (x : τ).(e ; Coe(τ ′; τ))) where (τ ′, e) = Elab(Γ, x : ∗−1 τ ; t)

Elab(Γ; t by p) = (∗p τ , Coe(Γ;∗p (Γ \p)); e by p) where (τ , e) = Elab(Γ \p ; t)

Elab(Γ; head t) = (τ ′, head (e ; Coe(τ ; Stream τ ′))) where (τ , e) = Elab(Γ; t) and ∗− Stream τ ′ = Hτ I
Elab(Γ; tail t) = (∗−1 Stream τ ′, tail (e ; Coe(τ ; Stream τ ′))) where (τ , e) = Elab(Γ; t) and ∗− Stream τ ′ = Hτ I

Elab(Γ; t1 :: t2) = (Stream (τ1 ⊔ τ ′2), (e1 ;Coe(τ1 ; τ1 ⊔ τ ′2)) :: (e2 ;Coe(τ2 ;∗−1 Stream (τ1 ⊔ τ ′2))))

where (τi , ei) = Elab(Γ; ti) and ∗− Stream τ ′2 = Hτ2I

Figure 9. Elaboration

with actual calculi enjoying unrestricted β-reduction. We believe
that this is natural since t by p is in essence an effectful termwhich
modifies the current time step.

Second, the context restriction in rule Warp is perhaps contro-
versial from a technical perspective. This kind of rule, acting on
the left of the turnstile, is normally avoided in natural-deduction
presentations as it is known to cause “anomalies” [28], e.g., break-
ing substitution lemmas. Since Core λ∗ is call-by-value, we do not
need subtitution to hold for arbitrary terms. We do not expect dif-
ficulties in proving a substitution lemma for values in a variant
of Core λ∗ where they have been made a subclass of expressions,
defining (t by p)[x\v] to be t[x\purge(v)] by p, with purge(v)
defined as in Section 3.

Third, Core λ∗ uses subtyping, which has been eschewed by
guarded type theories after Nakano’s original proposal. Yet, the
context restriction of rule Warp makes subtyping extremely use-
ful in practice. In its absence, terms would have to massage the
typing context before introducing the warping modality. Guarded
recursion would also be more difficult to use without the ability to
reason up to time warp composition.

6.2 Synchronous Programming Languages

Core λ∗ is a relative of synchronous programming languages
in the vein of Lustre [11, 12, 14, 17, 18, . . .]. Such languages
use “clocks” (not to be confused with clock variables) to de-
scribe stream growth; such a clock is a time warp whose image
forms a downward-closed subset of ω (except in [18]). Synchro-
nous languages are generally first-order (with exceptions [18, 30])
and separate clock analysis from productivity checking. As a re-
sult, Core λ∗ is both more flexible and simpler from a metatheo-
retical standpoint. However, it does not enforce bounds on space
usage, in contrast with synchronous languages or the work of Kr-
ishnaswami [20, 21].

Acknowledgements This work has benefited from conversa-
tions with many researchers, including Albert Cohen, Louis Man-
del, Paul-André Melliès, and Marc Pouzet. It owes an especially
great deal to Paul-André Melliès, who introduced the author
to the topos of trees and distributors. This work was partially
supported by the German Research Council (DFG) under Grant
No. ME14271/6-2.

References
[1] Nada Amin and Tiark Rompf. 2017. Type Soundness Proofs with Def-

initional Interpreters. Principles of Programming Languages (POPL’17).
h�p://lampwww.epfl.ch/~amin/pub/big-step.pdf

[2] Robert Atkey. 2006. Substructural Simple Type Theories for Separa-
tion and In-place Update. Ph.D. Dissertation. University of Edinburgh.
h�ps://bentnib.org/thesis.pdf

[3] Robert Atkey and Conor McBride. 2013. Productive Coprogramming with
Guarded Recursion. In International Conference on Functional Programming
(ICFP 2013). ACM. h�p://bentnib.org/productive.pdf

[4] Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. 2017.
The Clocks Are Ticking: No More Delays! Reduction Semantics for Type The-
ory with Guarded Recursion. In Logic in Computer Science (LICS’17). Springer.
h�p://www.itu.dk/people/mogel/papers/lics2017.pdf

[5] Gavin Bierman and Valeria de Paiva. 2000. On an Intu-
itionistic Modal Logic. Studia Logica 65, 3 (2000), 383–416.
h�p://www.cs.bham.ac.uk/~vdp/publications/studia.ps.gz

[6] Lars Birkedal, Ales Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas
Spitters, and Andrea Vezzosi. 2016. Guarded Cubical Type Theory:
Path Equality for Guarded Recursion. In Computer Science Logic (CSL’16).
h�p://cs.au.dk/~ranald/Birkedal_et_al_CSL.pdf

[7] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian
Støvring. 2012. First steps in synthetic guarded domain theory: step-indexing
in the topos of trees. Logical Methods in Computer Science 8, 4 (2012).
h�ps://arxiv.org/pdf/1208.3596.pdf

[8] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E. Møgelberg,
and Lars Birkedal. 2016. Guarded Dependent Type Theory with Coinduc-
tive Types. In Foundations of Software Science and Computation Structures (FoS-
SaCS’16). Springer. h�ps://arxiv.org/pdf/1601.01586v1

[9] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunther,
and Andre Scedrov. 1991. Inheritance as Implicit Coer-
cion. Information and Computation 93, 1 (1991), 172–221.
h�ps://experts.illinois.edu/en/publications/inheritance-as-implicit-coercion

[10] Jean Bénabou. 2000. Distributors at Work.
[11] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice.

1987. LUSTRE: A declarative language for programming synchro-
nous systems. In Principles of Programming Languages (POPL’87).
h�p://www-verimag.imag.fr/~halbwach/SCAN/lustre-popl87.pdf

[12] Paul Caspi and Marc Pouzet. 1996. Synchronous Kahn Networks. In
International Conference on Functional Programming (ICFP’96). ACM.
h�p://www.di.ens.fr/~pouzet/bib/icfp96.ps.gz

[13] Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. 2016.
The Guarded Lambda-Calculus: Programming and Reasoning with Guarded Re-
cursion for Coinductive Types. Logical Methods in Computer Science Volume 12,
Issue 3 (2016). h�p://arxiv.org/pdf/1606.09455v2.pdf

[14] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence
Plateau, and Marc Pouzet. 2006. N -synchronous Kahn networks: a relaxed
model of synchrony for real-time systems. In Principles of Programming Lan-
guages (POPL’06). h�p://www.di.ens.fr/~pouzet/bib/popl06.pdf

[15] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni.
2016. A Theory of Effects and Resources: Adjunction Models and Po-
larised Calculi. In Principles of Programming Languages (POPL’16). ACM.
h�p://guillaume.munch.name/files/lcbpv.pdf

[16] Pierre-Louis Curien and Giorgio Ghelli. 1990. Coherence of subsumption.
In Colloquium on Trees in Algebra and Programming (CAAP’90). Springer.

10

http://lampwww.epfl.ch/~amin/pub/big-step.pdf
https://bentnib.org/thesis.pdf
http://bentnib.org/productive.pdf
http://www.itu.dk/people/mogel/papers/lics2017.pdf
http://www.cs.bham.ac.uk/~vdp/publications/studia.ps.gz
http://cs.au.dk/~ranald/Birkedal_et_al_CSL.pdf
https://arxiv.org/pdf/1208.3596.pdf
https://arxiv.org/pdf/1601.01586v1
https://experts.illinois.edu/en/publications/inheritance-as-implicit-coercion
http://www-verimag.imag.fr/~halbwach/SCAN/lustre-popl87.pdf
http://www.di.ens.fr/~pouzet/bib/icfp96.ps.gz
http://arxiv.org/pdf/1606.09455v2.pdf
http://www.di.ens.fr/~pouzet/bib/popl06.pdf
http://guillaume.munch.name/files/lcbpv.pdf

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

h�ps://link.springer.com/chapter/10.1007/3-540-52590-4_45
[17] Julien Forget, Fréderic Boniol, Daniel Lesens, and Claire

Pagetti. 2008. A Multi-Periodic Synchronous Data-Flow Lan-
guage. In High-Assurance Systems Engineering (HASE’08). IEEE.
h�ps://hal.archives-ouvertes.fr/hal-00802695/file/forgetHASE08.pdf

[18] Adrien Guatto. 2016. A Synchronous Functional Language with

Integer Clocks. Ph.D. Dissertation. École normale supérieure.
h�p://www.di.ens.fr/~gua�o/papers/thesis_gua�o.pdf

[19] Martin Hyland. 2010. Some Reasons for Generalising Domain The-
ory. Mathematical Structures in Computer Science 20, 02 (Mar 2010), 239.
h�ps://www.dpmms.cam.ac.uk/~martin/Research/Publications/2010/srfg10.pdf

[20] Neelakantan RKrishnaswami. 2013. Higher-Order Functional Reactive Program-
ming without Spacetime Leaks. In International Conference on Functional Pro-
gramming (ICFP’13). ACM. h�ps://people.mpi-sws.org/~neelk/simple-frp.pdf

[21] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Seman-
tics of Reactive Programs. In Logic in Computer Science (LICS’11). IEEE.
h�ps://www.cl.cam.ac.uk/~nk480/frp-lics11.pdf

[22] Joachim Lambek and Philip J. Scott. 1986. Introduction to Higher-Order Categor-
ical Logic. Cambridge University Press.

[23] Conor McBride and Ross Paterson. 2008. Applicative Programming
with Effects. Journal of Functional Programming 18, 1 (2008), 1–13.
h�p://www.staff.city.ac.uk/~ross/papers/Applicative.pdf

[24] Paul-André Melliès and Noam Zeilberger. 2015. Functors Are Type Re-
finement Systems. In Principles of Programming Languages (POPL’15). ACM.
h�p://noamz.org/papers/funts.pdf

[25] Paul-AndréMelliès and NoamZeilberger. 2016. A bifibrational reconstruction of
Lawvere’s presheaf hyperdoctrine. In Logic in Computer Science (LICS’16). IEEE.
h�p://noamz.org/papers/bifibrationalics16.pdf

[26] Rasmus Ejlers Møgelberg. 2014. A type theory for productive coprogram-
ming with guarded recursion. In Logic in Computer Science (LICS’14). IEEE.
h�p://www.itu.dk/people/mogel/papers/lics2014.pdf

[27] Hiroshi Nakano. 2000. A Modality for Recur-
sion. In Logic in Computer Science (LICS’00). IEEE.
h�p://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps

[28] Frank Pfenning and Rowan Davies. 2001. A Judgmental Reconstruction of
Modal Logic. Mathematical Structures in Computer Science 11, 04 (Jul 2001).
h�ps://www.cs.cmu.edu/~fp/papers/mscs00.pdf

[29] Florence Plateau. 2010. Modèle n-synchrone pour la programmation de
réseaux de Kahn à mémoire bornée. Ph.D. Dissertation. Université Paris-Sud.
h�ps://www.lri.fr/~mandel/lucy-n/~plateau/these/plateau-these.pdf

[30] Marc Pouzet. 2006. Lucid Synchrone, version 3. Tutorial and reference manual.
Université Paris-Sud, LRI.

[31] Paula Severi. 2017. A Light Modality for Recursion. In Foundations of Software
Science and Computation Structures (FoSSaCS’17). Springer.

A Supplementary Material

A.1 Coercions to and from Normal Types

The coercions (HτIin, HτIout) : τ ≡ HτI are defined in Figure 10.
They are defined in a symmetric way, except a slightt discrepancy
in the case of ground types: one must take delayω, id ; unwrap as
an inverse to inflate, as mentioned in Section 2.

A.2 Type Bounds

The type-checking and elaboration algorithm presented in Figure 9
relies on the computation of type suprema. Figure 11 defines such
suprema and infima for normal types. The general case is obtained
simply by defining τ1 ⊔ τ2 as Hτ1I ⊔n Hτ2I.

A.3 Additional Examples

Example A.1 (Natural Numbers). The stream of natural numbers
described in Section 1 can be implemented as follows.

rec (nat : Stream Int).0 :: (map (fun (x : Int).x + 1) nat) by −1

We assume again that map has the type obtained in Example 2.5.

We now give the complete definition of the Thue-Morse se-
quence discussed in Example 2.7. Following Clouston et al. [13],
our definition proceeds in two steps: first the function h, then the
sequence tm itself.We assume that the language has been extended
with booleans and a not function.

HνIin = inflate

HStream τ Iin = Stream HτIin;wrap

Hτ1 → τ2Iin = (Hτ1Iout → Hτ1Iin);wrap

Hτ1 × τ2Iin = Hτ1Iin × Hτ2Iin

Hτ1 + τ2Iin = (Hτ1Iin + Hτ2Iin);wrap

H∗p (τ1 × τ2)Iin = dist×; (H∗p τ1Iin × H∗p τ2Iin)
H∗p τ Iin = ∗p HτIin; concat

p,q where τ , (_ × _)
and ∗q τ ′ = HτI

HνIout = delayω, id ; unwrap

HStream τIout = unwrap; Stream HτIout

Hτ1 → τ2Iout = unwrap; (Hτ1Iin → Hτ1Iout)

Hτ1 × τ2Iout = Hτ1Iout × Hτ2Iout

Hτ1 + τ2Iout = wrap; (Hτ1Iout + Hτ2Iout)

H∗p (τ1 × τ2)Iout = (H∗p τ1Iout × H∗p τ2Iout); fact×
H∗p τIout = decatp,q ;∗p HτIout where τ , (_ × _)

and ∗q τ ′ = HτI

Figure 10. Coercions to and from Normal Types

ν ⊔n ν = ν

(Stream τ) ⊔n (Stream τ ′) = Stream (τ ⊔n τ ′)

(τ1 → τ2) ⊔n (τ ′
1
→ τ ′

2
) = (τ1 ⊓n τ ′

1
) → (τ2 ⊔n τ ′

2
)

(τ1 × τ2) ⊔n (τ ′
1
× τ ′

2
) = (τ1 ⊔n τ ′

1
) × (τ2 ⊔n τ ′

2
)

(τ1 + τ2) ⊔n (τ ′
1
+ τ ′

2
) = (τ1 ⊔n τ ′

1
) + (τ2 ⊔n τ ′

2
)

(∗p τ1) ⊔n (∗q τ2) = ∗p⊓q (τ1 ⊔n τ2)

ν ⊓n ν = ν

(Stream τ) ⊓n (Stream τ ′) = Stream (τ ⊓n τ ′)

(τ1 → τ2) ⊓n (τ ′
1
→ τ ′

2
) = (τ1 ⊔n τ ′

1
) → (τ2 ⊓n τ ′

2
)

(τ1 × τ2) ⊓n (τ ′
1
× τ ′

2
) = (τ1 ⊓n τ ′

1
) × (τ2 ⊓n τ ′

2
)

(τ1 + τ2) ⊓n (τ ′
1
+ τ ′

2
) = (τ1 ⊓n τ ′

1
) + (τ2 ⊓n τ ′

2
)

(∗p τ1) ⊓n (∗q τ2) = ∗p⊔q (τ1 ⊓n τ2)

Figure 11. Type Suprema and Infima for Normal Types

Example A.2. Informally, the function h takes a boolean stream
and intersperses it with its pointwise negation.

rec (h : Stream Bool → ∗(2)∞ Stream Bool).

fun (xs : Stream Bool).

let x : Bool = head xs in

let x : Bool = head xs and ys : ∗0 (1)∞ Stream Bool = tail ys in

let zs : ∗0 (1)∞ ∗(2)∞ Stream Bool = (h ys) by −1 in
(x :: ((not x) :: zs) by 0 (1)∞) by (2)∞

As in previous examples, the recursive call happens un-
der by 0 (1)∞, ensuring it does not happen at the first time step.
Since x is of a scalar type, it is in effect not subject to the context
restriction in ruleWarp; for example, we have

inflate; delayω (0)∞, (2)∞ : Bool <: ∗(2)∞ Bool.

11

https://link.springer.com/chapter/10.1007/3-540-52590-4_45
https://hal.archives-ouvertes.fr/hal-00802695/file/forgetHASE08.pdf
http://www.di.ens.fr/~guatto/papers/thesis_guatto.pdf
https://www.dpmms.cam.ac.uk/~martin/Research/Publications/2010/srfg10.pdf
https://people.mpi-sws.org/~neelk/simple-frp.pdf
https://www.cl.cam.ac.uk/~nk480/frp-lics11.pdf
http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf
http://noamz.org/papers/funts.pdf
http://noamz.org/papers/bifibrationalics16.pdf
http://www.itu.dk/people/mogel/papers/lics2014.pdf
http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps
https://www.cs.cmu.edu/~fp/papers/mscs00.pdf
https://www.lri.fr/~mandel/lucy-n/~plateau/these/plateau-these.pdf

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

To see why the use of zs at type ∗0 (1)∞ Stream Bool is well-typed,
observe that 0 (2)∞ \ (2)∞ = 0 0 (2 0)∞ and

∗0 (1)∞ ∗(2)∞ Stream Bool ≡ ∗0 (2)∞ Stream Bool

≡ ∗(2)∞ ∗0 0 (2 0)∞ Stream Bool

≡ ∗(2)∞ ∗0 (1)∞ ∗0 (2 0)∞ Stream Bool

<: ∗(2)∞ ∗0 (1)∞ ∗0 (1)∞ Stream Bool.

In the next example, we assume that the definition of h given
above has been warped by ω (0)∞ (i.e., ω), as in Example 2.5.

Example A.3. The Thue-Morse sequence tm is defined below.

rec (tm : Stream Bool).

let tm′ : ∗0 (1)∞ ∗(2)∞ Stream Bool = (h tm) by 0 (1)∞ in

false :: (tail tm′) by 0 2 (1)∞

The key subterm is (tail tm′) by 0 2 (1)∞. Informally, this allows us
to run tail twice at the second time step, obtaining one element out
of tm′. Technically speaking, the use of tm′ with type Stream Bool

is justified by 0 (2)∞ \ 0 2 (1)∞ = 2 0 (2)∞ and

∗0 (1)∞ ∗(2)∞ Stream Bool ≡ ∗0 (2)∞ Stream Bool.

≡ ∗0 2 (1)∞ ∗2 0 (2)∞ Stream Bool

<: ∗0 2 (1)∞ Stream Bool

where the last step is performed by delay2 0 (2)
∞
, (1)∞ ; unwrap. This

last step shows that the productivity of this definition only de-
pends on the fact that h can produce its first two output elements
from its first input element. Indeed, this definition still type-checks
when h is given the strictly weaker type

h : Stream Bool → ∗2 (1)∞ Stream Bool,

assuming one changes the type annotation for tm′.

A.4 Effective TimeWarps

The main body of this paper manipulates time warps as abstract
mathematical objects. In an implementation, one may choose a
subset of time warps enjoying finite representations and equipped
with computable operations. We will say that such a subset is ef-
fective.

Definition 4 (Effectivity). A set E of time warps is effective when
it contains id, 0, −1, and ω , is closed under composition, division,

binary suprema, and binary infima, and is equipped with effective

procedures for

• the aforementioned operations;

• computing p(n) for p ∈ E,n ∈ ω + 1;
• deciding the pointwise order between its elements.

Any effective set of timewarpsE determines a submonoid ofW.
Furthermore, the decidability of ≤ entails the decidability of equal-
ity between the elements of E by antisymmetry. As a consequence,
the big-step evaluation judgment from Section 3 and abstract type-
checking algorithm from Section 5, restricted to an effective set of
time warps, become implementable.

A.5 Ultimately Periodic Sequences

In Section 2.4, we have represented certain time warps as running
sums of ultimately periodic sequences. We now study this classic
idea [14, 29] more formally, showing that the set P of time warps
representable as such sequences is effective.

Given two finite lists u,v of elements of ω + 1, with v non-
empty, we denote by u (v)∞ the ultimately periodic sequence start-
ing with u and continuing with v repeated ad infinitum. We say
that u and v are the prefix and periodic pattern of u (v)∞, respec-
tively. Let u (v)∞[n] denote the n-th element of the sequence, start-
ing at 0.

Definition 5. Every ultimately periodic sequence u (v)∞ gives rise

to a time warp characterized in a unique way by

u (v)∞(1 + n) = u (v)∞[n] + u (v)∞(n). (9)

Distinct prefix/periodic pattern pairs can represent the same
ultimately periodic sequence; for example (1 0)∞, (1 0 1 0)∞,
and 1 (0 1)∞ all represent the same sequence. Furthermore, distinct
ultimately periodic sequence can represent the same time warp in
the presence of ω; for example, ω (0)∞, ω (1)∞, and (ω)∞ all rep-
resent ω . This gives rise to an equivalence relation between pre-
fix/periodic pattern pairs; we never distinguish between equiva-
lent pairs.

Property 9. The set of time warps P is effective.

Rather than give a proof of this statement, we will provide intu-
itions and examples.

Common Representations The time warps id, 0, −1, and ω are
respectively represented by (1)∞, (0)∞, 0 (1)∞, and (ω)∞. The time
warp +1, which corresponds to n 7→ n+ 1 (◭ in [7]), is represented
by 2 (1)∞. Any constant time warp n 7→ c for 0 < n < ω is repre-
sented by c (0)∞.

Composition To show that P is closed under composition, we
build an infinite sequence s representing u1 (v1)

∞ ∗u2 (v2)
∞ by

traversing u1 (v1)
∞ and u2 (v2)

∞. There are two cases, depending
on the next element of u1 (v1)∞, which we call n.

• If n < ω, the next element of s is
∑n
i=1mi withm1, . . . ,mn

the next n elements of u2 (v2)∞. We then continue building
the rest of s recursively, dropping n,m1, . . . ,mn .

• Ifn = ω, the next element of s is the sum of all the remaining
elements of u2 (v2)∞. The rest of s is (0)∞.

Why is s ultimately periodic? Let us write |l | for the length of a list
of numbers l and ‖l ‖ for the sum of its elements. Clearly, if there
is at least one ocurrence of ω in u1 (v1)

∞, then s is ultimately pe-
riodic. Otherwise, one can always find (u3,v3) and (u4,v4) such
that u1 (v1)∞ = u3 (v3)

∞, u2 (v2)∞ = u4 (v4)
∞, ‖u3‖ = |u4 |

and ‖v3‖ = |v4 | by unfolding the prefixes and repeating the pe-
riodic patterns of u1 (v1)∞ and u2 (v2)∞ as much as required. The
new words represent the same sequences and thus give rise to the
same s , and it follows from their definition that s is ultimately
periodic with a prefix of length |u3 | and a periodic pattern of
length |v3 |.

The following examples illustrate composition in P .

(3)∞ ∗ (2)∞ = (2)∞ ∗ (3)∞ = (6)∞ (1 0)∞ ∗ (0 1)∞ = (0 0 1 0)∞

(0 1)∞ ∗ (1 0)∞ = (0 1 0 0)∞ (2)∞ ∗ (1 0)∞ = (2)∞ ∗ (0 1)∞ = (1)∞

0 (2)∞ ∗ (3 0 1)∞ = 0 (3 4 1)∞ 2 (1)∞ ∗ 0 (1)∞ = (1)∞

(2 0)∞ ∗ (2 0)∞ = (2 0)∞ (ω)∞ ∗ (1 0)∞ = ω (0)∞ = (ω)∞

(0 1)∞ ∗ (ω)∞ = 0ω (0)∞ = 0 (ω)∞ (ω)∞ ∗ (0)∞ = (0)∞

12

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Division The result of a time warp division u1 (v1)
∞ \ u2 (v2)

∞

is more complex to build than a composition. Intuitively, one pro-
duces new elements in the resulting sequence according to the
next element n of u2 (v2)∞, accumulating the numbers present
in u1 (v1)

∞. If n > 0, then one outputs the current value of the
accumulator, followed by n − 1 zeroes; if n = ω, the process stops.
If n = 0, then one adds the current element in u1 (v1)∞ to the accu-
mulator. Division by zero is a special case.

The following examples illustrate division in P .

(1)∞ \ (1)∞ = (1)∞ (2)∞ \ (2)∞ = (2 0)∞ (1 0)∞ \ (1 0)∞ = (1)∞

(1)∞ \ (0 3)∞ = (2 0 0)∞ (4 0)∞ \ (1 3)∞ = (4 0 0 0)∞

(0)∞ \ (0)∞ = (ω)∞ (3)∞ \ (ω)∞ = 3 (0)∞

Evaluation A naive way to evaluate (u (v)∞)(n) is to compute
the sum of the first n elements of u (v)∞.

Ordering We have u1 (v1)
∞ ≤ u2 (v2)

∞ if and only
if u1 (v1)∞(n) ≤ u2 (v2)

∞(n) for all 1 ≤ n ≤ max(|u1 |, |u2 |) +

lcm(|v1 |, |v2 |).

Infima and Suprema Binary infima and suprema can be com-
puted using the above characterization of the ordering between
elements of P .

A.6 Implementation

We have implemented the elaboration algorithm described in this
paper, restricted to P . Our prototype is available at the address

h�ps://github.com/adrieng/pulsar.

Example programs, including the ones discussed in Section 1
and Section 2.4, and Section 6, can be found in the file

h�ps://github.com/adrieng/pulsar/blob/master/examples/streams.pul.

B Selected Proofs

B.1 The Calculus

Notations We say that Γ′ is a subcontext of Γ if Γ′ is Γ with zero
or more bindings removed (but not permuted). Given a context Γ
and a finite set of variables X , we write Γ |X for the largest subcon-
text of Γ such that dom(Γ |X) ⊆ X . Given a context Γ and a time
warp p, we write Γ ⊖ p for the largest context (for the subcontext
ordering) such that ∗p (Γ ⊖ p) is a subcontext of Γ.

We write d ::: Γ ⊢ e : τ when d is a derivation of Γ ⊢ e : τ .

Type-Checking Explicit Terms The algorithmic type-checking
judgment Γ ⊢ e ≫ τ takes a context Γ and an explicit term e and
returns a type τ . Its rules are given in Figure 12.

Metatheoretical Results

Property 10 (Determinism of Explicit Type-Checking). If Γ ⊢ e ≫

τ and Γ ⊢ e ≫ τ ′ then τ = τ ′.

Proof. Immediate, the judgment is syntax-directed. �

Property 11 (Soundness of Explicit Type-Checking). If Γ ⊢ e ≫ τ

then Γ ⊢ e : τ .

Proof. By induction on the derivation.

• Case EAlgVar: since x ∈ dom(Γ), Γ must be of the
form Γ

′
,x : τ ,x1 : τ1, . . . , xn : τn for a certain Γ

′. Let us de-
note σw ∈ Σ(Γ′,x : τ ; Γ) the inclusion map of dom(Γ′,x : τ)

Γ ⊢ e ≫ τ

EAlgVar

Γ(x) = τ

Γ ⊢ x ≫ τ

EAlgFun

Γ, x : τ1 ⊢ e ≫ τ2

Γ ⊢ fun (x : τ1).e ≫ τ1 → τ2

EAlgApp

Γ ⊢ e1 ≫ τ1 → τ2 Γ ⊢ e2 ≫ τ1

Γ ⊢ e1 e2 ≫ τ2

EAlgPair

(Γ ⊢ ei ≫ τi)i ∈{1,2}

Γ ⊢ (e1, e2) ≫ τ1 × τ2

EAlgProji∈{1,2}

Γ ⊢ e ≫ τ1 × τ2

Γ ⊢ proji e ≫ τi

EAlgInj1

Γ ⊢ e ≫ τ1

Γ ⊢ inj
τ2
1
e ≫ τ1 + τ2

EAlg2

Γ ⊢ e ≫ τ2

Γ ⊢ inj
τ1
2
e ≫ τ1 + τ2

EAlgCase

Γ ⊢ e ≫ τ1 + τ2 (Γ, xi : τi ⊢ ei ≫ τ)i ∈{1,2}

Γ ⊢ casee of{inj1 x1 .e1 | inj2 x2 .e2} ≫ τ

EAlgHead

Γ ⊢ e ≫ Stream τ

Γ ⊢ head e ≫ τ

EAlgTail

Γ ⊢ e ≫ Stream τ

Γ ⊢ tail e ≫ ∗−1 Stream τ

EAlgCons

Γ ⊢ e1 ≫ τ Γ ⊢ e2 ≫ ∗−1 Stream τ

Γ ⊢ e1 :: e2 ≫ Stream τ

EAlgRec

Γ,x : ∗−1 τ ⊢ e ≫ τ

Γ ⊢ rec (x : τ).e ≫ τ

EAlgWarp

Γ ⊖ p ⊢ e ≫ τ

Γ ⊢ p by e ≫ ∗p τ

EAlgConst

s ∈ Sν

Γ ⊢ s ≫ ν

EAlgSubR

Γ ⊢ e ≫ τ α : τ <: τ ′

Γ ⊢ e ;α ≫ τ ′

EAlgSubL

β : Γ |dom(β) <: Γ
′

Γ
′ ⊢ e ≫ τ

Γ ⊢ β ; e ≫ τ

Figure 12. Type-Checking Explicit Terms

into dom(Γ). We conclude by deriving Γ
′
,x : τ ⊢ x : τ

by rule Var and then applying rule Struct with σw .
• Cases EAlgFun to EAlgRec, EAlgConst, EAlgSubR: im-
mediate application of induction hypotheses.

• Case EAlgWarp: by definition ∗p (Γ ⊖ p) is a subcontext
of Γ. Let us denote σw ∈ Σ(∗p (Γ ⊖ p); Γ) the corresponding
inclusion map. By the induction hypothesis and ruleWarp,
we have ∗p Γ ⊖ p ⊢ e by p : ∗p τ . We conclude by apply-
ing rule Struct with σw .

• Case EAlgSubL: again, Γ |dom(β) is a subcontext of Γ and we
denote by σw ∈ Σ(Γ |dom(β); Γ) the corresponding inclusion
map. By the induction hypothesis, we have Γ′ ⊢ e : τ . Thus,
we derive Γ |dom(β) ⊢ β ; e : τ by rule SubL. We conclude by
applying rule Struct with σw .

�

Abusing notation, we write d ::: Γ ⊢ e ≫ τ for the derivation
built in the above proof. It is exactly the canonical derivation de-
scribed in Property 3. Such a derivation can always be built.

Property 12 (Completeness of Explicit Type-Checking). If Γ ⊢ e :
τ then Γ ⊢ e ≫ τ .

Property 13 (Uniqueness of Types for Explicit Terms). For any
fixed Γ and e , there is at most one type τ such that Γ ⊢ e : τ holds.

Proof. Immediate consequence of Property 12 and Property 10. �

B.2 Operational Semantics

The proof of Theorem 3.5 relies on three realizability predicates de-
fined in Figure 13. They follow the usual structure of step-indexed
logical relation, defining V(τ)n by well-founded induction over
the lexicographic order Lex(<t , <n) ⊆ (Types×(ω+1))2, where <t
is the proper subterm ordering and <n the canonical ordering
on ω + 1. Most clauses are standard. We prove the fundamental

13

https://github.com/adrieng/pulsar
https://github.com/adrieng/pulsar/blob/master/examples/streams.pul

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

V(τ)n ⊆ Val C(Γ)n ⊆ Env E(Γ; τ) ⊆ ETerm

V(τ)0 = Val

V(ν)n+1 = Sν

V(Stream τ)n+1 = {v1 ::v2 | v1 ∈ V(τ)n+1 ∧ v2 ∈ V(Stream τ)n }

V(τ1 × τ2)n+1 = {(v1, v2) | v1 ∈ V(τ1)n+1 ∧ v2 ∈ V(Stream τ2)n+1 }

V(τ1 + τ2)n+1 = {injiv | v ∈ V(τi)n+1 }

V(τ1 → τ2)n+1 = {(x .e){γ } | ∀m ≤ n + 1, ∀v1 ∈ V(τ1)m, ∃γ ′
, ⌊ γ ⌋m ⇓ γ ′

∧∃v2, e ;γ ′[x 7→ v1] ⇓m v2 ∧ v2 ∈ V(τ2)m }

V(∗p τ)n+1 = {w(p, v) | v ∈ V(τ)p(n+1) }

V(τ)ω = {box(e){γ } | ∀m < ω, ∃v,
⌊ box(e){γ } ⌋m ⇓ v ∧ v ∈ V(τ)m }

C(Γ)n = {γ | dom(γ) = dom(Γ) ∧ ∀x ∈ dom(γ), γ (x) ∈ V(Γ(x))n }

E(Γ; τ) = {e | ∀n ∈ ω + 1, ∀γ ∈ C(Γ)n , ∃v, e ;γ ⇓n v ∧ v ∈ V(τ)n }

Figure 13. Realizability Predicates for Totality

property of logical relations, obtaining Theorem 3.5 as an immedi-
ate corollary.

Lemma B.1 (Fundamental Property). If Γ ⊢ e : τ then e ∈ E(Γ; τ).

As before, this proof relies on additional lemmas for each aux-
iliary judgment. Their statements are similar to the ones used for
type safety, replacing syntactic typing with realizability.

B.3 Denotational Semantics

Interpretation of Structure Maps Consider an arbitrary struc-
ture map σ ∈ Σ(Γ; Γ′). Let us write Γ as x1 : τ1, . . . , xn : τn and Γ

′

as x ′1 : τ ′1, . . . ,x
′
m : τ ′m . Since contexts are interpreted as tuples,

we define JσK : JΓ′K → JΓK as 〈f1, . . . , fn〉 with fi : JΓ′K → Jτi K
the jth projection out of JΓK for j such that σ (xi) = x ′j .

Coherence for Explicit Terms

Property 14. If Γ ⊢ e ≫ τ and σ ∈ Σ(Γ; Γ′) then Γ
′ ⊢ σ [e] ≫ τ

with

Jd1 ::: Γ
′ ⊢ σ [e] ≫ τ K = Jd2 ::: Γ ⊢ e ≫ τ K ◦ JσK.

Property 15. For any d1 ::: Γ ⊢ e : τ we have d2 ::: Γ ⊢ e ≫ τ with

Jd1 ::: Γ ⊢ e : τ K = Jd2 ::: Γ ⊢ e ≫ τ K.

Proof. By induction on d1.

• Case Var: since (Γ, x : τ) = τ , Γ, x : τ ⊢ x ≫ τ holds
by definition. The corresponding derivation d2 is formed
of rule Var and rule Struct with σw = id. Hence Jd2K =
Jd1K ◦ id = Jd1K.

• Cases Fun to Rec, Const, SubR: immediate application of
induction hypotheses.

• CaseWarp: we have d ′1 ::: Γ ⊢ e : τ . The induction hypothe-
sis givesd ′2 ::: Γ ⊢ e ≫ τ with Jd ′1K = Jd ′2K. Since (∗p Γ)⊖p =

Γ, we have∗p Γ ⊢ e by p ≫ τ with a canonical derivationd2
ending with an instance of rule Struct with σw = id. We
conclude as in the Var case.

• Case SubL: we have d ′1 = Γ
′ ⊢ e : τ and β : Γ <: Γ′. The

induction hypothesis gives d ′2 ::: Γ
′ ⊢ e ≫ τ . Since β :

Γ <: Γ
′, we have dom(Γ) = dom(Γ′) ⊆ dom(β) by def-

inition. Hence Γ |dom(β) = Γ and we have Γ ⊢ β ;e ≫ τ

with a canonical derivation d2 using d ′2 and ending with an
instance of rule Struct with σw = id. We conclude as in
the Var case.

• Case Struct: we have d ′1 ::: Γ ⊢ e : τ . The induction hypoth-
esis gives d ′2 ::: Γ ⊢ e ≫ τ with Jd ′1K = Jd ′2K. Applying Prop-
erty 14, we obtaind2 = Γ

′ ⊢ σ [e] ≫ τ with Jd ′2K = Jd2K◦JσK.
We conclude by transitivity.

�

Property 15 directly implies Property 12.

Contexts We define contextsC in the usual way, as explicit terms
with a single hole, with a plugging operationC[−]. We write

C : (Γ ⊢ τ) → (Γ′ ⊢ τ ′)

when the context C maps terms Γ ⊢ e : τ to a terms Γ′ ⊢ C[e] :
τ ′. Strictly speaking, we should introduce a typing judgment for
contexts, but its definition is straightforward and we thus elide it.

Every context C : (Γ ⊢ τ) → (Γ′ ⊢ τ ′) defines a mor-
phism JCK : Jτ KJΓK → Jτ ′KJΓ′K of S. The denotational semantics is
compositional as expected.

Property 16. If C : (Γ ⊢ τ) → (Γ′ ⊢ τ ′) and Γ ⊢ e : τ , then

JCK ◦ λ
[
JΓ ⊢ e : τ K

]
= JΓ′ ⊢ C[e] : τ ′K.

Operational Equivalence Programs can be discriminated by ob-
serving ground values at the first step, assuming the set of ground
values contains at least booleans. Given two explicit terms Γ ⊢ e1 :
τ and Γ ⊢ e2 : τ , we define operational equivalence as follows.

Γ ⊢ e1 �ctx e2 : τ

,∀C : (Γ ⊢ τ) → (· ⊢ ν),C[e1]; ∅ ⇓1 s ⇔ C[e2]; ∅ ⇓1 s

Adequacy In order to relate our operational and denotational se-
mantics, we embed the operational semantics inside S. For every
type τ , we define a presheaf Lτ M by

Lτ M(n) , {v ∈ Val | v : τ @ n}

Lτ M(n ≤m) , ⌊ − ⌋m

where ⌊v ⌋m , {v ′ | ⌊v ⌋m ⇓ v ′}. The results from Section 3 im-
ply that Lτ M is well-defined: determinism, type safety, and totality
imply that ⌊ − ⌋m is a function between the proper sets, and Prop-
erty 5 indeed corresponds to functoriality. We apply the same idea
to typing contexts, building a presheaf LΓM of environments. For
every well-typed explicit term Γ ⊢ e : τ , we build a natural trans-
formation

LeM : LΓM → Lτ M
LeMn , γ 7→ {v | e ;γ ⇓n v}.

Again, the results from Section 3 imply that this is well-defined. In
particular, Property 6 corresponds to naturality.

We then introduce a logical relation ⊲τ which, intuitively, de-
fines what it means for a point of Lτ M to implement a point of Jτ K.
Its definition is straightforward, given the close correspondance
between values and denotational elements, and thus we elide it.
We lift it to contexts/value pairs, obtaining a relation ⊲ Γ;τ be-
tween LΓM → Lτ M and JΓK → Jτ K, and prove the fundamental
property.

Lemma B.2. If Γ ⊢ e : τ then LeM⊲ Γ;τ JeK.

Now, given two well-typed terms Γ ⊢ e1, e2 : τ , let us write Γ ⊢

e1 ⊲⊳ e2 : τ when e1 and e2 implement the same denotation,
that is, if there exists f : JΓK → Jτ K such that both Le1M⊲ Γ;τ f
and Le2M⊲ Γ;τ f . Such terms are indistinguishable in Core λ∗. This
relation is a congruence.

14

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Lemma B.3. If Γ ⊢ e ⊲⊳ e ′ : τ and C : (Γ ⊢ τ) → (Γ′ ⊢ τ ′), then

Γ
′ ⊢ C[e] ⊲⊳ C[e ′] : τ ′.

We obtain adequacy as a corollary of Lemma B.2 and Lemma B.3.
If JΓ : e <: τ K = JΓ : e <: τ K, then Γ ⊢ e1 ⊲⊳ e2 : τ by Lemma B.2.
We immediately conclude Γ ⊢ e1 �ctx e2 : τ by Lemma B.3 and the
definition of ⊲ν .

B.4 Algorithmic Type Checking

B.4.1 Notations

As in the main body of the paper, we write τ1 <: τ2 to indicate
the mere existence of some coercion α : τ1 <: τ2, and similarly
for τ1 ≡ τ2. We also write α1 � α2 : τ <: τ ′ for

Jα1 : τ <: τ
′K = Jα2 : τ <: τ

′K

and similarly Γ ⊢ e1 � e2 : τ for

JΓ ⊢ e1 : τ K = JΓ ⊢ e2 : τ K.

B.4.2 Properties of Type Normalization

Property 17 (Idempotence of Normalization). We have

HHτII = HτI. (10)

Proof. By induction on the size of τ . �

Property 18 (Confluence of Normalization). We have

Hτ1 → τ2I = HHτ1I → τ2I = Hτ1 → Hτ2II, (11)

Hτ1 × τ2I = HHτ1I × τ2I = Hτ1 × Hτ2II, (12)

Hτ1 + τ2I = HHτ1I + τ2I = Hτ1 + Hτ2II, (13)

H∗p τ I = H∗p HτII. (14)

Property 19. For any τ , we have HτIin; HτIout � id : τ <: τ

and HτIout; HτIin � id : HτI <: HτI.

Proof. By induction on the size of τ . �

Lemma B.4. For any α1 : τ1 <: τ2, if there exists α2 : τ2 <: τ1,
then Hτ1I = Hτ2I. Moreover α1 � Hτ1Iin; Hτ2Iout : τ1 <: τ2 and α2 �
Hτ2Iin; Hτ1Iout : τ2 <: τ1.

Proof. By induction on α1. �

Corollary 3. For any (α1,α2) : τ1 ≡ τ2, we have α1;α2 � id : τ1 <:
τ1 and α2;α1 � id : τ2 <: τ2.

Proof. Immediate consequence of Property 19 and Lemma B.4. �

TheoremB.5. Type normalization is sound and complete for equiv-

alence: τ1 ≡ τ2 iff Hτ1I = Hτ2I.

Proof. The right-to-left direction follows from Hτ1Iin; Hτ2Iout :
τ1 <: τ2 and Hτ2Iin; Hτ1Iout : τ2 <: τ1. The left-to-right direction
follows immediately from Lemma B.4. �

B.4.3 Properties of Type Precedence

Lemma B.6 (Precedence is Reflexive). If τ is normal, Prec(τ ; τ) is
defined and moreover

Prec(τ ; τ) � id : τ <: τ .

Lemma B.7 (Precedence is Transitive). If both Prec(τ1; τ2) and
Prec(τ2; τ3) are defined, so is Prec(τ1; τ3), and moreover

Prec(τ1; τ2); Prec(τ2; τ3) � Prec(τ1; τ3) : τ1 <: τ3.

Lemma B.8 (Precedence and Normalization). If Prec(τ1; τ2) is de-
fined, so is Prec(Hτ1I; Hτ2I), and moreover

Prec(τ1; τ2) � Hτ1Iin; Prec(Hτ1I; Hτ2I); Hτ2Iout : τ1 <: τ2.

B.5 Properties of Algorithmic Subtyping

Functoriality Properties

Lemma B.9 (Algorithmic Subtyping is Reflexive). For any type τ ,

Coe(τ ; τ) is defined and moreover

Coe(τ ; τ) � id : τ <: τ .

Lemma B.10 (Algorithmic Subtyping is Transitive). If Coe(τ1; τ2)
and Coe(τ2; τ3) are defined, so is Coe(τ1; τ3), and moreover

Coe(τ1; τ2);Coe(τ2; τ3) � Coe(τ1; τ3) : τ1 <: τ3.

Lemma B.11 (Algorithmic Subtyping is a Congruence for Arrow
Types). If both Coe(τ3; τ1) and Coe(τ2; τ4) are defined, then so is

Coe(τ1 → τ2; τ3 → τ4), and moreover

Coe(τ1 → τ2; τ3 → τ4) � Coe(τ3; τ1) → Coe(τ2; τ4)
: τ1 → τ2 <: τ3 → τ4.

Lemma B.12 (Algorithmic Subtyping is a Congruence for Prod-
uct Types). If both Coe(τ1; τ3) and Coe(τ2; τ4) are defined, then so is
Coe(τ1 × τ2; τ3 × τ4), and moreover

Coe(τ1 × τ2; τ3 × τ4) � Coe(τ3; τ1) × Coe(τ2; τ4)
: τ1 × τ2 <: τ3 × τ4 .

Lemma B.13 (Algorithmic Subtyping is a Congruence for Sum
Types). If both Coe(τ1; τ3) and Coe(τ2; τ4) are defined, then so is

Coe(τ1 + τ2; τ3 + τ4), and moreover

Coe(τ1 + τ2; τ3 + τ4) � Coe(τ3; τ1) + Coe(τ2; τ4)
: τ1 + τ2 <: τ3 + τ4 .

LemmaB.14 (Algorithmic Subtyping is a Congruence forWarped
Types). If Coe(τ1; τ2) is defined, then so is Coe(∗p τ1;∗p τ2), and
moreover

Coe(∗p τ1;∗p τ2) � ∗p Coe(τ1; τ2) : ∗p τ1 <: ∗p τ2.

B.5.1 Completeness

Lemma B.15 (Completness of Algorithmic Subtyping for Invert-
ible Coercions). If (α1,α2) : τ1 ≡ τ2, then Coe(τ1; τ2) is defined, and
moreover

Coe(τ1; τ2) � α1 : τ1 <: τ2.

Proof. Immediate consequence of Lemma B.4 and Lemma B.6. �

Lemma B.16 (Completness of Algorithmic Subtyping for Delays).
For any p,q and τ such that p ≥ q, Coe(∗p τ ;∗q τ) is defined, and
moreover

Coe(∗p τ ;∗q τ) � delayp,q : ∗p τ <: ∗q τ .
15

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Adrien Gua�o

Proof. By Lemma B.6, Prec(τ ; τ) is defined and equivalent to id.
Thus, since p ≥ q, by definition we have

Prec(∗p τ ;∗q τ) � (∗p id); delayp,q : ∗p τ <: ∗q τ .

By Lemma B.8, Prec(H∗p τ I; H∗q τI) is defined, and thus by defini-
tion so is Coe(∗p τ ;∗q τ). We have

Coe(∗p τ ;∗q τ) � H∗p τIin; Prec(H∗p τ I; H∗q τI); H∗p τIout
� Prec(∗p τ ;∗q τ)
� (∗p id); delayp,q

� delayp,q

where the second equation follows from Lemma B.8. �

Theorem B.17 (Completeness of Algorithmic Subtyping). If α :
τ1 <: τ2, then Coe(τ1; τ2) is defined, and moreover

Coe(τ1; τ2) � α : τ1 <: τ2.

Proof. Immediate induction on derivations using Lemmas B.9, B.10,
B.11, B.12, B.14, B.15, and B.16. �

Corollary B.18 (Coherence for Coercions). For any pair of coer-

cions α1 : τ1 <: τ2 and α2 : τ1 <: τ2, we have α1 � α2 : τ1 <: τ2.

Proof. By Theorem B.17, Coe(τ1; τ2) is defined and equivalent to
both α1 and α2. �

B.6 Context Division

Lemma B.19 (Completeness of Type Division). For any p and τ1,

we have τ1 <: ∗p (τ1 \p). Moreover, if τ1 <: ∗p τ2, then τ1 \p <: τ2.

Lemma B.20 (Completeness of Context Division). For any p

and Γ1, we have Γ1 <: ∗p (Γ1 \p). Moreover, if Γ1 <: ∗p Γ2,

then Γ1 \p <: Γ2.

B.7 Properties of Type Bounds

Property 20. τ1 <: τ and τ2 <: τ iff τ1 ⊔ τ2 <: τ .

Property 21. τ <: τ1 and τ <: τ2 iff τ <: τ1 ⊓ τ2.

B.8 Properties of Algorithmic Type Checking

Lemma B.21 (Elimination of Context Subtyping). If Elab(Γ′; t) =
(τ , e), then for any β : Γ <: Γ′ there exists τm , em ,αm such that

Elab(Γ; t) = (τm , em), αm : τm <: τ and

Γ ⊢ β ; e � em ;αm : τ .

Proof. By induction on t . The proof is mostly straightforward ma-
nipulations of induction hypotheses, so we only detail the crucial
case of rule AlgWarp, where

t = t ′ by p e = Coe(Γ′;∗p (Γ′ \p)); (e ′ by p) τ = ∗p τ ′

with (τ ′, e ′) = Elab(Γ′ \p; t ′). By Lemma B.20 and Theorem B.17,
we know that Coe(Γ;∗p (Γ \p)) is defined and that Γ \p <: Γ′ \p
since Γ <: ∗p (Γ′ \p) by transitivity. By the induction hypothesis,
we obtain τm ′

, em ′
,αm ′ such that Elab(Γ \p; t ′) = (τm ′

, em ′) and

Γ \p ⊢ Coe(Γ \p; Γ′ \p); e ′ � em ′;αm ′ : τ .

Thus, by definition of Elab(Γ; t by p), we must have τm , ∗p τm ′

and em , Coe(Γ;∗p (Γ \p)); (em ′ by p). We take αm , ∗p αm ′.

We have

β ;Coe(Γ′;∗p (Γ′ \p)); (e ′ by p)
� Coe(Γ;∗p (Γ \p));∗p Coe(Γ \p; Γ′ \p); (e ′ by p)
� Coe(Γ;∗p (Γ \p)); ((Coe(Γ \p; Γ′ \p); e ′) by p)
� Coe(Γ;∗p (Γ \p)); ((em ′;αm ′) by p)

� Coe(Γ;∗p (Γ \p)); (em ′ by p);∗p αm ′

� em ;αm

where the first equation follows from Corollary B.18. �

Lemma B.22 (Algorithmic Type Checking Commutes with Struc-
tureMaps). If Elab(Γ; t) = (τ , e) is defined, then for anyσ ∈ Σ(Γ; Γ′)
we have Elab(Γ′;σ [t]) = (τ ,σ [e]).

Theorem B.23 (Completeness of Algorithmic Type Checking).
If Γ ⊢ e : τ , there exists em , τm ,αm such that Elab(Γ;U(e)) =
(τm , em) and αm : τm <: τ , and moreover

Γ ⊢ e � em ;αm : τ .

Proof. By induction on the typing derivation. The proof relies on
the properties and lemmas described in Section B.6, Section B.7,
and Section B.7, as well as Lemma B.21 and Lemma B.22. �

Corollary B.24 (Coherence for Implicit Terms). If Γ ⊢ e : τ , Γ ⊢

e ′ : τ , and U(e) = U(e ′), then Γ ⊢ e � e ′ : τ .

Proof. ByTheoremB.23we have em , τm ,αm1 , e
m
2 , τ

m
2 ,α

m
2 such that

Elab(Γ;U(e)) = (τm1 , e
m
1) αm1 : τm1 <: τ

JΓ ⊢ e1 : τ1K = Jαm1 : τm1 <: τ K ◦ JΓ ⊢ em1 : τm1 K

Elab(Γ;U(e)) = (τm2 , e
m
2) αm2 : τm2 <: τ

JΓ ⊢ e2 : τ2K = Jαm2 : τm2 <: τ K ◦ JΓ ⊢ em2 : τm2 K.

Since Elab(−;−) is a partial function, em1 = em2 and τm1 = τm2 .
By Corollary B.18, αm1 � αm2 : τm1 <: τ . We conclude by transi-
tivity. �

Contents

Abstract 1
1 Introduction 1
2 The Calculus 2
2.1 Time Warps 2
2.2 Syntax and Declarative Type System 2
2.3 Type-Checking Explicit Terms 3
2.4 Examples 3
3 Operational Semantics 4
3.1 Values and Environments 5
3.2 Evaluation Judgment 5
3.3 Metatheoretical Results 6
4 Denotational Semantics 7
4.1 Preliminaries 7
4.2 The Topos of Trees 7
4.3 Interpreting the Warping Modality 7
4.4 The Interpretation 8
4.5 Adequacy 8
5 Algorithmic Type Checking 8
5.1 Deciding Subtyping 8
5.2 Adjoint Typing Contexts 9
5.3 The Algorithm 9

16

A Generalized Modality for Recursion LICS ’18, July 9–12, 2018, Oxford, United Kingdom

5.4 Metatheoretical Results 9
6 Discussion and Related Work 9
6.1 Guarded Type Theories 9
6.2 Synchronous Programming Languages 10
References 10
A Supplementary Material 11
A.1 Coercions to and from Normal Types 11
A.2 Type Bounds 11
A.3 Additional Examples 11
A.4 Effective Time Warps 12
A.5 Ultimately Periodic Sequences 12
A.6 Implementation 13
B Selected Proofs 13
B.1 The Calculus 13
B.2 Operational Semantics 13
B.3 Denotational Semantics 14
B.4 Algorithmic Type Checking 15
B.4.1 Notations 15
B.4.2 Properties of Type Normalization 15
B.4.3 Properties of Type Precedence 15
B.5 Properties of Algorithmic Subtyping 15
B.5.1 Completeness 15
B.6 Context Division 16

B.7 Properties of Type Bounds 16
B.8 Properties of Algorithmic Type Checking 16
Contents 16
List of Figures 17

List of Figures

1 Typing Judgment 2

2 Subtyping Judgment 3

3 Typing Judgment for Values and Environments 5

4 Truncation of Values 5

5 Coercion Application Judgment 6

6 Evaluation Judgment 6

7 Iteration Judgment 6

8 Type Normalization and Precedence 9

9 Elaboration 10

10 Coercions to and from Normal Types 11

11 Type Suprema and Infima for Normal Types 11

12 Type-Checking Explicit Terms 13

13 Realizability Predicates for Totality 14

17

	Abstract
	1 Introduction
	2 The Calculus
	2.1 Time Warps
	2.2 Syntax and Declarative Type System
	2.3 Type-Checking Explicit Terms
	2.4 Examples

	3 Operational Semantics
	3.1 Values and Environments
	3.2 Evaluation Judgment
	3.3 Metatheoretical Results

	4 Denotational Semantics
	4.1 Preliminaries
	4.2 The Topos of Trees
	4.3 Interpreting the Warping Modality
	4.4 The Interpretation
	4.5 Adequacy

	5 Algorithmic Type Checking
	5.1 Deciding Subtyping
	5.2 Adjoint Typing Contexts
	5.3 The Algorithm
	5.4 Metatheoretical Results

	6 Discussion and Related Work
	6.1 Guarded Type Theories
	6.2 Synchronous Programming Languages

	References
	A Supplementary Material
	A.1 Coercions to and from Normal Types
	A.2 Type Bounds
	A.3 Additional Examples
	A.4 Effective Time Warps
	A.5 Ultimately Periodic Sequences
	A.6 Implementation

	B Selected Proofs
	B.1 The Calculus
	B.2 Operational Semantics
	B.3 Denotational Semantics
	B.4 Algorithmic Type Checking
	B.5 Properties of Algorithmic Subtyping
	B.6 Context Division
	B.7 Properties of Type Bounds
	B.8 Properties of Algorithmic Type Checking

	Contents
	List of Figures

