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Abstract

It was recently shown by van den Broeck at al. that the symmetric
weighted first-order model counting problem (WFOMC) for sentences of
two-variable logic FO2 is in polynomial time, while it is #P1-complete for
some FO3-sentences. We extend the result for FO2 in two independent
directions: to sentences of the form ϕ∧ ∀x∃=1y ψ(x, y) with ϕ and ψ for-
mulated in FO2 and to sentences of the uniform one-dimensional fragment
U1 of FO, a recently introduced extension of two-variable logic with the
capacity to deal with relation symbols of all arities. We note that the
former generalizes the extension of FO2 with a functional relation sym-
bol. We also identify a complete classification of first-order prefix classes
according to whether WFOMC is in polynomial time or #P1-complete.

1 Introduction

The first-order model counting problem asks, given a sentence ϕ and a number
n, how many models of ϕ of size n exist. (The domain of the models is taken to
be {0, . . . , n−1}.) The weighted variant of this problem adds weights to atomic
facts RM(u1, . . . , uk) of models M, the total weight of M being the product of
the atomic weights. The question is then what the sum of the weights of all
models of ϕ of size n is. Following [12], we also admit weights of negative facts
‘not RM(u1, . . . , uk)’.

We investigate the symmetric weighted model counting problem of systems
extending the two-variable fragment FO2 of first-order logic FO. The word
‘symmetric’ indicates that each weight is determined by the relation symbol of
the (positive or negative) fact and thus the weights can be specified by weight
functions w and w̄ that assign weights to each relation symbol occurring posi-
tively (w) or negatively (w̄). We let WFOMC refer to the symmetric weighted
first-order model counting problem, with WFOMC(ϕ, n, w, w̄) denoting the sum
of the weights of models M |= ϕ of size n according to the weight functions w
and w̄. We focus on studying the data complexity of WFOMC, that is, the
complexity of determining WFOMC(ϕ, n, w, w̄) where n is the only input, given
in unary, and with ϕ,w, w̄ fixed.
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The recent article [4] established the by now well-known result that the data
complexity of WFOMC is in polynomial time for formulae of FO2, while [3]
demonstrated that the three-variable fragment FO3 contains formulae for which
the problem is #P1-complete. We note that the non-symmetric variant of the
problem is known to be #P-complete for some FO2-sentences [3].

Weighted model counting problems have a range of well-known applications.
For example, as pointed out in [3], WFOMC problems occur in a natural way
in knowledge bases with soft constraints and are especially prominent in the
area of Markov logic [6]. For a recent comprehensive survey on these matters,
see [5]. From a mathematical perspective, WFOMC offers a neat and general
approach to elementary enumerative combinatorics. To give a simple illustration
of this, consider WFOMC(ϕ, n, w, w̄) for the two-variable logic sentence ϕ =
∀x∀y(Rxy → (Ryx ∧ x 6= y)) with w(R) = w̄(R) = 1. The sentence states that

R encodes a simple undirected graph and thus WFOMC(ϕ, n, w, w̄) = 2(
n

2),
the number of graphs of order n (with the set n of vertices). Thus WFOMC
provides a logic-based way of classifying combinatorial problems. For instance,
the result for FO2-properties from [4] shows that all these properties can be
associated with tractable enumeration functions. For discussions of the links
between weighted model counting, the spectrum problem and 0-1 laws, see [3].

In the current paper, we extend the result of [4] for FO2 in two independent
directions. We first consider FO2 with a functionality axiom, that is, sentences
of type ϕ ∧ ∀x∃=1y ψ(x, y) with ϕ and ψ in FO2. This extension is motivated,
inter alia, by certain description logics with functional roles [1]. The connection
of WFOMC to enumerative combinatorics also provides an important part of the
motivation. Indeed, while FO2 is a reasonable formalism for specifying proper-
ties of relations, adding functionality axioms allows us to also express properties
of functions, possibly combined with relations. For example, applying WFOMC
to the sentence ∀x¬Rxx ∧ ∀x∃=1yRxy gives the number of functions that do
not have a fixed point. While the extension of FO2 with a functionality axiom
might appear simple at first sight, showing that the data complexity of WFOMC
remains in PTIME requires a rather different and much more involved approach
than that for FO2. Our proofs provide concrete and insightful aritmetic expres-
sions for analysing the related weighted model counts. The article [9] considers
weighted model counting of an orthogonal extension of FO2 which can express
that some relations are functions.

We also show that the data complexity of WFOMC remains in PTIME for
sentences of the uniform one-dimensional fragment U1. This is a recently intro-
duced [8, 10] extension of FO2 that preserves NEXPTIME-completeness of the
satisfiability problem while admitting more than two variables and thus being
able to speak about relations of all arities in a meaningful way. The fragment
U1 is obtained from FO by restricting quantification to blocks of existential
(universal) quantifiers that leave at most one variable free, a restriction referred
to as the one-dimensionality condition. Additionally, a uniformity condition
is imposed: if k, n ≥ 2, then a Boolean combination of atoms Rx1 . . . xk and
Sy1 . . . yn is allowed only if the sets {x1, . . . , xk} and {y1, . . . , yn} of variables
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are equal. Boolean combinations of formulae with at most one free variable
can be formed freely, and the use of equality is unrestricted. It is shown in [8]
that lifting either of these conditions—in a minimal way—leads to undecidabil-
ity. For a survey of the basic properties of U1 and its relation to modal and
description logics, see [14].

What makes weighted model counting for U1 attractive in relation to appli-
cations is the ability of U1 to express interesting properties of relations of all
arities, thereby banishing one of the main weaknesses of FO2. This is especially
well justified from the points of view of database theory and of knowledge rep-
resentation with formalisms such as Markov logic, which are among the main
application areas of WFOMC. We note that U1 is significantly more expressive
than FO2 already in restriction to models with at most binary relations [14].

We also identify a complete classification of first-order prefix classes ac-
cording to whether the sentences of the particular class have polynomial time
WFOMC or whether some sentence of the class has a #P1-complete WFOMC.
This classification, whose proof makes significant use of the results and tech-
niques from [3, 4], is remarkably simple: #P1-hardness arises precisely for the
classes with more than two quantifiers, independently of the quantifier pattern.

2 Preliminaries

The natural numbers are denoted by N and positive integers by Z+. As usual,
we often identify n ∈ N with the set { k ∈ N | k < n}. We define [n] := {1, . . . , n}
for each n ∈ Z+ and [0] = ∅. The domain of a function f is denoted by dom(f).
The function f is involutive if f(f(x)) = x for all x ∈ dom(f) and anti-involutive
if f(f(x)) 6= x for all x ∈ dom(f). Two functions f and g are nowhere inverses
if f(g(x)) 6= x and g(f(y)) 6= y for all x ∈ dom(g), y ∈ dom(f). We use the
standard notation

(

n
n1,...,nm

)

for multinomial coefficients.

We study (fragments of) first-order logic FO over relational vocabularies;
constant and function symbols are not allowed. The identity symbol ‘=’ and
the Boolean constants ⊥,⊤ are not considered relation symbols; they are a
logical symbols included in FO. We allow nullary relation symbols in FO with
the usual syntax and semantics. The vocabulary of a formula ϕ is denoted by
voc(ϕ).

We let VAR := {v0, v1, . . . } denote a fixed, countably infinite set of variable
symbols. We mainly use meta-variables x, y, z, etc., in order to refer to symbols
in VAR. Note that for example x and y may denote the same variable, while vi
and vj are different if i 6= j.

The domain of a modelM is denoted by dom(M). In the caseA ⊆ (dom(M))k,
we let (M, A) denote the expansion of M obtained by adding the k-ary rela-
tion A to M. We mostly do not differentiate between relations and relation
symbols explicitly when the distinction is clear from the context. Relational
models decompose into facts and negative facts in the usual way: if R is a k-ary
relation symbol of a model M and Ru1 . . . uk holds for some elements u1, . . . , uk
of M, then Ru1 . . . uk is a positive fact of M, and if Ru1 . . . uk does not hold
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in M, then Ru1 . . . uk is a negative fact of M. We denote the positive (respec-
tively, negative) facts of M by F+(M) (respectively, F−(M)). The span of a
fact Ru1, . . . , uk, whether positive or negative, is {u1, . . . , uk} and its size is
|{u1, . . . , uk}|.

The first-order model counting problem asks, when given a positive integer
n in unary and an FO-sentence ϕ, how many models ϕ has over the domain
n = {0, . . . , n− 1}; the vocabulary of the models is taken to be voc(ϕ), and dif-
ferent but isomorphic models contribute separately to the output. The weighted
first-order model counting problem adds two functions to the input, w and w̄,
that both map the set of all possible facts over n and voc(ϕ) into a set of
weights. In the symmetric weighted model counting problem studied in this
paper, w and w̄ are functions w : voc(ϕ) → Q and w̄ : voc(ϕ) → Q. The output
WFOMC(ϕ, n, w, w̄) is then the sum of the weights W (M, w, w̄) of all models
M |= ϕ with domain n and vocabulary voc(ϕ),

W (M, w, w̄) :=
∏

Ru1...uk ∈F+(M)

w(R) ·
∏

Ru1...uk ∈F−(M)

w̄(R). (1)

This setting gives rise to several computational problems, depending on which
inputs are fixed. In this article, we exclusively study data complexity, i.e., the
problem of computing WFOMC(ϕ, n, w, w̄) with the sole input n ∈ Z+ given
in unary; ϕ, w and w̄ are fixed and thus not part of the input. Algorithms for
more general inputs can easily be extracted from our proofs, but we only study
data complexity explicitly for the lack of space.

While weights are rational numbers, it will be easy to see that reals with
a tame enough representation could also be included without sacrificing our
results. We ignore this for the sake of simplicity and stick to rational weights.
(See also [12].)

We now define, for technical purposes, some restricted versions of WFOMC
and the operator W. First, if M is a class of models, we define

WFOMC(ϕ, n, w, w̄) ↾ M

to be the sum of the weights W(M, w, w̄) of models M ∈ M with domain n
and vocabulary voc(ϕ) such that M |= ϕ. For k ∈ Z+, we let F+

k (M) and
F−
k (M) denote the restrictions of F+(M) and F−(M) to facts with span of size
k. We defineWk(M, w, w̄) exactly asW (M, w, w̄) but with F+(M) and F−(M)
replaced by F+

k (M) and F−
k (M). When ϕ, n, w and w̄ are clear from the context,

we use the weight of a class M of models to refer to WFOMC(ϕ, n, w, w̄) ↾ M.
The quantifier-free part of a prenex normal form formula of FO is called a

matrix. A prenex normal form sentence of type χ := ∀x1 . . . ∀xkψ, where ψ is
the matrix, is a ∀∗-sentence, and the number k of quantifiers in χ is the width
of χ. An ∃∗-sentence is defined analogously.

We will investigate standard two-variable logic FO2 enhanced with a func-
tionality axiom. Formulae in this language are conjunctions of the type ϕ ∧
∀x∃=1yψ(x, y), where ϕ and ψ are FO2-formulae, ψ with the free variables x, y
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and ϕ a sentence. When studying this variant of FO, we exclusively use the
variables x, y, with x denoting v1 and y denoting v2.

We next introduce uniform one-dimensional fragments of FO. Let Y =
{y1, . . . , yk} be a set of distinct variables, and let R be an n-ary relation symbol
for some n ≥ k. An atom Ryi1 . . . , yin is a Y -atom if {yi1 , . . . , yin} = Y . For
example, if x, y, z, v are distinct variable symbols, then Txyzx and Sxzy are
{x, y, z}-atoms, while Uxyzv and V xy are not. Furthermore, V xz is an {x, z}-
atom while x = z is not as identity is not a relation symbol. A Y -literal is a
Y -atom Ryi1 . . . , yin or a negated Y -atom ¬Ryi1 . . . yin . A Y -literal is an m-ary
literal if |Y | = m, so for example Sxx and ¬Px are unary literals; Sxx is even a
unary atom while ¬Px is not. A higher arity literal is a literal of arity at least
two. We let diff (x1, . . . , xk) denote the conjunction of inequalities xi 6= xj for
all distinct i, j ∈ [k].

The set of formulae of the uniform one-dimensional fragment U1 of FO is
the smallest set F such that the following conditions hold.

1. Unary and nullary atoms are in F .

2. All identity atoms x = y are in F .

3. If ϕ, ψ ∈ F , then ¬ϕ ∈ F and ϕ ∧ ψ ∈ F .

4. Let X = {x0, . . . , xk} and Y ⊆ X . Let ϕ be a Boolean combination of
Y -atoms and formulae in F whose free variables (if any) are in X . Then

(a) ∃x1 . . .∃xk ϕ ∈ F ,

(b) ∃x0 . . .∃xk ϕ ∈ F .

For example ∃y∃z((¬Rxyz∨Tzyxx)∧Qy) is a U1-formula while ∃x∃y(Sxy∧
Sxz) is not, as {x, y} 6= {x, z}. This latter formula is said to violate the uni-
formity condition of U1. Also ∃z∀y∀x(Txyz ∧ ∃uSxu) is a U1-formula while
∃x∃y∃z(Txyz∧∃uTxyu) is not, as ∃uTxyu leaves two variables free and thereby
violates the one-dimensionality condition of U1. The clause 4 above does not
require that Y -atoms must be included, so also ∃x∃y∃zdiff (x, y, z) is a U1-
formula. We thus see that U1 has some counting capacities. A matrix of a
U1-formula is a called a U1-matrix.

The article [14] contains a survey of U1 with background about its expressive
power and connections to extended modal logics. The article [11] provides an
Ehrenfeucht-Fräıssé game characterization of U1. It is worth noting that the
so-called fully uniform one-dimensional fragment FU1 has exactly the same
expressive power as FO2 when restricting to vocabularies with at most binary
relations [14]. The logic FU1 is obtained by dropping clause 2 from the above
definition of U1 and instead regarding the identity symbol as an ordinary binary
relation in clause 4; see [14]. Thus U1 is the extension of FU1 with unrestricted
use of identity.

The formula ∃x∃y∃zdiff (x, y, z) is an obvious example of a U1-formula that
is not expressible in FO2. Another formula worth mentioning here that separates
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the expressive powers of U1 and FO2 is ∃x∀y∀z(Ryz → (x = y ∨ x = z)) which
states that some node is part of every edge of R. The separation was shown
in [14], and the proof is easy; simply consider the two-pebble game (defined in,
e.g., [7]) on the complete graphs K2 and K3. The U1-formula ∃x∃y∃z¬Sxyz
is one of the simplest formulae separating U1 from both FO2 and the guarded
negation fragment [2], as shown in [14].

For technical purposes, we also introduce the strongly restricted fragment of
U1, denoted SU1, which was originally introduced and studied in [11]. The logic
SU1 imposes the additional condition on the above clause 4 that the set Y must
contain exactly all of the variables x0, . . . , xk. For example ∃x∃y∃u(Rxyu∧x 6=
u) is an SU1-formula while ∃x∃y(Sxy∧x 6= z) is not, despite being a U1-formula,
as z 6∈ {x, y}. Despite the syntactic restriction imposed by SU1 being simple,
it has some significant consequences: it is shown in [11] that the satisfiability
problem of SU1 in the presence of a single built-in equivalence relation is only
NEXPTIME-complete, while it is 2NEXPTIME-complete for U1. We note that
even the restriction SU1 of U1 contains FO2 as a syntactic fragment.

A U1-sentence ϕ is in generalized Scott normal form, if

ϕ =
∧

1≤i≤m∀

∀x1 . . .∀xℓi ϕ
∀
i (x1, . . . , xℓi)

∧
∧

1≤i≤m∃

∀x∃y1 . . .∃ykiϕ
∃
i (x, y1, . . . , yki),

where ϕ∃
i and ϕ∀

i are quantifier-free. A sentence of FO2 is in (standard) Scott
normal form if it is of type

∀x∀y ϕ(x, y) ∧
∧

1≤i≤m∃
∀x∃yψi(x, y)

with ϕ and each ψi quantifier-free. There exists a standard procedure (see, e.g.,
[7, 10]) that converts any given formula ϕ of FO2 (respectively, U1) in polynomial
time into a formula Sc(ϕ) in standard (respectively, generalized) Scott normal
form such that ϕ is equivalent to ∃P1 . . . ∃PnSc(ϕ), where P1, . . . , Pn are fresh
unary and nullary predicates. The procedure is well-known and used in most
papers on FO2 and U1, so we here only describe it very briefly. See Appendix A.1
for further details. The principal idea is to replace, starting from the atomic level
and working upwards from there, any subformula ψ(x) = Qx1 . . . Qxkχ, where
Q ∈ {∀, ∃} and χ is quantifier-free, with an atomic formula Pψ(x), where Pψ is
a fresh relation symbol. This novel atom Pψ(x) is then separately axiomatized
to be equivalent to ψ(x).

If ϕ is a sentence of U1 (respectively SU1, FO
2), then Sc(ϕ) is likewise a

sentence of U1 (respectively SU1, FO
2); see Appendix A.1. Each novel predicate

(Pψ in the above example) is axiomatized to be equivalent to the subformula
(ψ(x) in the above example) whose quantifiers are to be eliminated, so the
interpretation of the predicate is fully determined by the subformula in every
model of the ultimate Scott normal form sentence. Thus, recalling that ϕ ≡
∃P1 . . . ∃PkSc(ϕ), where P1, . . . Pk are the fresh predicates, we get the following
(see Appendix A.1 and cf. [4]).

Lemma 2.1. WFOMC(ϕ, n, w, w̄) = WFOMC(Sc(ϕ), n, w′, w̄′), where w′

and w̄′ map the fresh symbols to 1.

6



2.1 Types and tables

Let η be a finite relational vocabulary. A 1-type (over η) is a maximally consis-
tent set of η-atoms and negated η-atoms in the single variable v1. The number
of 1-types over η is clearly finite. We often identify a 1-type α with the conjunc-
tion of its elements, whence α(v1) is simply a formula in the single variable v1.
While the official variable with which α is defined is v1, we frequently consider
1-types α(x), α(y), etc., with v1 replaced by other variables. To see some ex-
amples, consider the case where η = {R,P} with R binary and P unary. Then
the 1-types over η in the variable x are Rxx∧Px, ¬Rxx∧Px, Rxx∧¬Px and
¬Rxx ∧ ¬Px.

Let M be an η-model and α a 1-type over η. An element u ∈ dom(M)
realizes the 1-type α if M |= α(u). Note that every element of M realizes
exactly one 1-type over η.

Let k ≥ 2 be an integer. A k-table over η is a maximally consistent set of
{v1, ... , vk}-atoms and negated {v1, ... , vk}-atoms over η. We define that 2-tables
do not contain identity atoms or negated identity atoms. For example, using x, y
instead of v1, v2, the set {Rxxy,Rxyx,¬Ryxx,Ryyx,¬Ryxy,Rxyy, Sxy,¬Syx}
is a 2-table over {R,S}, where R is a ternary and S a binary symbol. We often
identify a k-table β with a conjunction of its elements. We also often consider
formulae such as β(x1, . . . , xk), thereby writing k-tables in terms of variables
other than v1, . . . , vk.

For investigations on two-variable logic, we also need the notion of a 2-type.
Recalling that we let x and y denote, respectively, v1 and v2 in two-variable
contexts, we define that a 2-type over η is a conjunction β(x, y)∧α1(x)∧α2(y)∧
x 6= y, where β is a 2-table while α1 and α2 are 1-types over η. Such a 2-type
can be conveniently denoted by α1βα2.

Let γ be either a 1-type or a k-table over η. Let L+ and L− be the sets
of positive and negative literals in γ. Given weight functions w : η → Q and
w̄ : η → Q, the weight of γ, denoted by 〈w, w̄〉(γ), is the product

∏

Rv ∈L+

w(R) ·

∏

¬Rv∈L−

w̄(R), where v denotes all the different possible tuples of variables in

the literals of γ.

2.2 A Skolemization procedure

We now define a formula transformation procedure designed for the purposes of
model counting. The procedure, which was originally introduced in [4], resem-
bles Skolemization but does not in general produce an equisatisfiable formula.
Here we present a slightly modified variant of the procedure from [4] suitable
for our purposes.

If Q ∈ {∃, ∀} is a quantifier, we let Q′ denote the dual quantifier of Q, i.e.,
Q′ ∈ {∃, ∀} \ {Q}. Let

ϕ := ∀x1 . . . ∀xk∃y1 . . . ∃ymQ1z1 . . .Qnzn ψ

be a first-order prenex normal form sentence where ψ is quantifier-free and
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Qi ∈ {∃, ∀} for all i. We eliminate the block ∃y1 . . . ∃ym of existential quantifiers
of ϕ in two steps. First we replace ϕ by

∀x1 . . .∀xk(Ax1 . . . xk ∨ ¬∃y1 . . . ∃ymQ1z1 . . . Qnzn ψ),

where A is a fresh k-ary predicate. Then the negation is pushed inwards
past the quantifier block ∃y1 . . .∃ymQ1z1 . . .Qnzn and the resulting dual block
∀y1 . . .∀ymQ′

1z1 . . .Q
′
nzn is pulled out so that we end up with the prenex normal

form sentence

∀x1 . . . ∀xk∀y1 . . . ∀ymQ′
1z1 . . . Q

′
nzn (Ax1 . . . xk ∨ ¬ψ).

Let Sk0(ϕ) denote the sentence obtained by changing the maximally long
outermost block of existential quantifiers (the block ∃y1 . . . ∃ym if Q1 = ∀ above)
to a block of universal quantifiers using the above two steps, and let Sk(ϕ) be the
∀∗-sentence obtained by repeatedly applying Sk0. For any conjunction χ := ψ1∧
· · ·∧ψn of prenex normal form sentences, we let Sk(χ) := Sk(ψ1)∧· · ·∧Sk(ψn).

The next Lemma is proved similarly as the corresponding result in [4]. For
the sake of completeness, Appendix A.2 also gives a proof.

Lemma 2.2 (cf. [4]). Let χ and ϕ be sentences, ϕ a conjunction of prenex
normal form sentences. Let w and w̄ be weight functions. Then

WFOMC(ϕ ∧ χ, n, w, w̄) = WFOMC(Sk (ϕ) ∧ χ, n, w′, w̄′),

where w′ and w̄′ are obtained from w and w̄ by mapping the fresh symbols in
Sk(ϕ) to 1 in the case of w′ and to −1 in the case of w̄′. If ϕ is a sentence of
FO2, then so is Sk(ϕ). If ϕ is a sentence of L ∈ {SU1,U1} in generalized Scott
normal form, then Sk(ϕ) ∈ L.

2.3 Further syntactic assumptions

Let ϕ be a sentence of U1. Due to Lemmas 2.1 and 2.2, we have

WFOMC(ϕ, n, w, w̄) = WFOMC(Sk(Sc(ϕ)), n, w′, w̄′),

where w′ and w̄′ treat the fresh symbols as discussed when defining Sc and Sk .
Call χ := Sk(Sc(ϕ)) and assume, w.l.o.g., that χ = ∀x1χ1∧· · ·∧∀x1 . . .∀xkχk for
some matrices χi. For technical convenience, when working with SU1, we assume
that there is at most one ∀∗-conjunct of any particular width; if not, formulae
∀x1 . . . ∀xpχ′ and ∀x1 . . . ∀xpχ′′ can always be combined to ∀x1 . . . ∀xp(χ′ ∧χ′′).

Now, χ may contain nullary predicates. Let S be the set of nullary predicates
of χ and let f : S → {⊤,⊥} be a function. Let χf be the formula obtained
from χ by replacing each nullary predicate P by f(P ). It is easy to compute
WFOMC(χ, n, v, v̄) from the values WFOMC(χf , n, v, v̄) for all functions f :
S → {⊤,⊥}. Thus, when studying WFOCM for U1 and SU1, we begin with
a formula ∀x1χ1 ∧ · · · ∧ ∀x1 . . .∀xkχk assumed to be free of nullary predicates.
We also assume, w.l.o.g., that the greatest width k is at least 2 and equal to the
greatest arity of relation symbols occurring in the formula. (We can always add
dummy ∀∗-conjuncts of higher width, and we can add a dummy k-ary symbol
R to a conjunct ∀x1 . . . ∀xkχk by replacing χk by Rx1 . . . xk ∧ χk and setting
w(R) = w̄(R) = 1.)
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We then turn to two-variable logic with a functionality axiom. Consider a
sentence ϕ′ := ϕ ∧ ∀x∃=1yψ(x, y), where ϕ and ψ(x, y) are FO2-formulae. By
applying the Scott normal form procedure for eliminating quantified subformu-
lae and using the Skolemization operator Sk , it is easy to obtain (see Appendix
A.3) a sentence ϕ′′ := ∀x∀yχ ∧ ∀x∃=1yχ′(x, y) with χ and χ′(x, y) quantifier-
free so that WFOMC(ϕ′, n, w, w̄) = WFOMC(ϕ′′, n, w′, w̄′), where w′ and w̄′

extend w and w̄. If ϕ′′ has nullary predicates, we eliminate them in the way
discussed above. Thus, when studying WFOMC for FO2 with a functionality
axioms below, we begin with a sentence of the form ∀x∀yϕ1 ∧ ∀x∃y=1ϕ2(x, y)
where ϕ1 and ϕ2 are quantifier-free. We also assume, w.l.o.g., that the sentence
contains at least one binary relation symbol and no symbols of arity greater
than two. (These assumptions are easy to justify, see Appendix A.4.)

3 Counting for FO2 with functionality

We now show that the symmetric weighted model counting problem for FO2-
sentences with a functionality axiom is in PTIME. As discussed in the prelimi-
naries, it suffices to consider a formula

Φ0 := ∀x∀y ϕ∀
0(x, y) ∧ ∀x∃=1y ϕ∃

0(x, y),

where ϕ∀
0 (x, y) and ϕ∃

0(x, y) are quantifier-free and do not contain nullary re-
lation symbols. Further assumptions justified in the preliminaries are that Φ0

contains at least one binary relation symbol and no relation symbols of arity
greater than two. From now on, we thus consider a fixed formula Φ0 of the
above form as well as fixed weight functions w and w̄.

To simplify the constructions below, it would help if the subformula ϕ∃
0(x, y)

of Φ0 was of the form x 6= y ∧ ψ so that a witness for the existential quantifier
would always be different from the point it is a witness to. However, there
seems to be no obvious way to convert Φ0 into the desired form while preserving
weighted model counts. We thus use a conversion that does not preserve these
counts and then show how to rectify this. Let

Φ := ∀x∀y
(

ϕ∀
0(x, y) ∧ ¬(x 6= y ∧ ϕ∃

0(x, x) ∧ ϕ
∃
0(x, y))

)

∧ ∀x∃=1y
(

x 6= y ∧
(

(ϕ∃
0 (x, x) ∧ Sy)

∨ (ϕ∃
0 (x, x) ∧ Sx ∧ Ty)

∨ (¬ϕ∃
0 (x, x) ∧ ϕ

∃
0(x, y))

))

,

where S and T are fresh unary predicates. Let M be the class of models (over
voc(Φ)) where S and T are interpreted to be distinct singletons. Slightly abusing
notation, assume further that both w and w̄ assign to both S and T the value
1.

The remainder of this section is devoted to showing how to compute

WFOMC(Φ, n, w, w̄) ↾ M.

We note that the class

9



M1 := {M ∈ M| dom(M) = n }

of models relevant to WFOMC(Φ, n, w, w̄) ↾ M can be obtained from the class
M0 of models relevant to WFOMC(Φ0, n, w, w̄) by interpreting S and T as
distinct singletons in all possible ways, so every model in M0 gives rise to
n(n− 1) models in M1. It is thus easy to see that we get WFOMC(Φ0, n, w, w̄)
from WFOMC(Φ, n, w, w̄) ↾ M by dividing by n(n − 1). (The case n = 1 is
computed separately.)

We note that there seems to be no obvious way to modify Φ to additionally
enforce S and T to be distinct singletons. While this property is expressible by
a sentence of FO2, adding such a sentence would destroy the intended syntactic
structure of Φ. Note here that Lemma 2.2 does not in general produce an
equivalent formula, so using it for modifying the required FO2-sentence would
not help.

3.1 Partitioning models

For simplicity, let Φ = ∀x∀y ϕ∀(x, y) ∧ ∀x∃=1y ϕ∃(x, y), so ϕ∀(x, y) and ϕ∃(x, y)
denote, respectively, the quantifier-free parts of the ∀∀-conjunct and ∀∃=1-
conjunct of Φ. In the rest of Section 3, types and tables mean types and tables
with respect to voc(Φ).

Now, recall from the preliminaries that a 2-type τ(x, y) is a conjunction
α(x) ∧ β(x, y) ∧ α′(y) ∧ x 6= y where β is a 2-table and α, α′ are 1-types. We
denote such a 2-type by αβα′. We call α the first 1-type and α′ the second
1-type of τ(x, y) and denote these 1-types by τ(1) and τ(2). The 2-type τ(x, y)
is coherent if

τ(x, y) |= ϕ∀(x, y) ∧ ϕ∀(y, x) ∧ ϕ∀(x, x) ∧ ϕ∀(y, y).

A 1-type α(x) is coherent if α(x) |= ϕ∀(x, x). The inverse of a 2-type τ(x, y) is
the 2-type τ ′(x, y) ≡ τ(y, x). A 2-type is symmetric if it is equal to its inverse.

The witness of an element u in a model M of Φ is the unique element v such
that M |= ϕ∃(u, v). A 2-type τ(x, y) is witnessing if τ(x, y) is coherent and we
have τ(x, y) |= ϕ∃(x, y). The 2-type τ(x, y) is both ways witnessing if both it
and its inverse are witnessing; note that a both ways witnessing 2-type can be
symmetric but does not have to. The set of all witnessing 2-types is denoted by
Λ.

We next define the notions of a block and a cell. These are an essential
part of the subsequent constructions. One central idea of our model counting
strategy is to partition the domain of a model M of Φ into blocks which are
further partitioned into cells. A block type is simply a witnessing 2-type. The
block type of an element u of M |= Φ is the unique witnessing 2-type τ(x, y)
such that M |= τ(u, v), where v is the witness of u. The domain M of M is
partitioned by the family (BM

τ )τ where each set BM
τ ⊆M contains precisely the

elements of M with block type τ . Some of the sets BM
τ can of course be empty.

We call the sets BM
τ the blocks of M and refer to BM

τ as the block of type τ . We
fix a linear order < over all block types and denote its reflexive variant by ≤.

10



Each block further partitions into cells. A cell type is a pair (σ, τ) of wit-
nessing 2-types. For brevity, we denote cell types by στ instead of (σ, τ). The
cell type of an element u in a model M |= Φ is the unique pair στ such that
u ∈ BM

σ and v ∈ BM
τ , v the witness of u. Each block BM

σ is partitioned by the
family (CM

στ )τ where each set CM
στ ⊆ BM

σ contains precisely the elements of M
that are of cell type στ . Again, some of the sets CM

στ can be empty. We call the
sets CM

στ the cells of BM
σ and refer to each CM

στ as the cell of type στ .

3.2 The counting strategy

We now describe our strategy for computing WFOMC(Φ0, n, w, w̄) informally.
A formal treatment will be given later on. We first explain how to compute
WFOMC(Φ, n, w, w̄) and then discuss how to get WFOMC(Φ, n, w, w̄) ↾ M
and WFOMC(Φ0, n, w, w̄).

The strategy for computing WFOMC(Φ, n, w, w̄) is based on blocks and cells.
We are interested in models of a given size n and with domain n = {0, . . . , n−1},
so we let MΦ

n denote the set of all voc(Φ)-models M with domain n that satisfy
Φ.

A cell configuration is a partition (Cστ )στ of the set n where some sets can
be empty. The cell configuration of a model M ∈ MΦ

n is the family (CM
στ )στ

as defined in Section 3.1. For a cell configuration Γ, we use MΦ
n,Γ to denote

the class of all models in MΦ
n that have cell configuration Γ. It is clear that

the family (MΦ
n,Γ)Γ, where Γ ranges over all cell configurations, partitions MΦ

n

(though some sets MΦ
n,Γ can be empty). It would be convenient to iterate

over cell configurations Γ and independently compute the weight of all models
in each MΦ

n,Γ, eventually summing up the computed weights. However, this
option is ruled out since the number of cell configurations is exponential in n.
Fortunately, it suffices to only know the sizes of cells rather than their concrete
extensions.

Let σ1, . . . , σk enumerate all block types. Then the sequence

σ1σ1, σ1σ2, . . . , σkσk

enumerates all cell types. A multiplicity configuration is a vector

(nσ1σ1
, nσ1σ2

, . . . , nσkσk
)

where each nσiσj
is a number in {0, . . . , n} and nσ1σ1

+ · · ·+ nσkσk
= n. The

multiplicity configuration of a model M ∈ MΦ
n is obtained by letting each nστ be

the size of CM
στ . For a multiplicity configuration ∆, we use MΦ

n,∆ to denote the

class of all models from MΦ
n that have multiplicity configuration ∆. Clearly, the

number of multiplicity configurations is polynomial in n, so we can iterate over
them and—as we shall see—independently compute the weight of all models in
each MΦ

n,∆ in polynomial time.
Each cell configuration gives rise to a unique multiplicity configuration. Con-

versely, for every multiplicity configuration ∆ = (nσ1σ1
, nσ1σ2

, . . . , nσkσk
), there

11



are

ℓ =

(

n

nσ1σ1
, nσ1σ2

, . . . , nσkσk

)

cell configurations giving rise to ∆. For any two such cell configurations Γ, Γ′,
the weight of MΦ

n,Γ (i.e., the sum of the weights of the models in MΦ
n,Γ) is

identical to the weight of MΦ
n,Γ′ . To obtain the weight of MΦ

n,∆, it thus suffices
to consider a single cell configuration Γ giving rise to ∆, compute the weight of
MΦ

n,Γ and multiply by ℓ.

We now briefly describe how to compute the number of models in MΦ
n,Γ ,

ignoring weights. With easy modifications, the approach will ultimately also
give the weight of MΦ

n,Γ. Although our algorithm is not going to explicitly

construct the models in MΦ
n,Γ, to describe how the number of those models is

counted, we simultaneously consider how we could construct all of them.
Let (Bσ)σ be the block configuration that corresponds to the cell config-

uration Γ = (Cστ )στ , that is, Bσ =
⋃

τ Cστ for each block type σ. As the
domain is fixed to be n, we consider all possible ways to assign 1-types to the
elements of n and 2-tables to pairs of distinct elements such that we realize
the cell configuration Γ. There is no freedom for the 1-types: if u ∈ Bσ, then
we must assign the 1-type σ(1) to u. To assign 2-tables, we consider each pair
of blocks (Bσ, Bτ ) with σ ≤ τ independently, identifying each possible way to
simultaneously assign 2-tables to pairs in Bσ × Bτ . (When σ = τ , we must be
careful to (1) consider only pairs (u, v) of distinct elements and (2) to assign a
2-table to only one of (u, v), (v, u).) It is important to understand that in Bσ,
there is exactly one cell, namely Cστ , whose elements require a witness from
Bτ . Similarly, in Bτ , it is precisely the elements of Cτσ that require a witness
in Bσ. Since witnesses are unique, we start with identifying the ways to simul-
taneously define functions f : Cστ → Bτ and g : Cτσ → Bσ that determine the
witnesses. It then remains to count the number of ways to assign 2-types to the
remaining edges that are witnessing in neither direction. This is easy—as long
as we know the number N of these remaining edges—since each edge realizes
the 1-type σ(1) at the one end and τ(2) at the other. We use a look-up table
to find the number of 2-tables that are ‘compatible’ with this. The number N
depends on how many pairs in Bσ × Bτ and Bτ × Bσ belong to the functions
that determine the witnesses, but N will nevertheless be easy to determine, as
we shall see.

The precise arithmetic formulae for counting the number of ways to assign
2-tables to all elements from Bσ×Bτ are given in Section 3.3. There are several
cases that need to be distinguished. We now briefly look at the most important
cases informally.

We start with the case σ = τ , that is, the two blocks Bσ, Bτ are in fact
the same single block, and we aim to assign 2-tables within that block. Then
exactly the elements from the cell Cσσ require a witness in Bσ itself. If σ is not
both ways witnessing, then Cσσ will be the domain of an anti-involutive function
Cσσ → Bσ that determines a witness in Bσ for each element in Cσσ . If σ is both
ways witnessing and its own inverse, this function is involutive. The case where
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σ is both ways witnessing but not its own inverse is pathological in the sense
that there are then no valid ways to assign 2-tables unless Cσσ is empty. To
sum up, in each case, the core task in designing the desired arithmetic formula
is thus to count the number of suitable anti-involutive or involutive functions.

Now consider the case where σ 6= τ and thus Bσ and Bτ are different blocks.
Here again several subcases arise based on whether σ and τ are both ways
witnessing. The most interesting case is where neither σ nor τ is both ways
witnessing. We then need to count the ways of finding two functions f : Cστ →
Bτ and g : Cτσ → Bσ that are nowhere inverses of each other. In the case
where σ and τ are both ways witnessing and inverses of each other, we need to
count the number of perfect matchings between the sets Cστ and Cτσ. The case
where at least one of the witness types, say σ, is both ways witnessing, but σ
and τ are not inverses of each other, is again pathological.

Implementing the above ideas, we will show how to obtain, for any pair of
blocks Bσ, Bτ , where we have σ ≤ τ , a function Mστ (nσ, nστ , nτ , nτσ) that
counts the ‘weighted number of ways’ to connect the blocks Bσ and Bτ with
2-tables, when given the sizes nσ and nτ of the blocks as well as the sizes
nστ and nτσ of the cells Cστ ⊆ Bσ and Cτσ ⊆ Bτ ; we note that while this
fixes the intuitive interpretation of Mστ (nσ, nστ , nτ , nτσ), the function Mστ

will become formally defined in terms of arithmetic operations in Section 3.4.
(Furthermore, for the sake of extra clarity, we provide in Appendix B.1 a more
detailed description of what the weighted number of ways to connect Bσ and
Bτ with 2-tables means.)

Recall that Λ is the set of all block types and note that nσ =
∑

σ′ ∈Λ

nσσ′

and likewise for nτ , so nσ and nτ are determined by the sizes of all cells in the
blocks Bσ and Bτ . With the aim of achieving notational uniformity, we can
thus replace Mστ by a function

Nστ (nσ1σ1
, nσ1σ2

, . . . , nσkσk
) (2)

that outputs Mστ (nσ, nστ , nτ , nτσ) but has a full multiplicity type as an input.
Noting that the weight functions w and w̄ give rise to the weight wα := 〈w, w̄〉(α)
of each 1-type α, we now observe that we can compute WFOMC(Φ, n, w, w̄) by
the function

U(n) :=
∑

nσ1σ1
+nσ1σ2

+···+nσkσk
=n

(

(

n

nσ1σ1
, nσ1σ2

, . . . , nσkσk

)

·

(

∏

σ ∈ Λ

(wσ(1))
nσ

)

∏

σ, τ ∈ Λ

Nστ (nσ1σ1
, nσ1σ2

, . . . , nσkσk
)
)

. (3)

Recall, however, that we aim to compute WFOMC(Φ, n, w, w̄) ↾ M rather
than WFOMC(Φ, n, w, w̄). And eventually we want to compute

WFOMC(Φ0, n, w, w̄),

which can be obtained simply by dividing WFOMC(Φ, n, w, w̄) ↾ M by n(n−1).
In order to get from WFOMC(Φ, n, w, w̄) to WFOMC(Φ, n, w, w̄) ↾ M, we need
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to discard weights contributed by models where S and T are not interpreted
as non-overlapping singletons. This is easy: we only need to discard multiplic-
ity configurations (nσ1σ1

, nσ1σ2
, . . . , nσkσk

) that do not make S and T distinct
singletons. Let 〈n〉 be the set of multiplicity configurations with the undesired
ones excluded. Summing up, WFOMC(Φ0, n, w, w̄) can thus be computed by
the function

W(n) =
1

n(n− 1)

·

∑

(nσ1σ1
,nσ1σ2

,...,nσkσk
)∈ 〈n〉

(

(

n

nσ1σ1
, nσ1σ2

, . . . , nσkσk

)

·

(

∏

σ ∈ Λ

(wσ(1))
nσ

)

∏

σ, τ ∈ Λ

Nστ (nσ1σ1
, nσ1σ2

, . . . , nσkσk
)
)

. (4)

In the next Section 3.3 we deal with the combinatorics for defining the func-
tions Nστ . The actual functions Nστ are then specified in Section 3.4 where we
conclude our argument.

3.3 The relevant combinatorics

Let k ∈ N. The following equation is well known.

i=k
∑

i=0

(−1)i
(

k

i

)

=

{

0 if k 6= 0

1 if k = 0.
(5)

On the intuitive level, the alternating sum on the left hand side of the equation
relates directly to the inclusion-exclusion principle. We shall make frequent use
of this equation in the constructions below.

The first result of this section, Proposition 3.1 below, will ultimately help
us in counting the number of ways to connect a block to itself with 2-tables.
However, the result is interesting in its own right and thus we formulate it
abstractly, like most results in this section, without reference to 2-types or other
logic-related notions.

Recall that a unary function is anti-involutive if f(f(x)) 6= x for all x ∈
dom(f). Note that this implies f(x) 6= x for all x ∈ dom(f), i.e., f is fixed point
free.

Proposition 3.1. Let n and m ≤ n be nonnegative integers. The number of
anti-involutive functions m→ n is

I (m,n) :=

i=⌊m/2⌋
∑

i=0

(−1)i(n− 1)m−2i

(

m

2i

)

(2i)!

2i(i!)
. (6)

Proof. We first note that for a nonnegative integer i, there are
(

2i
2,...,2

)

1
i! ways to

partition 2i elements into doubletons, where 2 is written i times in the bottom
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row. Writing the multinomial coefficient
(

2i
2,...,2

)

open, we see that
(

2i
2,...,2

)

1
i! =

(2i)!
2i(i!) .

Now, for a fixed point free function f , if f(f(x)) = x for some x, then we
call the doubleton {x, f(x)} a symmetric pair of f . A fixed point free function
f : m → n with i labelled symmetric pairs is a pair (f, L) where f : m → n
is a fixed point free function and L is a set of exactly i symmetric pairs of f .
Note that f may have other symmetric pairs outside L, so L only distinguishes
i specially labelled symmetric pairs.

It is easy to see that the number of fixed point free functions m→ n with i
labelled symmetric pairs is given by

(n− 1)m−2i

(

m

2i

)

(2i)!

2i(i!)
. (7)

Therefore Equation 6 has the following intuitive interpretation. The equation
first counts—when i is zero—all fixed point free functions m → n without any
labelled symmetric pairs; unlabelled symmetric pairs are allowed. Then, when
i = 1, the equation subtracts the number of fixed point free functions m → n
with one labelled symmetric pair. Then, with i = 2 the equation adds the the
number of fixed point free functions m → n with two labelled symmetric pairs,
and so on, all the way to i = ⌊m/2⌋.

Now, fix a single fixed point free function f : m→ n with exactly j symmetric
pairs. Labelling k ≤ j of the j symmetric pairs can be done in

(

j
k

)

ways. Thus

f gets counted in Equation 6 precisely S(j) :=
(

j
0

)

−
(

j
1

)

+
(

j
2

)

− · · · ∗
(

j
j

)

times,

where ∗ is + if j is even and − if j is odd. By Equation 5, S(j) is 0 when
j 6= 0 and 1 when j = 0. Thus f gets counted zero times if j 6= 0 and once if
j = 0.

Proposition 3.1 will be used for counting functions that find a witness for
each element of a cell C of sizem from a block B ⊇ C of size n. However, we also
need to count the ways of assigning non-witnessing 2-tables to the remaining
edges inside B. The next two results, Lemma 3.2 and Proposition 3.3, will help
in this.

Let G be an undirected graph with the set V of vertices and E of edges.
A labelling of G with k symmetric colours and ℓ directed colours is a pair of
functions (s, d) such that

1. s maps some set U ⊆ E into [k], not necessarily surjectively,

2. d maps the complement E \ U of U into [ℓ] × V such that each edge
e ∈ E \ U gets mapped to a pair (i, u) where u ∈ e. Intuitively, d picks a
colour in [ℓ] and an orientation for e. It is not required that each i ∈ [ℓ]
gets assigned to some edge.

The colour j ∈ [ℓ] is said to define a function if the relation { (u, v) | {u, v} ∈
E \ U, d({u, v}) = (j, v) } is a function.
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Rather than counting labellings of graphs, we need to count weighted la-
bellings : a weighted labelling of a graph G with k symmetric and ℓ directed
colours is a triple

W = ((s, d), (w1, . . . , wk), (x1, . . . xℓ))

such that (s, d) is a labelling of G and w1, . . . , wk are weights of the symmetric
colours 1, . . . , k and x1, . . . , xℓ weights of the directed colours 1, . . . , ℓ. (Here e.g.
1 is called both a directed and symmetric colour. This will pose no problem.)
The total weight tW of the weighted labellingW is the product of the weights as-
signed to the edges of G. The weighted number of labellings of G with k symmet-
ric and ℓ directed colours with weights w1, . . . , wk and x1, . . . , xℓ is the sum of the
total weights tW of all weighted labellingsW = ((s, d), (w1, . . . , wk), (x1, . . . xℓ))
of G.

The following is easy to prove (see Appendix B.2).

Lemma 3.2. The function

L
k,ℓ

(N,w1, . . . , wk, x1, . . . , xℓ) :=

∑

i1+···+ik+j1+···+jℓ =N

(

(

N

i1, . . . , ik, j1, . . . jℓ

)

· 2j1+···+jℓ
(

∏

p∈ [k]

(wp)
ip
)(

∏

q ∈ [ℓ]

(xq)
jq
)

)

(8)

gives the weighted number of labellings of an arbitrary N -edge graph with k
symmetric and ℓ directed colours with weights w1, . . . , wk and x1, . . . , xℓ. At
least one of k, ℓ is assumed nonzero here. The first (resp. second) product on
the bottom row outputs 1 if k = 0 (resp. ℓ = 0).

We also define L0,0(N) := 0 for N > 0 and L0,0(0) := 1, and furthermore,
Lk,ℓ(m,w1, . . . , wk, x1, . . . , xℓ) := 0 for all negative integers m. The following is
easy to prove (see Appendix B.3).

Proposition 3.3. Let n and m ≤ n be nonnegative integers, and let w1, . . . , wk
and x1, . . . , xℓ, y be weights for k symmetric and ℓ + 1 directed colours. The
function

J
k,ℓ+1

(m,n,w1, . . . , wk, x1, . . . , xl, y) :=

I(m,n) · ym · L
k,ℓ

(

(

n

2

)

−m, w1, . . . , wk, x1, . . . , xℓ
)

(9)

gives the weighted number of labellings of the complete n-element graph with k
symmetric and ℓ+ 1 directed colours with the above weights such that the edges
of colour ℓ+ 1 define an anti-involutive function m→ n.

The following result will ultimately help us in counting the ways of connect-
ing two different blocks to each other with 2-tables.
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Proposition 3.4. Let A 6= ∅ and B 6= ∅ be disjoint finite sets, |A| = M and
|B| = N . Let Am ⊆ A and Bn ⊆ B be sets of sizes m and n, respectively. There
exist

K(m,M,n,N) :=

i=min(m,n)
∑

i=0

(−1)i
(

m

i

)(

n

i

)

(

i! ·M (n−i) ·N (m−i)
)

(10)

ways to define two functions f : Am → B and g : Bn → A that are nowhere
inverses of each other.

Proof. Fix some i ≤ min(m,n), and fix two sets Ai ⊆ Am and Bi ⊆ Bn, both
of size i. There exist

(

i! ·M (n−i) · N (m−i)
)

ways to define a pair of functions
f : Am → B and g : Bn → A such that f ↾ Ai and g ↾ Bi are bijections and
inverses of each other; here i! is the number of ways the two functions can be
defined in restriction to Ai and Bi so that they become inverses of each other
over Ai and Bi. (Note that f and g can be inverses elsewhere too.) Thus

(

m

i

)(

n

i

)

(

i! ·M (n−i) ·N (m−i)
)

gives the number of tuples (f, g, A′, B′) such that f : Am → B and g : Bn → A
are functions and A′ ⊆ Am and B′ ⊆ Bn sets of size i such that f ↾ A′ and
g ↾ B′ are inverses of each other.

Now, fix two sets Aj ⊆ Am and Bj ⊆ Bn of size j both. Fix two functions
f : Am → B and g : Bn → A that are inverses of each other on Aj and Bj and
nowhere else. Thus the pair f, g is counted in the alternating sum of Equation
10 exactly S(j) :=

(

j
0

)

−
(

j
1

)

+
(

j
2

)

− · · · ∗
(

j
j

)

times, where ∗ is + if j is even

and − otherwise. By Equation 5, S(j) is zero when j 6= 0 and one when j = 0.
Thus the pair f, g gets counted zero times if j 6= 0 and otherwise once.

We also define K(m,M,n,N) := 0 for any m ≤ M and n ≤ N with M =
0 6= n or N = 0 6= m. Furthermore, we define K(0, 0, 0, N) = K(0,M, 0, 0) = 1
for all M,N ∈ N.

The next result, Proposition 3.5, extends Proposition 3.4 so that also the
non-witnessing edges will be taken into account. To formulate the result, we
define that for disjoint finite sets A and B, the complete bipartite graph on A×B
is the undirected bipartite graph with the set { {a, b} | a ∈ A, b ∈ B } of edges.

Proposition 3.5. Let A and B be finite disjoint sets, |A| = M and |B| = N .
Let Am ⊆ A and Bn ⊆ B be sets of sizes m and n, respectively. Let w1, . . . , wk
and x1, . . . , xℓ, y, z be weights. The function

P
k,ℓ+2

(m,M,n,N,w1, . . . , wk, x1, . . . , xℓ, y, z) :=

K(m,M,n,N) · ymzn · L
k,ℓ
(MN −m− n, w1, . . . , wk, x1, . . . , xℓ) (11)

gives the weighted number of labellings of the complete bipartite graph on A ×
B with k symmetric and ℓ + 2 directed colours with weights w1, . . . , wk and
x1, . . . , xℓ, y, z such that the directed colours ℓ+1 and ℓ+2 define, respectively,
functions f : Am → B and g : Bn → A that are nowhere inverses of each other.
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Proof. The relatively easy proof is given in Appendix B.4.

The results so far in this section provide us with ways of counting in cases
where witnesses are found via 2-types that are not both ways witnessing. We
now deal with the remaining cases.

Recall that n!! denotes the standard double factorial operation defined such
that for example 7!! = 7 · 5 · 3 · 1 and 8!! = 8 · 6 · 4 · 2. We define the function
F : N → N such that F (0) = 1 and for all m ∈ Z+, we have F (m) = (m − 1)!!
if m is even and F (m) = 0 otherwise. It is well known and easy to show that
F (m) is precisely the number of perfect matchings of the complete graph G with
the set m of vertices, i.e., the number of 1-factors of a graph of order m (and
with the set m of vertices). By a perfect matching of the set m, we refer to a
perfect matching of the complete graph with the vertex set m. The following is
easy to prove (see Appendix B.5).

Proposition 3.6. Let n andm ≤ n be nonnegative integers, and let w1, . . . , wk, y
and x1, . . . , xℓ be weights. The function

S
k+1,ℓ

(m,n,w1, . . . , wk, y, x1, . . . , xℓ) :=

F (m) · ym/2 · L
k,ℓ

(

(

n

2

)

− ⌊m/2⌋, w1, . . . , wk, x1, . . . , xℓ
)

(12)

gives the weighted number of labellings of the complete graph with the set n of
vertices with k + 1 symmetric and ℓ directed colours with weights w1, . . . , wk, y
and x1, . . . , xℓ such that the edges of the symmetric colour k+1 define a perfect
matching of the set m ⊆ n.

Let F ′ : N× N → N be the function such that F ′(n,m) = n! if n = m and
F ′(n,m) = 0 otherwise. A perfect matching between two disjoint sets S and T
is a perfect matching of the complete bipartite graph on S × T . The following
is immediate.

Proposition 3.7. Let A and B be finite disjoint finite sets, |A| = M and
|B| = N . Let Am ⊆ A and Bn ⊆ B be sets of sizes m and n, respectively. The
function

T
k+1,ℓ

(m,M,n,N,w1, . . . , wk, y, x1, . . . , xℓ) :=

F ′(n,m) · yn · L
k,ℓ

(MN − n, w1, . . . , wk, x1, . . . , xℓ) (13)

gives the weighted number of labellings of the complete bipartite graph on A ×
B with k + 1 symmetric and ℓ directed colours with weights w1, . . . , wk, y and
x1, . . . , xℓ such that the symmetric colour k+1 defines a perfect matching between
Am and Bn.

3.4 Defining the functions N
στ

We now discuss how the functions Nστ are defined for all pairs στ of block
types, thereby completing the definition of Equation 4.
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Fix a pair στ of block types. Let y and z, respectively, be the weights of
the 2-tables of the 2-types σ and τ . Let w1, . . . , wk (respectively, x1, . . . , xℓ)
enumerate the weights of the symmetric (resp., unsymmetric) 2-tables β that
can connect the block Bσ to the block Bτ so that neither the resulting 2-type
σ(1)βτ(1) nor its inverse is witnessing, and furthermore, σ(1)βτ(1) is coherent.
If σ = τ , these are the weights of the coherent 2-tables that can connect a point
in block Bσ to another point in the same block so that the resulting 2-type is
not witnessing in either direction.

We next consider different cases depending on how σ and τ relate to each
other. We let n denote the input tuple to Nστ with n containing the multiplic-
ities nσ′σ′′ of all cell types σ′σ′′. For a witness 2-type σ′, we let nσ′ abbreviate
the sum

∑

σ′′ ∈Λ nσ′σ′′ (recall Λ is the set of all block types). The witness
2-type σ′ is compatible with a witness 2-type σ′′ if σ′(2) = σ′′(1).

Case 1. We assume that 1.a) σ 6= τ ; 1.b) σ and τ are compatible with each
other; 1.c) neither σ nor τ is a both ways witnessing 2-type. By Proposition
3.5, the weight contributed by all the edges from Bσ to Bτ is thus given by

Nστ (n) := P
k,ℓ+2

(nστ , nσ, nτσ, nτ , w1, ..., wk, x1, ..., xℓ, y, z).

which defines Nστ under these particular assumptions.
The remaining cases are similar but use different functions defined in the

previous section. For example, when σ = τ and σ is not two-ways witnessing,
we use the function Jℓ,k+1 from Equation 9 in Proposition 3.3; see the Appendix
B.6 (Case 4) for the full details. All the remaining cases are also discussed in
Appendix B.6. By inspecting the operations of Equation 4, we conclude the
following.

Theorem 3.8. The weighted model counting problem of each two-variable logic
sentence with a functionality axiom is in PTIME.

4 Weighted model counting for U1

In this section we prove that WFOMC is in PTIME for each sentence of U1. To
that end, we first establish the same result for SU1, stated as Lemma 4.5 below.
We follow a proof strategy that makes explicit how the syntactic restrictions
of SU1 naturally lead to polynomial time model counting. We then provide a
reduction from U1 to SU1.

4.1 Weighted model counting for SU1

Let ψ(x1, . . . , xk) be a quantifier-free first-order formula, and let ℓ ≤ k be a pos-
itive integer. Let F denote the set of all surjections [k] → [ℓ]. The conjunction
∧

{ψ(xf(1), . . . , xf(k)) | f ∈ F } is called the ℓ-surjective image of ψ.

Definition 4.1. Let ϕ be a conjunction of ∀∗-sentences of FO (These need not
be sentences of U1 or SU1.) We now define the surjective completion sur(ϕ) of
ϕ by modifying ϕ as follows.
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1.) Let k be the maximum width of the ∀∗-conjuncts of ϕ. We modify ϕ so
that for all i ∈ [k], there exists a conjunct of width i. This can be ensured by
adding dummy conjuncts, if necessary. We let ϕ′ denote the resulting sentence.

2.) We merge the conjuncts of ϕ′ with the same width, so that for example
∀x∀yψ(x, y) ∧ ∀x∀yχ(x, y) would become ∀x∀y(ψ(x, y) ∧ χ(x, y)). Thus the
resulting formula ϕ′′ is a conjunction of ∀∗-sentences so that no two conjuncts
have the same width.

3.) Define ϕ′′
k := ϕ′′ where k is the maximum width of the ∀∗-sentences

of ϕ′′. Inductively, let 1 ≤ ℓ < k and assume we have defined a sentence
ϕ′′
ℓ+1 = χ1 ∧ · · · ∧χk where each χi is an ∀∗-sentence of width i. Let ψℓ+1 and
ψℓ be the matrices of χℓ+1 and χℓ, so we have

χℓ+1 = ∀x1 . . . ∀xℓ+1 ψℓ+1(x1, . . . , xℓ+1),
χℓ = ∀x1 . . . ∀xℓ ψℓ(x1, . . . , xℓ).

Let ψ′
ℓ denote the ℓ-surjective image of ψℓ+1. Replace the conjunct χℓ of ϕ

′′
ℓ+1

by ∀x1 . . .∀xℓ(ψℓ ∧ ψ′
ℓ). Define ϕ′′

ℓ to be the resulting modification of ϕ′′
ℓ+1.

Define sur(ϕ) to be the formula ϕ′′
1 .

Let ϕ := ∀x1 . . . ∀xkψ be an ∀∗-sentence. We let diff (ϕ) denote the sentence
∀x1 . . . ∀xk(diff (x1, . . . , xk) → ψ), letting diff (x1) := ⊤. For a conjunction
ϕ′ := ϕ1∧· · ·∧ϕk of ∀∗-sentences, we define diff (ϕ′) := diff (ϕ1)∧· · ·∧diff (ϕk).

Lemma 4.2. We have ϕ ≡ diff (sur(ϕ)) for any conjunction ϕ of first-order
∀∗-sentences.

Proof. Clearly ϕ ≡ sur(ϕ). Also sur(ϕ) ≡ diff (sur(ϕ)), as sur is based on steps
where the surjective image of a matrix is pushed to be part of the matrix of a
formula with one variable less.

As discussed in the preliminaries, to prove that the weighted model counting
problem of SU1-sentences is in PTIME, it suffices to show this for conjunctions
of ∀∗-sentences of SU1 of the type ϕ′ = ∀x1 ψ′

1 ∧ · · · ∧ ∀x1 . . .∀xp ψ′
p where

each ψ′
i is quantifier-free. Other assumptions justified in the preliminaries are

that ϕ′ contains no nullary atoms; p is equal to the greatest arity of the symbols
in voc(ϕ′); and p ≥ 2. By Lemma 4.2, ϕ′ is equivalent to ϕ′′ := diff (sur(ϕ′)).
We remove the conjunct of width 1 from ϕ′′ and integrate it to the conjunct of
width 2, so if

ϕ′′ = ∀x1 χ1(x1) ∧ ∀x1∀x2
(

diff (x1, x2) → χ2(x1, x2)
)

∧ Φ,

we replace ϕ′′ by

ϕ := ∀x1∀x2
(

diff (x1, x2) → (χ1(x1) ∧ χ2(x1, x2))
)

∧ Φ.

(We ignore the case with a one-element domain as we can simply store and
return the answer in that case.) For the remainder of Section 4.1, we fix the
obtained sentence ϕ and weight functions w and w̄ that assign weights to each
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symbol R in the vocabulary η of ϕ; our aim is to compute WFOMC(ϕ, n, w, w̄).
We let

ϕ = ∀x1∀x2 ψ2 ∧ · · · ∧ ∀x1 . . . ∀xp ψp, (14)

so the individual matrices are denoted by ψi. We denote each conjunct

∀x1 . . . ∀xk ψk

by ϕk. The next two lemmas are crucial for computing WFOMC(ϕ, n, w, w̄) in
polynomial time.

Lemma 4.3. M |= ϕ iff for all k ∈ {2, . . . , p}, we have Mk |= ϕk for every
k-element submodel Mk of M.

Proof. The first implication is immediate since universal sentences are preserved
under taking submodels. For the converse implication, assume that for all k ∈
{2, . . . , p}, Mk |= ϕk for all submodels Mk of M of size k. Assume that M 6|= ϕ.
Thus M 6|= ϕk for some k. The matrix ψk of ϕk is of the type diff (x1, . . . xk) →
ψ, so there exists some k-element submodel Mk of M with domain {u1, . . . , uk}
such that Mk 6|= ψk(u1, . . . , uk). This is a contradiction, so M |= ϕ.

Let M and M
′ be η-models such that M

′ is obtained by changing exactly
one fact of span size k from positive to negative or vice versa. Let S be the
k-element set spanned by that fact. Then M and M

′ are S-variants of each
other.

Lemma 4.4. Let M and M
′ be S-variants of each other, |S| > 1. Let U 6= S

be a set of elements of M such that |U | = m > 1. Let MU and M
′
U be the

submodels of M and M
′ induced by U . Then MU |= ϕm iff M

′
U |= ϕm.

Proof. Firstly, if the formula ϕm = ∀x1 . . .∀xm ψm contains atoms of arity
two or more, then, by the syntactic restrictions of SU1, each of those atoms
mentions exactly all of the variables x1, . . . xm. Secondly, ψm is of the form
diff (x1, . . . , xm) → ψ.

Lemma 4.5. The weighted model counting problem for each SU1-sentence is in
PTIME.

Proof. As discussed above, we prove the claim for the sentence ϕ we have fixed.
Let T be the set of 1-types over the vocabulary η of ϕ. Fix an ordering of
T and let α1, . . . , αℓ enumerate T in that order. For a positive integer k =
{0, . . . , k − 1}, a function f : k → T is a type assignment over k. Two type
assignments f : k → T and g : k → T are said to have the same multiplicity, if
for each α ∈ T , the functions f and g map the same number of elements in k
to α.

For a type assignment f : k → T , let Mf,k be the set of all η-models M

such that the following conditions hold.

1. The domain of M is k = {0, . . . , k − 1}, and the size of the span of each
positive fact Ru1 . . . um of M is either 1 or k, i.e., each positive fact either
spans a single domain element or all of the domain elements of M.
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2. For each m ∈ {0, . . . , k − 1}, we have M |= αf(m)(m).

3. M |= ϕk.

Recalling the relativised weight function Wk from the preliminaries, we de-
fine the local weight lw (ϕk, f) of ϕk with respect to a type assignment f : k → T
so that

lw(ϕk, f) :=
∑

M∈Mf,k

Wk(M, w, w̄).

Thus lw(ϕk, f) could be characterized as giving the weighted number of mod-
els of ϕk with domain k and with 1-types distributed according to f so that
only those positive and negative facts are counted that have span k. Clearly
lw(ϕ, f) = lw(ϕ, g) for any g : k → T that has the same multiplicity as f , so
only the number of realizations of the 1-types matters rather than the concrete
realizations. Therefore we define, for any nonnegative integers k1, . . . , kℓ such
that k1 + · · ·+ kℓ = k, that lw (ϕk, (k1, . . . , kℓ)) := lw(ϕk, h), where h : T → k
is a type assignment that maps, for each i ∈ [ℓ], precisely ki elements of k to
αi. Note that there exist only finitely many numbers lw(ϕk, (k1, . . . , kℓ)) such
that k ∈ {2, . . . , p} and k1 + · · ·+ kℓ = k. We can thus compile a look-up table
of these finitely many local weights.

For each tuple (n1, . . . , nℓ) of nonnegative integers such that n1+· · ·+nℓ = n,
fix a unique type assignment h : n → T that maps exactly ni elements of n to
αi for each i ∈ [ℓ]. Then, using h, define M(n1,...,nℓ) to be the class of η-models
with domain n where exactly the elements i such that h(i) = αi, realize αi.
Clearly WFOMC(ϕ, n, w, w̄) is now given by

∑

n1+···+nℓ =n

(

n

n1, . . . , nℓ

)

WFOMC(ϕ, n, w, w̄) ↾ M(n1,...,nℓ). (15)

Therefore, to conclude the proof, we need to find a suitable formula for

WFOMC(ϕ, n, w, w̄) ↾ M(n1,...,nℓ).

We shall do that next.
For each αi ∈ T , let wαi

be the weight of the type αi. Let k1, . . . , kℓ be
nonnegative integers that sum to k ≤ n. A k-element set with ki realizations
of αi for each i ∈ [ℓ] can be chosen in

(

n1

k1

)

· . . . ·
(

nℓ

kℓ

)

ways from the set n with

ni realizations of αi fixed for each i ∈ [ℓ]. By Lemmas 4.3 and 4.4, we thus see
that

WFOMC(ϕ, n, w, w̄) ↾ M(n1,...,nℓ) =
(

∏

i≤ ℓ

(wαi
)ni

)

·

∏

2≤ k≤ p

∏

k1+···+kℓ = k

lw (ϕk, (k1, . . . , kℓ))
(n1
k1
)· ... ·(nℓ

kℓ
). (16)

Therefore the function in Line (15) can clearly be computed in PTIME in n
(which is given in unary).
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4.2 Weighted model counting for U1

As discussed in the preliminaries, the weighted model counting problem of U1-
sentences can be reduced to the corresponding problem for conjunctions of ∀∗-
sentences of U1. A natural next step would be to follow the strategy of Sec-
tion 4.1. However, that approach would fail due to Lemma 4.4 which depends
crucially on the exact syntactic properties of SU1. Thus we need a different
approach. We now show how to reduce the weighted model counting problem
for U1 to the corresponding problem for SU1.

We begin with the Lemma 4.6 below. Restricting attention to ∀∗-sentences
in the lemma is crucial, since SU1 is in general strictly less expressive than U1,
as shown in [11].

Lemma 4.6. Every ∀∗-sentence of U1 translates to an equivalent Boolean com-
bination ∀∗-sentences of SU1.

Proof. We sketch the proof. See Appendix B.7 for further details.
It is easy to show that every ∃∗-sentence of U1 is equivalent to a disjunction

of ∃∗-sentences of the form

∃x1 . . . ∃xℓ
(

α1(x1) ∧ · · · ∧ αℓ(xℓ) ∧ β(x1, . . . , xk) ∧ diff (x1, . . . , xℓ)
)

,

where αi are 1-types and β is a k-table. For this to be an SU1-sentence, k
would need to be equal to ℓ. However, this sentence can be seen equivalent to
the following conjunction of SU1-sentences:

∃x1 . . . ∃xk
(

α1(x1) ∧ · · · ∧ αk(xk) ∧ β(x1, . . . , xk) ∧ diff (x1, . . . , xk)
)

∧ ∃x1 . . . ∃xℓ
(

α1(x1) ∧ · · · ∧ αℓ(xℓ) ∧ diff (x1, . . . , xℓ)
)

.

Theorem 4.7. The weighted model counting problem is in PTIME for each
sentence of U1.

Proof. As discussed in the preliminaries, it suffices to prove the theorem for a
conjunction χ of ∀∗-sentences of U1. We apply Lemma 4.6 to χ, obtaining a
sentence ψ ≡ χ which is a Boolean combination of ∀∗-sentences of SU1. By Lem-
mas 2.1 and 2.2, we haveWFOMC(ψ, n, w, w̄) = WFOMC(Sk(Sc(ψ)), n, w′, w̄′),
where w′ and w̄′ are obtained from w and w̄ by mapping the new symbols as
specified in the lemmas. Sk(Sc(ψ)) is an ∀∗-sentence of SU1.

5 Counting and prefix classes

First-order prefix classes admit the following neat classification:

Proposition 5.1. Consider a prefix class Cw of first-order logic defined by a
quantifier-prefix w ∈ {∃, ∀}∗.

1. If |w| ≥ 3, then Cw contains a formula with a #P1-complete symmetric
weighted model counting problem.

2. If |w| < 3, then the symmetric weighted model counting problem of each
formula in Cw is in PTIME.
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We note that the proof of the Proposition makes use of the results and
techniques of [4, 3] in various ways, and thus much of the credit goes there. We
sketch the proof—see Appendix C for more details.

Firstly, [3] shows that there is an FO3-sentence ϕ with a #P1-complete model
counting problem. We turn ϕ into a conjunction of prenex form sentences by
eliminating quantified subformulae in a way resembling the Scott normal form
procedure. We then apply the Skolemization operator Sk (see Section 2.2).
Combining the obtained ∀∗-conjuncts, we get a sentence χ := ∀x∀y∀zψ with
the same model counting problem as ϕ; here ψ is quantifier-free.

We then start modifying the ∀∀∀-sentence χ in order to obtain, for each prefix
class C with three quantifiers, a sentence in C with the same model counting
problem as χ. The required modifications can be easily done by using operations
that slightly generalize the Skolemization operation from Section 2.2. These
operations are defined as follows. Let χ′ := ∀x1 . . . ∀xkQ1xk+1 . . . Qmxm χ

′′ be
a prenex form sentence with χ′′ quantifier-free and with Qi ∈ {∃, ∀}. We turn
χ′ into ∀x1 . . . ∀xkQ′

1xk+1 . . . Q
′
mxm(Ax1 . . . xk ∨¬χ′′), where A is a fresh k-ary

predicate and each Q′
i is the dual of Qi. The difference with the Skolemization

operation of Section 2.2 is simply that Q1 is not required to be ∃. This new
sentence has the same model counting problem as χ′ when the fresh symbol A
is given weights exactly as in Lemma 2.2. The proof of this claim is similar to
the proof of Lemma 2.2.

The second claim of Proposition 5.1 holds by the result for FO2.

6 Conclusions

It can be shown that WFOMC for formulae of two-variable logic with count-
ing C2 can be reduced to WFOMC for FO2 with several functionality axioms.
Proving tractability in that setting remains an interesting open problem. One
difficulty here is that the interaction patterns of different functional relations
cause effects that could intuitively be described as ‘non-local’ and seem to re-
quire significantly more general combinatorial arguments than those in Section
3. The tools of [13] could prove useful here.
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A Appendix

A.1 Scott normal forms

Here we briefly discuss the principal properties of the reduction of formulae to
Scott normal form. The process is well-known, so we only sketch the related
details.
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Let ϕ be a sentence of U1. Note that FO2 and of course SU1 are syntactic
fragments of U1. To put ϕ into generalized Scott normal form, consider a
subformula ψ(x) = Qy1 . . . Qykχ(x, y1, . . . , yk) of ϕ, where Q ∈ {∀, ∃} and χ
is quantifier-free. Now, ψ(x) has one free variable. Thus we let Pψ be a fresh
unary predicate and consider the sentence

∀x(Pψx ↔ Qy1 . . .Qykχ(x, y1, . . . , yk))

which states that ψ(x) is equivalent to Pψx. Letting Q′ denote the dual of Q,
i.e., Q′ = {∃, ∀} \ {Q}, this sentence is seen equivalent to

χ′ := ∀xQy1 . . . Qyk(Pψx → χ(x, y1, . . . , yk))

∧ ∀xQ′y1 . . .Q
′yk(χ(x, y1, . . . , yk) → Pψx). (17)

Therefore ϕ is has the same weighted model count as the sentence

χ′′ = χ′ ∧ ϕ[Pψ(x)/ψ(x)],

where ϕ[Pψ(x)/ψ(x)] is obtained from ϕ by replacing ψ(x) with Pψ(x); the fresh
relation symbol P is given the weight 1 in both positive and negative facts.
Repeating this, we eliminate quantifiers one by one, starting from the atomic
level and working upwards from there. We always introduce a new predicate
symbol (Pψ in the above example) and axiomatize that symbol to be equivalent
to the formula beginning with the quantifier to be eliminated (ψ(x) in the above
example).

Note that while ψ(x) had a free variable, we may also need to eliminate
quanfiers from subformulae without free variables, such as, e.g., ∃xAx. Then
a fresh nullary predicate needs to be introduced. Note that quantifying in U1

leaves at most one free variable, so the fresh symbols are always at most unary
by the definition of the syntax of U1. We clearly end up with a sentence in
generalized Scott normal form.

We make the following observations

1. The Scott-normal form version Sc(ϕ) of a sentence ϕ indeed has the re-
quired property that ∃P1 . . .∃Pm Sc(ϕ) is equivalent to ϕ, where P1, . . . , Pm
are the fresh unary and nullary predicates.

2. If ϕ is a sentence of U1 (respectively, SU1, FO
2), then the sentence Sc(ϕ)

is a sentence of U1 (respectively, SU1, FO
2). This is easy to see by first

noting that the fresh symbols are unary or nullary, and noting then that
the syntax of U1 allows free use of unary and nullary symbols.

3. We have WFOMC(ϕ, n, w, w̄) = WFOMC(Sc(ϕ), n, w′, w̄′), where w
and w̄ map the fresh symbols to 1. The reason for this is that the novel
symbols are axiomatized to be equivalent to the unary and nullary formu-
lae, and thereby the novel symbols must have a unique interpretation in
each model of Sc(ϕ).
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4. In the case of FO2, the novel sentences ∀x∀yχ that arise when axioma-
tizing the fresh predicates can be pushed together so that only a single
∀∗-conjunct ∀x∀yχ′ rather than a conjunction ∀x∀yχ1 ∧ · · · ∧ ∀x∀yχn will
be part of the ultimate Scott normal form formula.

A.2 Proof of Lemma 2.2

Before proving Lemma 2.2, we define that a self-inverse bijection is an involutive
bijection, so f(f(x)) = x for all x ∈ dom(f). We then prove the lemma.

Proof. We will consider the formulae

χ1 := ∀x1 . . .∀xk∃y1 . . . ∃ymQ1z1 . . . Qnzn ψ

χ2 := ∀x1 . . .∀xk(Ax1 . . . xk ∨ ¬∃y1 . . . ∃ymQ1z1 . . .Qnzn ψ)

from our definition of Skolemization and show the following:

WFOMC(χ1, n, v, v̄) ↾ {B} = WFOMC(χ2, n, v
′, v̄′) ↾ C (18)

where v′ and v̄′ extend v and v̄ on the input A such that v′(A) = 1 and v̄′(A) =
−1, and {B} is a singleton model class where B is a voc(χ1)-model and C the
model class { (B, A) |A ⊆ dom(B) = n }.

Assume B |= χ1. Then an expanded model (B, A) satisfies χ2 if and only if
A is interpreted to be the total k-ary relation over the domain n. Thus Equation
18 holds.

Assume then that B 6|= χ1. We will show that the sum of the weights of the
models in C that satisfy χ2 is zero. This will conclude the proof.

Let U be the set of tuples (u1, . . . , uk) ∈ nk such that

B |= ∃y1 . . . ∃ymQ1z1 . . . Qnzn ψ (u1, . . . , uk).

We have (nk \ U) 6= ∅ as B 6|= χ1.
Let M be the class of models in C that satisfy χ2. As models N ∈ M must

satisfy χ2, each N ∈ M has AN ⊇ U . Furthermore, for each A′ ⊇ U such that
A′ ⊆ nk, there clearly exists a model N′ ∈ M so that AN

′

= A′.
We shall define a self-inverse bijection f : M → M such that the weights of

N and f(N) cancel for each N ∈ M, thereby concluding the proof.
Let u be the lexicographically smallest tuple in (nk \ U) 6= ∅ (we have

(nk \ U) ⊆ nk, so a lexicographic ordering is defined). We define f so that it
sends each model N ∈ M to the model where A is modified simply by changing
the interpretation of A on u: if A is true on u, we make it false, and if A is
false on u, we make it true, and on other tuples, we keep A the same. It is thus
clear that the weights of any N ∈ M and f(N) cancel each other, as the models
differ only on the interpretation of A on this one tuple (and v̄(A) = −1).
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A.3 Normal forms for FO2 with a functionality axiom

Here we discuss how the sentence ϕ ∧ ∀x∃=1y ψ(x, y) given in Section 2.3 can
be modified in order to obtain the desired normal form sentence.

We first consider only the subformula ψ(x, y), ignoring ϕ for awhile. We
apply the Scott normal form procedure for eliminating quantified subformulae
(see Appendix A.1) to the open formula ψ(x, y). We thereby obtain from ψ(x, y)
a formula

ψ′(x, y) ∧ ∀x∀y ψ′′ ∧
∧

i

∀x∃y ψi

where ψ′, ψ′′ and each ψi are quantifier-free. We then observe that

∀x∃=1y(ψ′(x, y) ∧ ∀x∀yψ′′ ∧
∧

i

∀x∃yψi)

is equivalent to

∀x∀yψ′′ ∧
∧

i

∀x∃yψi ∧ ∀x∃=1yψ′(x, y).

We then use the Skolemization operator Sk to the formulae ∀x∃yψi and combine
the resulting ∀∗-sentences with each other and with ∀x∀yψ′′, thereby obtaining
a sentence ∀x∀yψ′′′ ∧ ∀x∃=1yψ′(x, y).

We then modify (the so far ignored sentence) ϕ. We put it in Scott normal
form first and then use Skolemization, thereby obtaining a conjunction ∀x∀yχ1∧
... ∧ ∀x∀yχk. We combine these conjuncts with ∀x∀yψ′′′ to form a single ∀∀-
conjuct ∀x∀yψ′′′′. The ultimate sentence is thus ∀x∀yψ′′′′ ∧ ∀x∃=1yψ′(x, y),
where ψ′′′′ and ψ′(x, y) are quantifier-free, as desired.

A.4 Relation symbol arities in the two-variable context

If ∀x∀yϕ1∧∀x∃y=1ϕ2(x, y) contains no binary relation, we replace ϕ1 by Rxy∧
ϕ1 and give R the weights w(R) = w̄(R) = 1. Now R must have a unique
interpretation in every model of ∀x∀y(Rxy ∧ ϕ1) ∧ ∀x∃y=1ϕ2(x, y) and thus
contributes nothing to the ultimate weighted model count.

We then discuss the assumption that we can limit attention to formulae
without relation symbols of arities k > 2 when studying the data complexity of
weighted model counting for two-variable logic with a functionality axiom.

We first give a short justification of the assumption and then look at the
issue in a bit more detail. So, to put it short, the analysis of Section 3 will
work as such even if relation symbols of arities k > 2 are included, the only
difference being that the ultimate model count must be multiplied by a (non-
constant) factor N that takes into account facts and negative facts of span sizes
greater than 2. This factor N is very easy to compute, as our logic—using two
variables—is fully invariant under changing facts with span sizes greater than 2
elements.
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We then look at the matter in a bit more detail. Let us first fix some sentence

χ := ∀x∀yχ′ ∧ ∀x∃y=1χ′′(x, y)

containing at least one relation symbol of arity k > 2. Now, notice that 2-tables
are allowed to contain atoms such as Rxyxxy, while 1-types are allowed to
contain atoms Sxxx etcetera. Thus the reader can easily check that everything
in Section 3 works as such if we allow relation symbols of arities k > 2, with only
the following exception: the number WFOMC(χ, n, w, w̄) = q ∈ Q obtained by
our analysis must be multiplied by N , which is a factor arising from the simple
fact that M |= χ ⇔ N |= χ for all M and N which differ only in facts and
negative facts with span sizes greater than 2. Our analysis takes into account
only facts of span sizes up to 2.

We consider an example to illustrate the issue. Assume χ contains a k-ary
symbol R, with k > 2, and all other symbols in χ are at most binary. We show
how to compute the factor N .

Let n ≥ k be a model size. There are nk tuples of length k with elements
from n. Exactly n of these tuples have span 1 (e.g., a tuple of type (u, . . . , u)
with u repeated k times). Exactly

(

n
2

)

· (2k − 2) of the nk tuples have span 2
(e.g., a k-tuple of type (u, v, u, v, . . . , u, v) if k is even). Thus there are

p(n, k) := nk − n− 2k
(

n

2

)

+ 2

(

n

2

)

tuples with span size greater than 2 over the domain n. On some of these tuples
we can define R positively and negatively on others. Thus, letting w(R) be the
positive and w̄(R) the negative weight for R, we define

N(n, k) :=
∑

i≤ p(n,k)

(

p(n, k)

i

)

(w(R))i · (w̄(R))(p(n,k)−i).

While this looks nasty, we can easily evaluate it in polynomial time in the unary
input n. The function N(n, k) provides the desired factor N : we multiply the
number WFOMC(χ, n, w, w̄), which is given by our analysis that ignores facts
of span size greater than 2, by N(n, k) and thereby get the correct result. Note
that we assumed n ≥ k simply because models with domain size smaller than k
can in any case be ignored as there are only finitely many inputs smaller than
k to the model counting problem, so we can construct a look-up table for them.

It is easy to see how to expand this to cover the case where χ has several
relations of arities greater than 2.

B Appendix: FO2 with a functionality axiom

B.1 Characterizing M
στ
(n

σ
, n

στ
, n

τ
, n

τσ
)

Here we give a detailed specification of the characterization of

Mστ (nσ, nστ , nτ , nτσ)
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as being the weighted number of ways to connect blocks Bσ ⊇ Cστ and Bτ ⊇ Cτσ
to each other with 2-tables when |Bσ| = nσ, |Cστ | = nστ , |Bτ | = nτ and
|Cτσ| = nτσ. We specify the weighted number N of ways to connect the blocks
in the way described below. (It is worth noting here that we will not compute
N in the way described below in the ultimate polynomial time algorithm.) The
number N is informally the sum of all products W that can be obtained by
simultaneously assigning 2-tables to all edges in Bσ × Bτ and multiplying the
individual weights of (positive and negative) facts in the 2-tables such that the
following conditions hold.

1. In each of the simultaneous assignments, elements in the cells Cστ and
Cτσ obtain, respectively, witnesses in Bτ and Bσ via suitable witnessing
2-tables. The 2-table for the pairs in Bσ ×Bτ that provide witnesses for
the elements of Cστ is the 2-table of the 2-type σ. Similarly, the 2-table
for the pairs in Bτ ×Bσ that provide witnesses for the elements of Cτσ is
the 2-table of τ .

2. The remaining pairs in Bσ×Bτ are assigned some non-witnessing coherent
2-table whose inverse is, likewise, not witnessing.

To define this more formally, consider the case with the below assumptions.

1. σ 6= τ .

2. Neither σ nor τ is both ways witnessing.

First, we define N = 0 if any of the following conditions is satisfied.

1. nστ 6≤ nσ or nτσ 6≤ nτ .

2. nστ 6= 0 and σ(2) 6= τ(1).

3. nτσ 6= 0 and τ(2) 6= σ(1).

Otherwise, let Bσ and Bτ be disjoint sets, |Bσ| = nσ and |Bτ | = nτ . Let
Cστ ⊆ Bσ and Cτσ ⊆ Bτ be sets such that |Cστ | = nστ and |Cτσ| = nτσ. Now,
assume f : Cστ → Bτ and g : Cτσ → Bσ are functions that are nowhere inverses
of each other. (We note that such functions need not exist, as demonstrated,
for example, by the case where nστ 6= 0 and nτ = 0.) There are precisely nστ
pairs in f and nτσ pairs in g, and since f and g are nowhere inverses, f and the
inverse of g occupy nστ + nτσ edges in Bσ ×Bτ . Recall from the preliminaries
that, if β is a 2-table, then 〈w, w̄〉(β) denotes the product of the weights of the
literals in β. We let βσ and βτ denote the 2-tables of σ and τ and define

wf,g := (〈w, w̄〉(βσ))
nστ · (〈w, w̄〉(βτ ))

nτσ .

Now, let T be the set of 2-tables β such that the 2-type δ := σ(1)βτ(1)
satisfies the following conditions.

1. δ is coherent.
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2. δ is not witnessing.

3. The inverse of δ is not witnessing.

Consider the pairs in Bσ ×Bτ that do not belong to f or the inverse of g. Let
S ⊆ Bσ ×Bτ be the set of these pairs. Let Ff,g denote the set of all functions
F : S → T . For each such function F , define

wF :=
∏

(u,v)∈S

〈w, w̄〉(F ((u, v)))

and
wf,g,F := wf,g · wF .

Let P denote the set of triples (f, g, F ) where f : Cστ → Bτ and g : Cτσ →
Bτ are funtions that are nowhere inverses of each other and F ∈ Ff,g. Define,
finally, that

N :=
∑

(f,g,F )∈P

wf,g,F .

The remaining cases, including the ones where σ = τ , are similar in spirit
and defined analogously, so we omit them here.

B.2 Proof of Lemma 3.2

Proof. Choose some numbers i1, . . . , ik and j1, . . . , jℓ that add to N . There are

(

N

i1, . . . , ik, j1, . . . , jℓ

)

ways to choose precisely ip edges for the symmetric colours p ∈ [k] and jq edges
for the directed colours q ∈ [ℓ]. There are 2j1+···+jℓ ways to choose an orientation
for the directed colours. The contribution of the weights is then given by the
product

(

∏

p∈ [k]

(wp)
ip
)

·
(

∏

q ∈ [ℓ]

(xq)
jq
)

.

B.3 Proof of Proposition 3.3

Proof. Consider the complete graph G with the set n of vertices. By proposition
3.1, there exist I(m,n) anti-involutive functions f : m → n. Fix a single such
function f . Being anti-involutive and having an m-element domain, the tuples
(u, v) ∈ f cover precisely m edges of G. Thus the contribution of the edges
covered by f to the total weight of any labelling that assigns the weight y to
those edges is ym. With f fixed, the remaining

(

n
2

)

−m edges (not belonging to
f) can by Lemma 3.2 be labelled in different ways so that they contribute the
factor L

k,ℓ

((

n
2

)

−m, w1, . . . , wk, x1, . . . , xℓ
)

to the total weight.
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B.4 Proof of Proposition 3.5

Proof. By Lemma 3.4, there exist K(m,M,n,N) ways to define a pair of func-
tions f, g so that f : Am → B and g : Bn → A are nowhere inverses of each
other. Now fix a pair f, g of such functions. The contribution of f and g to the
weight of any labelling that contains f and g is ymzn. There are MN −m− n
edges outside the functions f and g. (The pathological cases whereMN−m−n
is negative are harmless due to the definition of L

k,ℓ
.) By Lemma 3.2, the con-

tribution of these edges to the total weight is

L
k,ℓ

(MN −m− n, w1, . . . , wk, x1, . . . , xℓ).

B.5 Proof of Proposition 3.6

Proof. When m is even, then m/2 = ⌊m/2⌋ gives the number of those edges
over the vertex set m that will be part of the complete matching of m. Thus
there are then

(

n
2

)

−m/2 edges outside the matching in the graph with vertex
set n. Note that F (m) = 0 when m is odd; we write ⌊m/2⌋ simply to ensure
the inputs to L

k,ℓ
are integers even in this pathological case. The rest of the

claim follows directly from the relevant definitions.

B.6 The remaining cases for defining the functions N
στ

Case 2. We now assume (cf. Case 1) that 1.a and 1.b hold but 1.c does not.
Now, if σ and τ are inverses of each other, then we define Nστ as follows using
T

k+1,ℓ
from Equation 13 of Proposition 3.7:

Nστ (n) := T
k+1,ℓ

(nστ , nσ, nτσ, nτ , w1, . . . , wk, y, x1, . . . , xℓ). (19)

If σ and τ are not inverses of each other, we consider three subcases. Firstly, if
both σ and τ are both ways witnessing, then we define

Nστ (n) :=

{

0 if nστ 6= 0 or nτσ 6= 0,

L
k,ℓ

(

nσ · nτ , w1, . . . , wk, x1, . . . , xℓ
)

otherwise.
(20)

Secondly, if σ is both ways witnessing but τ not, we define Nστ as follows, letting
w′ denote the list w1, . . . , wk, x1, . . . , xℓ, y, z of weights:

Nστ (n) :=

{

0 if nστ 6= 0,

P
k,ℓ+2

(nστ , nσ, nτσ, nτ , w
′ ) otherwise.

(21)

Finally, the case where τ is both ways witnessing but σ is not is analogous.

Case 3. We assume that 1.a holds but 1.b not. If both σ and τ are incombatible
with each other, we define Nστ exactly as in Equation 20. If τ is combatible
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with σ but σ not with τ , we define Nστ as follows, with two subcases. Firstly,
if τ is both ways witnessing, we define Nστ as in Equation 20. If τ is not both
ways witnessing, we define Nστ according to Equation 21. The case where σ is
combatible with τ but τ not with σ, is analogous.

Case 4. We assume that 4.a) σ = τ ; 4.b) σ is compatible with itself, meaning
that the first and second 1-types of σ are the same; 4.c) σ is not both ways
witnessing. By Equation 9 in Proposition 3.3, the weight contributed by edges
from Bσ to Bσ itself is thus given by

Nσσ(n) := J
k,ℓ+1

(nσσ, nσ, w1, . . . , wk, x1, . . . , xℓ, y), (22)

which defines the function Nσσ in this particular case. When 4.a and 4.b hold
but 4.c not, so σ is both ways witnessing, then we define, using the function
S

k+1,ℓ
of Equation 12 in Proposition 3.6, that

Nσσ(n) := S
k+1,ℓ

(nσσ, nσ, w1, . . . , wk, y,1 , . . . , xℓ). (23)

When 4.a holds but 4.b not, we define Nσσ(n) to be zero when nσσ 6= 0 and
otherwise as given by Equation 23.

By observing that the expressions in Equation 4 can easily be computed in
PTIME, we obtain the theorem that the weighted model counting problem for
each sentence of two-variable logic with a functionality axiom is in PTIME.

B.7 Proof of Lemma 4.6

Before Proving Lemma 4.6, we make the following auxiliary definitions.
An identity literal is an atom x = y or negated atom x 6= y. An identity

profile ϕ over a set X of variables is a consistent conjunction with precisely one
of the literals x = y, x 6= y for each two distinct variables x, y ∈ X ; consistency
of ϕ means that ϕ 6|= ⊥. Note that the formula diff (x1, . . . , xk) is the identity
profile over {x1, . . . , xk} where all identities are negative. An identity profile ϕ
is consistent with a conjunction ψ of identity literals if ϕ ∧ ψ 6|= ⊥.

We then prove Lemma 4.6:

Proof. We will prove the equivalent claim that every ∃∗-sentence of U1 translates
to an equivalent Boolean combination of ∃∗-sentences of SU1. Thus we fix a U1-
sentence ∃x1 . . .∃xℓ ψ where ψ is quantifier-free. We let η be the vocabulary
of ψ. As ψ is a U1-matrix, all the higher arity atoms of ψ have the same set
Y ⊆ {x1, . . . , xℓ} of variables. We let Y := {y1, . . . , yk}.

We then begin modifying the sentence ∃x1 . . . ∃xℓψ. We first put ψ into dis-
junctive normal form, thereby obtaining an equivalent sentence ∃x1 . . . ∃xℓ(ψ1∨
· · · ∨ ψm), where each formula ψi is free of disjunctions. We then distribute
the quantifier block ∃x1 . . . ∃xℓ of over the disjunctions, obtaining the sentence
χ := (∃x1 . . . ∃xℓψ1) ∨ · · · ∨ (∃x1 . . . ∃xℓψm).

Now, let us fix a disjunct ∃x1 . . . ∃xℓψi of χ. To conclude the proof, it
suffices to show that ∃x1 . . . ∃xℓψi is equivalent to a Boolean combination of
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∃∗-sentences of SU1. We assume, w.l.o.g., that ψi := χid ∧ χ1 ∧ χ(y1, . . . yk),
where χid is a conjunction of identities and negated identities, χ1 a conjunction
of unary literals, and χ(y1, . . . , yk) a conjunction of Y -literals. We also assume,
w.l.o.g., that the vocabulary of ψi is η and that ψi is consistent, i.e., ψi 6|= ⊥. If
ψi was not consistent, we would be done with the proof, as ∃x1 . . . ∃xℓψi would
be equivalent to ⊥.

Let I denote set of identity profiles over {x1, . . . , xℓ} consistent with χid .
Thus

ψi ≡
∨

γ ∈ I

(γ ∧ χ1 ∧ χ(y1, . . . yk)).

Now recall that χ1 is a conjunction of unary literals whose variables are con-
tained in {x1, . . . , xℓ}. Thus χ1 is equivalent to a disjunction of conjunctions
α1(x1) ∧ · · · ∧ αℓ(xℓ) where each αi is a 1-type over η. Let A denote the set of
all such conjunctions. Thus we have

ψi ≡
∨

(ϕ,γ)∈A× I

(γ ∧ ϕ ∧ χ(y1, . . . , yk)).

Now, in order to obtain a suitably modified variant of the sentence

∃x1 . . .∃xℓ ψi,

we distribute the block ∃x1 . . . ∃xℓ of quantifiers over the disjunctions of the
right hand side of the above equation and thereby observe that

∃x1 . . . ∃xℓ ψi

≡
∨

(ϕ,γ) ∈ A× I

∃x1 . . . ∃xℓ(γ ∧ ϕ ∧ χ(y1, . . . , yk)).

We fix a single disjunct δ := ∃x1 . . . ∃xℓ(γ ∧ ϕ ∧ χ(y1, . . . , yk)) and show how to
translate it to a Boolean combination of ∃∗-sentences of SU1, thereby concluding
the proof.

If γ contains non-negated identities, we eliminate them by renaming variables
in the quantifier-free part of δ. Thus we obtain a sentence δ′ := ∃z1 . . .∃zn(γ

′ ∧
ϕ′ ∧ χ′) equivalent to δ such that the following conditions hold.

1.) {z1, . . . , zn} ⊆ {x1, . . . , xℓ} and γ′ is the formula diff (z1, . . . , zn) (which is
simply ⊤ if n = 1).

2.) ϕ′ is a conjunction α1(z1) ∧ · · · ∧ αn(zn) of 1-types containing at least one
1-type for each variable z1, . . . , zn; if the conjunction has two or more types for
the same variable, then it is inconsistent, and thus δ′ ≡ ⊥, so we are done with
the proof. Therefore we assume that α1(z1)∧· · ·∧αn(zn) has exactly one 1-type
for each variable.

3.) χ′ is a conjunction of Z-literals for some set Z ⊆ {z1, . . . , zn} of variables.
We assume, w.l.o.g., that Z = {z1, . . . , zm} for some m ≤ n. We note the
following.
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3.a) It is possible that the variable renaming process makes χ′ inconsistent,
as for example when Rxyz,¬Ryxz are replaced by Ryyz,¬Ryyz. If χ′

is inconsistent, we are done with the proof. Thus we assume that χ′ is
consistent.

3.b) There exists a disjunction β1∨· · ·∨βp of |Z|-tables such that β1∨· · ·∨βp |=
χ′.

Thus δ′ ≡
∨

i≤p ∃z1 . . .∃zn(γ
′ ∧ ϕ′ ∧ βi), where each βi is a |Z|-table. Once

again distributing the quantifiers, we get a disjunction ∃z1 . . . ∃zn(γ′ ∧ ϕ′ ∧
β1) ∨ · · · ∨ ∃z1 . . . ∃zn(γ′ ∧ ϕ′ ∧ βp). It suffices to fix one of these disjuncts
∃z1 . . .∃zn(γ

′ ∧ ϕ′ ∧ βi) and show how it translates into a Boolean combination
of ∃∗-sentences of SU1. Now, ∃z1 . . . ∃zn(γ′ ∧ ϕ′ ∧ βi) is the sentence

∃z1 . . . ∃zn
(

diff (z1, . . . , zn) ∧ α1(z1) ∧ · · · ∧ αn(zn) ∧ βi(z1, . . . , zm)
)

.

Since each element of a model must satisfy exactly one 1-type, we observe that
this sentence is equivalent to the following sentence (where the first main con-
junct has m and the second one n variables):

∃z1 . . .∃zm
(

α1(z1) ∧ · · · ∧ αm(zm) ∧ βi(z1, . . . , zm) ∧ diff (z1, . . . , zm)
)

∧ ∃x1 . . . ∃xn
(

α1(x1) ∧ · · · ∧ αn(xn) ∧ diff (z1, . . . , zn)
)

.

Both of these conjuncts are SU1-sentences.

C Appendix: Proof of Proposition 5.1

Proof. The second claim of Proposition 5.1 is immediate, as [4] shows that the
symmetric weighted model counting problem is in PTIME for each formula of
two-variable logic. We thus turn to the first claim.

The article [3] provides a sentence ϕ of three-variable logic FO3 that has a
#P1-complete symmetric weighted model counting problem. Given ϕ, there is a
very simple way to directly ensure that there exists a sentence ∀x∀y∀zψ (where
ψ quantifier-free) with the same model counting problem as ϕ. The prodecure
is straightforward and interesting in its own right. The idea is to process ϕ in a
way that bears a resemblance to the Scott normal form reduction. We describe
the procedure for an arbitrary FO3-sentence χ.

We begin eliminating quantifiers of quantified subformulae of χ, one quan-
tifier at a time, starting from the atomic level and working our way upwards.
Consider a subformula χ′(y, z) := Qxχ0(x, y, z) of χ where Q ∈ {∀, ∃} and χ0

is quantifier-free. Now, χ′(y, z) has two free variables. Therefore we let Pχ′ be
a fresh binary predicate and consider the sentence

∀y∀z(Pχ′(y, z) ↔ Qxχ0(x, y, z))
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stating that χ′(y, z) is equivalent to Pχ′(y, z). Letting Q′ denote the dual of Q,
i.e., Q′ ∈ {∃, ∀} \ {Q}, this sentence is easily seen equivalent to

χ∗ := ∀y∀zQx(Pχ′(y, z) → χ0(x, y, z))

∧ ∀y∀zQ′x(χ0(x, y, z) → Pχ′ (y, z)). (24)

Therefore χ is equivalent to the sentence

χ′′ := χ∗ ∧ χ[Pχ′ (y, z)/χ′(y, z)],

where χ[Pχ′ (y, z)/χ′(y, z)] is obtained from χ by replacing the formula χ′(y, z)
with Pχ′(y, z).

Here Qxχ0(x, y, z) had two free variables, but we may also need to eliminate
quantifiers Qx from formulae of type Qxϕ′ with one or zero free variables; here
ϕ′ is quantifier-free. The elimination is then, however, done in a similar way,
the main difference being that the fresh predicate then has arity one or zero.

Repeating the procedure, we eliminate quantifiers one by one, starting from
the atomic level and working upwards from there. We ultimately end up with
a conjunction

Q1χ1 ∧ · · · ∧Qkχk

where each Q is a block of three quantifiers (introducing dummy quantifiers
if necessary), while each χi is quantifier-free. Now, similarly to the case with
Scott normal form reductions discussed above, the novel predicates have been
axiomatized to have a unique interpretation in any model that satisfies ϕ :=
Q1χ1 ∧ · · · ∧Qkχk, and thus an analogous result to Lemma 2.1 holds:

WFOMC(χ, n, w, w̄) = WFOMC(ϕ, n, w′, w̄′), (25)

where w′ and w̄′ extend w and w̄ by sending the novel symbols to 1.
Then we apply the Skolemization procedure (Lemma 2.2) to ϕ, thus obtain-

ing a conjunction of the form

∀x∀y∀zχ′
1 ∧ · · · ∧ ∀x∀y∀zχ′

k.

We combine the matrices χ′
1, . . . , χ

′
k under the same quantifier prefix, thus ob-

taining a sentence ϕ′ := ∀x∀y∀z γ, where γ is quantifier-free. We now have

WFOMC(ϕ, n, w′, w̄′) = WFOMC(ϕ′, n, w′′, w̄′′),

where w′′ and w̄′′ treat the fresh symbols as specified in Lemma 2.2, w′′ mapping
them to 1 and w̄′′ to −1. Thus, combining this with Equation 25, we obtain

WFOMC(χ, n, w, w̄) = WFOMC(ϕ′, n, w′′, w̄′′).

Thus we finally obtain the sentence ϕ′ with prefix ∀∀∀ with a #P1-complete
weighted model counting problem.

We then start modifying the ∀∀∀-sentence ϕ′ in order to obtain, for each
prefix class C with three quantifiers, a sentence in C with the same weighted
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model counting problem as ϕ′. The required modifications will be made by
operations that slightly modify the Skolemization operation from Section 2.2.
We define these operations next.

Let χ′ := ∀x1 . . . ∀xkQ1xk+1 . . . Qmxm χ
′′ be a prenex normal form sen-

tence with χ′′ quantifier-free and with Qi ∈ {∃, ∀} for each i. We turn χ′

into ∀x1 . . . ∀xkQ′
1xk+1 . . .Q

′
mxm(Ax1 . . . xk ∨ ¬χ′′), where A is a fresh k-ary

predicate and each Q′
i is the dual of Qi. The difference with the Skolemization

operation of Section 2.2 is simply that Q1 is not required to be ∃. This new
sentence has the same model counting problem as χ′′ when the fresh symbol A
is given weights exactly as in Lemma 2.2. The proof of this claim almost the
same as the proof of Lemma 2.2, which is given in Appendix A.2. Notice that
we can have k = 0, and then the new predicate A is nullary.

With these novel Skolemization operations, we can take any prenex normal
form sentence and modify it so that the original prefix ∀Q1 . . . Qm changes
to ∀Q′

1 . . . Q
′
m where ∀ is in both cases the same (possibly empty) string of

universal quantifiers and Q′
1 . . . Q

′
m is obtained from Q1 . . . Qm by changing

each quantifier to its dual. It remains to show that with these simple operations,
we can obtain from the prefix ∀∀∀ all the remaining seven prefixes with three
quantifiers.

We obtain ∃∃∃ from ∀∀∀ by letting all the three quantifiers in ∀∀∀ be the
suffix that gets dualized. We get ∀∃∃ from ∀∀∀ by dualizing the last two univer-
sal quantifiers. Similarly, we get ∀∀∃ from ∀∀∀ by dualizing the last universal
quantifier. Now, having ∀∀∃, we obtain ∀∃∀ by dualizing the last two quantifiers
and ∃∃∀ by dualizing all the three quantifiers. From ∀∃∀, we then get ∃∀∃ by
dualizing all quantifiers. Finally, from ∀∃∃ obtained earlier on, we get the last
remaining prefix ∃∀∀ by dualizing everything.

Thus we have shown that all prefix classes with at least three quantifiers have
a sentence with a #P1-complete symmetric weighted model counting problem.
Together with the first claim of Proposition 5.1, this gives the desired complete
classification of first-order prefix classes.
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