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Linear/non-linear (LNL) models, as described by Benton, soundly model a LNL term calculus and

LNL logic closely related to intuitionistic linear logic. Every such model induces a canonical en-

richment that we show soundly models a LNL lambda calculus for string diagrams, introduced by

Rios and Selinger (with primary application in quantum computing). Our abstract treatment of this

language leads to simpler concrete models compared to those presented so far. We also extend the

language with general recursion and prove soundness. Finally, we present an adequacy result for

the diagram-free fragment of the language which corresponds to a modified version of Benton and

Wadler’s adjoint calculus with recursion.

1 Introduction

In recent years string diagrams have found applications across a range of areas in computer science and

related fields: in concurrency theory, where they are used to model Petri nets [13]; in systems theory,

where they are used in a calculus of signal flow diagrams [3]; and in quantum computing [11, 6] where

they represent quantum circuits and have been used to completely axiomatize the Clifford+T segment of

quantum mechanics [7].

But as the size of a system grows, constructing string diagram representations by hand quickly be-

comes intractable, and more advanced tools are needed to accurately represent and reason about the

associated diagrams. In fact, just generating large diagrams is a difficult problem. One area where this

has been addressed is in the development of circuit description languages. For example, Verilog [22]

and VHDL [24] are popular hardware description languages that are used to generate very large digital

circuits. More recently, the PNBml language [20] was developed to generate Petri nets, and Quipper [10]

and QWIRE [14] are quantum programming languages (among others) that are used to generate (and

execute) quantum circuits.

In this paper we pursue a more abstract approach. We consider a lambda calculus for string diagrams

whose primary purpose is to generate complicated diagrams from simpler components. However, we

do not fix a particular application domain. Our development only assumes that the string diagrams

we are working with enjoy a symmetric monoidal structure. Our goal is to help lay a foundation for

programming languages that generate string diagrams, and that support the addition of extensions for

specific application domains along with the necessary language features.

More generally, we believe the use of formal methods could aid us in obtaining a better conceptual

understanding of how to design languages that can be used to construct and analyze large and complicated

(families) of string diagrams.

Our Results. We study several calculi in this paper, beginning with the combined LNL (CLNL) cal-

culus, which is the diagram-free fragment of our main language. The CLNL calculus, described in

http://arxiv.org/abs/1804.09822v1
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Section 2, can be seen as a modified version of Benton’s LNL calculus, first defined in [2]. The crucial

difference is that in CLNL we allow the use of mixed contexts, so there is only one type of judgement.

This reduces the number of typing rules, and allows us to extend the language to support the generation

of string diagrams. We also present a categorical model for our language, which is given by an LNL

model with finite coproducts, and prove its soundness.

Next, in Section 3, we describe our main language of interest, the enriched CLNL calculus, which we

denote ECLNL. The ECLNL calculus adopts the syntax and operational semantics of Proto-Quipper-M,

a circuit description language introduced by Rios and Selinger [18], but we develop our own categorical

model. Ours is the first abstract categorical model for the language, which is again given by an LNL

model, but endowed with an additional enrichment structure. The enrichment is the reason we chose

to rename the language. By design, ECLNL is an extension of the CLNL calculus that adds language

features for manipulating string diagrams. We show that our abstract model satisfies the soundness and

constructivity requirements (see [18], Remark 4.1) of Rios and Selinger’s original model. As special

instances of our abstract model, we recover the original model of Rios and Selinger, and we also present

a simpler concrete model, as well as one that is order enriched.

In Section 4 we resolve the open problem posed by Rios and Selinger of extending the language

with general recursion. We show that all the relevant language properties are preserved, and then we

prove soundness for both the CLNL and ECLNL calculi with recursion, after first extending our abstract

models with some additional structure. We then present concrete models for the ECLNL calculus that

support recursion and also support generating string diagrams from any symmetric monoidal category.

We conclude the section with a concrete model for the CLNL calculus extended with recursion that we

also prove is computationally adequate at intuitionistic types.

In Section 5, we conclude the paper and discuss further possible developments, such as adding in-

ductive and recursive types, as well as a treatment of dependent types.

Related Work. Categorical models are fundamental for our results, and the ones we present rely on the

LNL models first described by Benton in [2]. Our work also is inspired by the language Proto-Quipper-

M [18] by Rios and Selinger, the latest of the circuit description languages Selinger and his group have

been developing. Our ECLNL calculus has the same syntax and operational semantics as Proto-Quipper-

M, but there are significant differences in the denotational models. Rios and Selinger start with a sym-

metric monoidal category M, then they consider a fully faithful strong symmetric monoidal embedding

of M into another category M that has some suitable categorical structure (e.g. M := [Mop,Set]), so

that the category Fam(M) is symmetric monoidal closed and contains M. Their model is then given by

the symmetric monoidal adjunction between Set and Fam(M), which allows them to distinguish “pa-

rameter" (intuitionistic) terms and “state" (linear) terms. They show their language is type safe, their

semantics is sound, and they remark that it also is computationally adequate at observable types (there is

no recursion, so all programs terminate). The semantics for our ECLNL calculus enjoys the same proper-

ties, but we present both an abstract model and a simpler concrete model that doesn’t involve a Fam(−)
construction. Moreover, we also describe an extension with recursion, based on ideas by Benton and

Wadler [1], and present an adequacy result for the diagram-free fragment of the language.

QWIRE [14] also is a language for reasoning about quantum circuits. QWIRE is really two lan-

guages, an intuitionistic host language and a quantum circuits language. QWIRE led Rennela and Staton

to consider a more general language Ewire [16, 17], which can be used to describe circuits that are not

necessarily quantum. Ewire supports dynamic lifting, and they prove a soundness result assuming the

reduction system for the intuitionistic language is normalizing. They also discuss extending Ewire with
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conditional branching and inductive types over the ⊗- and ⊕-connectives (but not ⊸). However, these

extensions require imposing additional structure on the diagrams, such as the existence of coproducts

and fold/unfold gates. In our approach, we assume only that the diagrams enjoy a symmetric monoidal

structure. In addition, our language also supports general recursion, whereas Ewire does not. An im-

portant similarity is that Ewire also makes use of enriched category theory to describe the denotational

model.

Aside from Ewire and Proto-Quipper-M, the other languages we mentioned cannot generate arbitrary

string diagrams, and some of them do not have a formal denotational semantics.

2 An alternative LNL calculus

LNL models were introduced by Benton [2] as a means to soundly model an interesting LNL calculus

together with a corresponding logic. The goal was to understand the relationship between intuitionistic

logic and intuitionistic linear logic. In this section, we show that LNL models also soundly model a

variant of the LNL calculus where, instead of having two distinct typing judgements (linear and intu-

itionistic), there is a single type of judgement whose context is allowed to be mixed. A similar idea

was briefly discussed by Benton in his original paper [2]. The syntax and operational semantics for this

language are derived as a special case of the language of Rios and Selinger [18]. We denote the resulting

language by CLNL, which we call the "Combined LNL" calculus.

As with the other calculi we consider, we begin our discussion by first describing a categorical

model for CLNL. This makes the presentation of the language easier to follow. A categorical model of

the CLNL calculus is given by an LNL model with finite coproducts, as the next definition shows.

Definition 2.1 ([2]). A model of the CLNL calculus (CLNL model) is given by the following data: a

cartesian closed category (CCC) with finite coproducts (V,×,→,1,
∏
,∅); a symmetric monoidal closed

category (SMCC) with finite coproducts (C,⊗,⊸, I,+,0); and a symmetric monoidal adjunction:

V ⊢ C

F

G

We also adopt the following notation:

• The comonad-endofunctor is ! := F ◦G.

• The unit of the adjunction F ⊣ G is η : Id .−→ G◦F.

• The counit of the adjunction F ⊣ G is ε : ! .−→ Id.

Throughout the remainder of this section, we consider an arbitrary, but fixed, CLNL model. The

CLNL calculus, which we introduce next, is interpreted in the category C.

The syntax of the CLNL calculus is presented in Figure 1. It is exactly the diagram-free fragment of

the ECLNL calculus, and because of space reasons, we only show the typing rules for ECLNL. However,

the typing rules of the CLNL calculus can be easily derived from those for ECLNL by ignoring the Q

label contexts (see the (pair) rule example below). Of course, ECLNL has some additional terms not in

CLNL, so the corresponding typing rules should be ignored as well.

Observe that the intuitionistic types are a subset of the types of our language. Note also that there

is no grammar which defines linear types. We say that a type that is not intuitionistic is linear. This
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definition is strictly speaking not necessary, but it helps to illustrate some concepts. In particular, any

type A ⊸ B is therefore considered to be linear, even if A and B are intuitionistic. The interpretation of a

type A is an object JAK of C, defined by induction in the usual way (Figure 2).

Recall that in an LNL model with coproducts, we have:

I ∼= F(1); 0 ∼= F(∅);

F(X)⊗F(Y )∼= F(X ×Y ); F(X)+F(Y )∼= F(X
∏

Y )

because F is strong (symmetric) monoidal and also a left adjoint. Then a simple induction argument

shows:

Proposition 2.2. For every intuitionistic type P, there is a canonical isomorphism JPK ∼= F(X).

A context is a function from a finite set of variables to types. We write contexts as Γ = x1 : A1,x2 :

A2, . . . ,xn : An, where the xi are variables and Ai are types. Its interpretation is as usual JΓK = JA1K⊗
·· ·⊗ JAnK. A variable in a context is intuitionistic (linear) if it is assigned an intuitionistic (linear) type.

A context that contains only intuitionistic variables is called an intuitionistic context. Note, that we do

not define linear contexts, because our typing rules refer only to contexts that either are intuitionistic or

arbitrary (mixed).

A typing judgement has the form Γ ⊢ m : A, where Γ is an (arbitrary) context, m is a term and A

is a type. Its interpretation is a morphism JΓ ⊢ m : AK : JΓK → JAK in C, defined by induction on the

derivation. For the typing rules of CLNL, the label contexts Q,Q′, etc. from Figure 1 should be ignored.

For example, the (pair) rule in CLNL becomes:

Φ,Γ1 ⊢ m : A Φ,Γ2 ⊢ n : B
(pair)

Φ,Γ1,Γ2 ⊢ 〈m,n〉 : A⊗B

The type system enforces that a linear variable is used exactly once, whereas a non-linear variable may

be used any number of times, including zero. Unlike Benton’s LNL calculus, derivations in CLNL are in

general not unique, because intuitionistic variables may be part of an arbitrary context Γ. For example,

if P1 and P2 are intuitionistic types, then:

x : P1 ⊢ x : P1 y : P2 ⊢ y : P2
(pair)

x : P1,y : P2 ⊢ 〈x,y〉 : P1 ⊗P2

x : P1 ⊢ x : P1 x : P1,y : P2 ⊢ y : P2
(pair)

x : P1,y : P2 ⊢ 〈x,y〉 : P1 ⊗P2

are two different derivations of the same judgement. While this might seem to be a disadvantage, it

leads to a reduction in the number of rules, it allows a language extension that supports describing string

diagrams (cf. Section 3), and it allows us to easily add general recursion (cf. Section 4). Moreover, the

interpretation of any two derivations of the same judgement are equal (cf. Theorem 3.5).

Definition 2.3. A morphism f : JP1K → JP2K is called intuitionistic, if

f = JP1K
∼=
−→ F(X)

F( f ′)
−−−→ F(Y )

∼=
−→ JP2K,

for some f ′ ∈ V(X ,Y ).
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Definition 2.4. We define maps on intuitionistic types as follows:

Discard: ⋄P := JPK
∼=
−→ F(X)

F(1X )
−−−→ F(1)

∼=
−→ I;

Copy: ∆P := JPK
∼=
−→ F(X)

F(〈id,id〉)
−−−−−→ F(X ×X)

∼=
−→ JPK⊗ JPK;

Lift: liftP := JPK
∼=
−→ F(X)

F(ηX )
−−−→ !F(X)

∼=
−→ !JPK.

Proposition 2.5. If f : JP1K → JP2K is intuitionistic, then:

• ⋄P2
◦ f = ⋄P1

;

• ∆P2
◦ f = ( f ⊗ f )◦∆P1

;

• liftP2
◦ f = ! f◦ liftP1

.

Because of space limitations, we are unable to provide a complete list of the operational and deno-

tational semantics for the languages we discuss, so we confine ourselves to excerpts that present some

“interesting" rules in Figures 2 and 3. The rules for CLNL are obvious special cases of those for ECLNL

(which we discuss in the next section).

The evaluation rules for CLNL can be derived from those of ECLNL (Figure 3) by ignoring the

diagram components. For example, the evaluation rule for (pair) is given by:

m ⇓ v n ⇓ v′

〈m,n〉 ⇓ 〈v,v′〉

Similarly, the denotational interpretations of terms in CLNL can be derived from those of ECLNL (Fig-

ure 2) by ignoring the Q label contexts. For example, the interpretation of JΦ,Γ1,Γ2 ⊢ 〈m,n〉 : A⊗BK is

given by the composition:

JΦK⊗ JΓ1K⊗ JΓ2K
∆⊗id
−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K

∼=
−→ JΦK⊗ JΓ1K⊗ JΦK⊗ JΓ2K

JmK⊗JnK
−−−−−→ JAK⊗ JBK.

Theorem 2.6. Theorems 3.5 – 3.9 also hold true when restricted to the CLNL calculus in the obvious

way.

3 Enriching the CLNL calculus

In this section we introduce the enriched CLNL calculus, ECLNL, whose syntax and operational se-

mantics coincide with those of Proto-Quipper-M [18]. We rename the language in order to emphasize

its dependence on its abstract categorical model, an LNL model with an associated enrichment. The

categorical enrichment provides a natural framework for formulating the models we use, and for stating

the constructivity properties (cf. Subsection 3.3) that we want our concrete models to satisfy.

We begin by briefly recalling the main ingredients of categories enriched over a symmetric monoidal

closed category (V,⊗,⊸, I):

• A V-enriched category (briefly, a V-category) A consists of a collection of objects; for each

pair of objects A,B there is a ‘hom’ object A (A,B) ∈ V; for each object A, there is a ‘unit’

morphism uA : I → A (A,A) in V; and given objects A,B,C, there is a ‘composition’ morphism

cABC : A (A,B)⊗A (B,C)→ A (A,C) in V.

• A V-functor F : A → B between V-categories assigns to each object A ∈ A an object FA ∈ B,

and to each pair of objects A,A′ ∈ A a V-morphism FAA′ : A (A,A′)→ B(FA,FA′);
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• A V-natural transformation between V-functors F,G : A →B consists of V-morphisms αA : I →
B(FA,GA) for each A ∈ A ;

• A V-functor F : A →B has a right V-adjoint G : B →A if there is a V-isomorphism, B(FA,B)∼=
A (A,GB) that is V-natural in both A and B;

The V-morphisms that occur in these definitions are all subject to additional conditions expressed in

terms of commuting diagrams in V; for these we refer to [4, Chapter 6], which provides a detailed

exposition on enriched category theory. We denote the category of V-categories by V-Cat.

The first example of a V-enriched category is the category V that has the same objects as V and

whose hom objects are given by V (A,B) = A ⊸ B. We refer to this category as the self-enrichment of V.

If A is a V-category, then the V-copower of an object A ∈A by an object X ∈ V is an object X ⊙A ∈A

together with an isomorphism A (X ⊙A,B)∼= V (X ,A (A,B)), which is V-natural in B.

Any (lax) monoidal functor G : C → V between symmetric monoidal closed categories induces a

change of base functor G∗ : C-Cat → V-Cat assigning to each C-category A a V-category G∗A with

the same objects as A , but with hom objects given by (G∗A )(A,B) = GA (A,B). In particular, if V

is locally small (which we always assume), then the functor V(I,−) : V → Set is a monoidal functor;

the corresponding change of base functor assigns to each V-category A its underlying category, which

we denote with A, i.e., the same letter but in boldface. We note that the underlying category of V is

isomorphic to V. Moreover, if the monoidal functor G above has a strong monoidal left adjoint, then the

corresponding change of base functor maps C-categories to V-categories with isomorphic underlying

categories, and C-functors to V-functors with the same underlying functors (up to the isomorphisms

between the underlying categories). If V has all coproducts, then V(I,−) has a left adjoint V : Set → V

that is monoidal [4, Proposition 6.4.6]. Applying the corresponding change of base functor to a locally

small category equips this category with the free V-enrichment.

Symmetric monoidal categories can be generalized to V-symmetric monoidal categories, where the

monoidal structure is also enriched over V [12, §4]. It follows from [12, Proposition 6.3] that the functor

G∗ above maps C-symmetric monoidal categories to V-symmetric monoidal categories. If for each fixed

A ∈ V, the V-functor (−⊗A) has a right V-adjoint, denoted (A ⊸ −), then we call A a V-symmetric

monoidal closed category. We note that the (−⊗−) and (−⊸ −) bifunctors on V can be enriched to

V-bifunctors on V (i.e., such that their underlying functors correspond to the original functors) such that

V becomes a V-symmetric monoidal closed category.

Finally, if V has finite products, a V-category A is said to have V-coproducts if it has an object 0

and for each A,B ∈ A there is an object A+B ∈ A together with isomorphisms

1 ∼= A (0,C), A (A,C)×A (B,C)∼= A (A+B,C),

V-natural in C.

Definition 3.1. An enriched CLNL model is given by the following data:

1. A cartesian closed category V together with its self-enrichment V , such that V has finite V-

coproducts;

2. A V-symmetric monoidal closed category C with underlying category C such that C has V-

copowers and finite V-coproducts;

3. A V-adjunction: V ⊢ C ,

− ⊙ I

C (I,−)

together with a CLNL model on the underlying adjunc-

tion.
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We also adopt the following notation: F and G are the underlying functors of (−⊙ I) and C (I,−)
respectively and we use the same notation for the underlying CLNL model as in Definition 2.1.

By definition, every enriched CLNL model is a CLNL model with some additional (enriched) struc-

ture. But as the next theorem shows, every CLNL model induces the additional enriched structure as well.

The CCC V can be equipped with its self-enrichment V in a canonical way. The symmetric monoidal

structure of the adjunction then allows us to equip the SMCC C with a V-enrichment by making use of

the induced change-of-base functors which stem from the adjunction. Then one can show that the now

constructed V-enriched category C has V-copowers and the original adjunction enriches to a V-enriched

one. We conclude:

Theorem 3.2. Every CLNL model induces an enriched CLNL model.

Proof. Combine [8, Proposition 6.7] and [12, Theorem 11.2].

The following proposition will be useful when defining the semantics of our language.

Proposition 3.3. In every enriched CLNL model:

1. There is a V-natural isomorphism G(A ⊸ B)∼= C (A,B);

2. !(A ⊸ B)∼= F(C (A,B)).

3. There is a natural isomorphism Ψ : C(A,B)∼= V(1,C (A,B)).

Proof.

(1.) G(A ⊸ B) = C (I,A ⊸ B)∼= C (A,B);

(2.) Apply F to (1.);

(3.) C(A,B)∼= C(I,A ⊸ B)∼= C(F1,A ⊸ B)∼= V(1,G(A ⊸ B))∼= V(1,C (A,B)).

3.1 The String Diagram model

The ECLNL calculus is designed to describe string diagrams. So we first explain exactly what kind of

diagrams we have in mind. The morphisms of any symmetric monoidal category can be described using

string diagrams [19]1. So, we choose an arbitrary symmetric monoidal category M, and then the string

diagrams we will be working with are exactly those that correspond to the morphisms of M.

For example, if we set M= FdCStar, the category of finite-dimensional C*-algebras and completely

positive maps, then we can use our calculus for quantum programming. Another interesting choice for

quantum computing, in light of recent results [7], is setting M to be a suitable category of ZX-calculus

diagrams. If M = PNB, the category of Petri Nets with Boundaries [21], then our calculus may be used

to generate such Petri nets.

As with CLNL, our discussion of ECLNL begins with its categorical model.

Definition 3.4. An ECLNL model is given by the following data:

• An enriched CLNL model (Definition 3.1);

• A symmetric monoidal category (M,⊠,J) and a strong symmetric monoidal functor E : M → C.

For the remainder of the section, we consider an arbitrary, but fixed, ECLNL model.

1The interested reader can consult [19] for more information on string diagrammatic representations of morphisms.
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3.2 Syntax and Semantics

We first introduce new types in our syntax that correspond to the objects of M. Using terminology

introduced in [18], where string diagrams are referred to as circuits, we let W be a fixed set of wire types,

and we assume there is an interpretation J−KM : W → Ob(M). We use α ,β , . . . to range over the elements

of W . For a wire type α , we define the interpretation of α in C to be JαK = E(JαKM). The grammar for

M-types is given in Figure 1, and we extend J−KM to M-types in the obvious way.

To build more complicated string diagrams from simpler components, we need to refer to certain

wires of the component diagrams, to specify how to compose them. This is accomplished by assigning

labels to the wires of our string diagrams, as demonstrated in the following construction.

Let L be a countably infinite set of labels. We use letters ℓ,k to range over the elements of L. A

label context is a function from a finite subset of L to W, which we write as ℓ1 : α1, . . . , ℓn : αn. We use

Q1,Q2, . . . to refer to label contexts. To each label context Q = ℓ1 : α1, . . . , ℓn : αn, we assign an object of

M given by JQKM := Jα1KM ⊠ · · ·⊠ JαnKM. If Q = /0, then JQKM = J. We denote label tuples by~ℓ and~k ;

these are simply tuples of label terms built up using the (pair) rule.

We now define the category ML of labelled string diagrams:

• The objects of ML are label contexts Q.

• The morphisms of ML(Q1,Q2) are exactly the morphisms of M(JQ1KM,JQ2KM).

So, by construction, J−KM : ML → M is a full and faithful functor. Observe that if Q and Q′ are label

contexts that differ only by a renaming of labels, then Q ∼= Q′. Moreover, for any two label contexts Q1

and Q2, by renaming labels we can construct Q′
1
∼= Q1 such that Q′

1 and Q2 are disjoint.

We equip the category ML with the unique (up to natural isomorphism) symmetric monoidal structure

that makes J−KM a symmetric monoidal functor. We then have Q⊗Q′ ∼= Q∪Q′ for any pair of disjoint

label contexts. We use S,D to range over the morphisms of ML and we visualise them in the following

way:

ℓ1

ℓ2

ℓn ℓ′m

ℓ′1
ℓ′2

S

··
·

··
·

α1

α2

αn

β1

β2

βm

where S : {ℓ1 : α1, . . . , ℓn : αn}→ {ℓ′1 : β1, . . . , ℓ
′
m : βm} ∈ ML and JSKM : Jα1KM⊠ · · ·⊠JαnKM → Jβ1KM⊠

· · ·⊠ JβmKM ∈ M.
A label context Q = ℓ1 : α1, . . . , ℓn : αn is interpreted in C as JQK = Jα1K⊗·· ·⊗ JαnK or by JQK = I

if Q = /0. A labelled string diagram S : Q → Q′ is interpreted in C as the composition:

JSK := JQK
∼=
−→ E(JQKM)

E(JSKM)
−−−−→ E(JQ′KM)

∼=
−→ JQ′K.

We also add the type Diag(T,U) to the language (see Figure 1); Diag(T,U) should be thought of as

the type of string diagrams with inputs T and outputs U , where T and U are M-types.

The term language is extended by adding the labels and label tuples just discussed, and the terms

boxT m, apply(m,n) and (~ℓ,S,~ℓ′). The term boxT m should be thought of as "boxing up" an already

completed diagram m; apply(m,n) represents the application of the boxed diagram m to the state n;

and the term (~ℓ,S,~ℓ′) is a value which represents a boxed diagram. Users of the ECLNL programming

language are not expected to write labelled string diagrams S or terms such as (~ℓ,S,~ℓ′). Instead, these

terms are computed by the programming language itself. Depending on the diagram model, the language

should be extended with constants that are exposed to the user, for example, for quantum computing,
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The CLNL Calculus

Variables x,y,z
Types A,B,C ::= 0 | A+B | I | A⊗B | A ⊸ B | !A

Intuitionistic types P,R ::= 0 | P+R | I | P⊗R | !A

Variable contexts Γ ::= x1 : A1,x2 : A2, . . . ,xn : An

Intuitionistic variable contexts Φ ::= x1 : P1,x2 : P2, . . . ,xn : Pn

Terms m,n, p ::= x | c | let x = m in n | �Cm | leftA,Bm | rightA,Bm |

case m of {left x → n | right y → p} | ∗ | m;n | 〈m,n〉 |

let 〈x,y〉 = m in n | λxA.m | mn | lift m | force m

Values v,w ::= x | c | leftA,Bv | rightA,Bv | ∗ | 〈v,w〉 | λxA.m | lift m

Term Judgements Γ ⊢ m : A (typing rules below - ignore Q contexts)

The ECLNL Calculus

Extend the CLNL syntax with:

Labels ℓ,k
Labelled string diagrams S,D
Types A,B,C ::= · · · | α | Diag(T,U)
Intuitionistic types P,R ::= · · · | Diag(T,U)
M-types T,U ::= α | I | T ⊗U

Label contexts Q ::= ℓ1 : α1, ℓ2 : α2, . . . , ℓn : αn

Terms m,n, p ::= · · · | ℓ | boxT m | apply(m,n) | (~ℓ,S,~ℓ′)

Label tuples ~ℓ,~k ::= ℓ | ∗ | 〈~ℓ,~k 〉

Values v,w ::= · · · | ℓ | (~ℓ,S,~ℓ′)
Configurations (S,m)
Term Judgements Γ;Q ⊢ m : A

Configuration Judgements Q ⊢ (S,m) : A;Q′ (cf. Definition 3.6)

The Typing Rules

(var)
Φ,x : A; /0 ⊢ x : A

(label)
Φ;ℓ : α ⊢ ℓ : α

(const)
Φ; /0 ⊢ c : Ac

Φ,Γ1;Q1 ⊢ m : A Φ,Γ2,x : A;Q2 ⊢ n : B
(let)

Φ,Γ1,Γ2;Q1,Q2 ⊢ let x = m in n : B

Γ;Q ⊢ m : 0
(initial)

Γ;Q ⊢�Cm : C

Γ;Q ⊢ m : A
(left)

Γ;Q ⊢ leftA,Bm : A+B

Γ;Q ⊢ m : B
(right)

Γ;Q ⊢ rightA,Bm : A+B

(*)
Φ; /0 ⊢ ∗ : I

Φ,Γ1;Q1 ⊢ m : A+B Φ,Γ2,x : A;Q2 ⊢ n : C Φ,Γ2,y : B;Q2 ⊢ p : C
(case)

Φ,Γ1,Γ2;Q1,Q2 ⊢ case m of {left x → n | right y → p} : C

Φ,Γ1;Q1 ⊢ m : I Φ,Γ2;Q2 ⊢ n : C
(seq)

Φ,Γ1,Γ2;Q1,Q2 ⊢ m;n : C

Φ,Γ1;Q1 ⊢ m : A Φ,Γ2;Q2 ⊢ n : B
(pair)

Φ,Γ1,Γ2;Q1,Q2 ⊢ 〈m,n〉 : A⊗B

Φ,Γ1;Q1 ⊢ m : A⊗B Φ,Γ2,x : A,y : B;Q2 ⊢ n : C
(let-pair)

Φ,Γ1,Γ2;Q1,Q2 ⊢ let 〈x,y〉= m in n : C

Γ,x : A;Q ⊢ m : B
(abs)

Γ;Q ⊢ λxA.m : A ⊸ B

Φ,Γ1;Q1 ⊢ m : A ⊸ B Φ,Γ2;Q2 ⊢ n : A
(app)

Φ,Γ1,Γ2;Q1,Q2 ⊢ mn : B

Φ; /0 ⊢ m : A
(lift)

Φ; /0 ⊢ lift m :!A

Γ;Q ⊢ m :!A
(force)

Γ;Q ⊢ force m : A

Γ;Q ⊢ m :!(T ⊸U)
(box)

Γ;Q ⊢ boxT m : Diag(T,U)

Φ,Γ1;Q1 ⊢ m : Diag(T,U) Φ,Γ2;Q2 ⊢ n : T
(apply)

Φ,Γ1,Γ2;Q1,Q2 ⊢ apply(m,n) : U

/0;Q ⊢~ℓ : T /0;Q′ ⊢~ℓ′ : U S ∈ ML(Q,Q′)
(diag)

Φ; /0 ⊢ (~ℓ,S,~ℓ′) : Diag(T,U)

Figure 1: Syntax of the CLNL and ECLNL calculi.
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JαK = E(JαKM)

J0K = 0

JA+BK= JAK+ JBK

JIK = I

JA⊗BK= JAK⊗ JBK

JA ⊸ BK = JAK ⊸ JBK

J!AK =!JAK

JDiag(T,U)K = F(C (JT K,JUK))

JΦ,Γ1,Γ2;Q1,Q2 ⊢ 〈m,n〉 : A⊗BK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id
−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=
−→

JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗JnK
−−−−−→ JAK⊗ JBK

JΦ,Γ1,Γ2;Q1,Q2 ⊢ let 〈x,y〉= m in n : CK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id
−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=
−→

JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗id
−−−−→ JA⊗BK⊗ JΦK⊗ JΓ2K⊗ JQ2K

∼=
−→ JΦK⊗ JΓ2K⊗ JAK⊗ JBK⊗ JQ2K

JnK
−−→ JCK

JΦ; /0 ⊢ lift m :!AK := JΦK
lift
−→!JΦK

!JmK
−−→!JAK

JΓ;Q ⊢ force m : AK := JΓK⊗ JQK
JmK
−−→!JAK

ε
−→ JAK

JΓ;Q ⊢ boxT m : Diag(T,U)K := JΓK⊗ JQK
JmK
−−→ !(JT K ⊸ JUK)

∼=
−→ JDiag(T,U)K

JΦ,Γ1,Γ2;Q1,Q2 ⊢ apply(m,n) : UK := JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K
∆⊗id
−−−→ JΦK⊗ JΦK⊗ JΓ1K⊗ JΓ2K⊗ JQ1K⊗ JQ2K

∼=
−→

JΦK⊗ JΓ1K⊗ JQ1K⊗ JΦK⊗ JΓ2K⊗ JQ2K
JmK⊗JnK
−−−−−→ JDiag(T,U)K⊗ JTK

∼=
−→ !(JT K ⊸ JUK)⊗ JTK

ε⊗id
−−−→ (JT K ⊸ JUK)⊗ JTK

ev
−→ JUK

JΦ; /0 ⊢ (~ℓ,S,~ℓ′) : Diag(T,U)K := JΦK
⋄
−→ I

∼=
−→ F(1)

F(Ψ(φ(~ℓ,S,~ℓ′)))
−−−−−−−−−→ JDiag(T,U)K

Figure 2: Denotational semantics of the ECLNL calculus (excerpt)

a constant h : (qubit ⊸ qubit) could be utilised by the user to build quantum circuits. Then the term

boxqubit lift h would reduce to a term (ℓ,H,k ) where H is a labelled string diagram representing the

Hadamard gate (where technically each term should be part of a configuration, see below).

The term typing judgements from the previous section are now extended to include a label context

as well, which is separated from the variable context using a semicolon; the new format of a term typing

judgement is Γ;Q ⊢ m : A. Its interpretation is a morphism JΓK⊗ JQK → JAK in C that is defined by

induction on the derivation as shown in Figure 2.

In the definition of the (diag) rule in the denotational semantics, we use a function φ , which we

now explain. From the premises of the rule, it follows that J~ℓK : JQK → JTK and J~ℓ′K : JQ′K → JUK are

isomorphisms. Then, φ(~ℓ,S,~ℓ′) is defined to be the morphism:

φ(~ℓ,S,~ℓ′) = JTK
J~ℓK

−1

−−−→ JQK
JSK
−−→ JQ′K

J~ℓ′K
−−→ JUK.

Theorem 3.5. Let D1 and D2 be derivations of a judgement Γ;Q ⊢ m : A. Then JD1K = JD2K.
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Because of this theorem, we write JΓ;Q ⊢ m : AK instead of JDK.
A configuration is a pair (S,m), where S is a labelled string diagram and m is a term. Operationally,

we may think of S as the diagram that has been constructed so far, and m as the program which remains

to be executed.

Definition 3.6. A configuration is said to be well-typed with inputs Q, outputs Q′ and type A, which we

write as Q ⊢ (S,m) : A;Q′, if there exists Q′′ disjoint from Q′, s.t. S : Q → Q′′ ∪Q′ is a labelled string

diagram and /0;Q′′ ⊢ m : A.

Thus, in a well-typed configuration, the term m has no free variables and its labels correspond to a

subset of the outputs of S. We interpret a well-typed configuration Q ⊢ (S,m) : A;Q′, by:

J(S,m)K := JQK
JSK
−−→ JQ′′K⊗ JQ′K

J /0;Q′′⊢m:AK⊗id
−−−−−−−−→ JAK⊗ JQ′K

The big-step semantics is defined on configurations; because of space reasons, we only show an ex-

cerpt of the rules in Figure 3. The rest of the rules are standard. A configuration value is a configuration

(S,v), where v is a value. The evaluation relation (S,m) ⇓ (S′,v) then relates configurations to configu-

ration values. Intuitively, this can be interpreted in the following way: assuming a constructed diagram

S, then evaluating term m results in a diagram S′ (obtained from S by appending other subdiagrams de-

scribed by m) and value v. There’s also an error relation (S,m) ⇓ Error which indicates that a run-time

error occurs when we execute term m from configuration S. There are many such Error rules, but they

are uninteresting, so we omit all but one of them (also see Theorem 3.7).

An excerpt of the operational semantics is presented in Figure 3. The evaluation rule for boxT m

makes use of a function freshlabels. Given a M-type T , freshlabels(T ) returns a pair (Q,~ℓ) such that

/0;Q ⊢ ~ℓ : T , where the labels in ~ℓ are fresh in the sense that they do not occur anywhere else in the

derivation. This can always be done, and the resulting Q and~ℓ are determined uniquely, up to a renaming

of labels (which is inessential).

The evaluation rule for apply(m,n) makes use of a function append. Given a labelled string diagram

S′′ together with a label tuple ~k and term (~ℓ,D,~ℓ′), it is defined as follows. Assuming that ~ℓ and ~k
correspond exactly to the inputs of D and that~ℓ′ contains exactly the outputs of D, then we may construct

a term (~k ,D′,~k ′) which is equivalent to (~ℓ,D,~ℓ′) in the sense that they only differ by a renaming of labels.

Moreover, we may do so by choosing D′ and ~k ′ such that the labels in ~k ′ are fresh. Then, assuming the

labels in ~k correspond to a subset of the outputs of S′′, we may construct the labelled string diagram S′′′

given by the composition:

S′′··
·

··
·

··
·

D′

~k ′~k

··
·

Finally, append(S′′ ,~k ,~ℓ,D,~ℓ′) returns the pair (S′′′,~k ′) if the above assumptions are met, and is undefined

otherwise (which would result in a run-time error).

Theorem 3.7 (Error freeness [18]). If Q ⊢ (S,m) : A;Q′ then (S,m) 6⇓ Error.

Theorem 3.8 (Subject reduction [18]). If Q ⊢ (S,m) : A;Q′ and (S,m) ⇓ (S′,v), then Q ⊢ (S′,v) : A;Q′.

With this in place, we may now show our abstract model is sound. We remark that our abstract model

is strictly more general than the one of Rios and Selinger (cf. Section 1, Related Work).

Theorem 3.9. (Soundness) If Q ⊢ (S,m) : A;Q′ and (S,m) ⇓ (S′,v), then J(S,m)K = J(S′,v)K.
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(S,m) ⇓ (S′,v) (S′,n) ⇓ (S′′,v′)

(S,〈m,n〉) ⇓ (S′′,〈v,v′〉)

(S,m) ⇓ (S′,〈v,v′〉) (S′,n[v / x,v′ / y]) ⇓ (S′′,w)

(S, let 〈x,y〉 = m in n) ⇓ (S′′,w)

(S, lift m) ⇓ (S, lift m)
(S,m) ⇓ (S′, lift m′) (S′,m′) ⇓ (S′′,v)

(S, force m) ⇓ (S′′,v)

(S,m) ⇓ (S′, lift n) freshlabels(T ) = (Q,~ℓ) (idQ,n~ℓ) ⇓ (D,~ℓ′)

(S,boxT m) ⇓ (S′,(~ℓ,D,~ℓ′))

(S,m) ⇓ (S′,(~ℓ,D,~ℓ′)) (S′,n) ⇓ (S′′,~k ) append(S′′ ,~k ,~ℓ,D,~ℓ′) = (S′′′,~k ′)

(S,apply(m,n)) ⇓ (S′′′,~k ′)

(S,m) ⇓ (S′,(~ℓ,D,~ℓ′)) (S′,n) ⇓ (S′′,~k ) append(S′′ ,~k ,~ℓ,D,~ℓ′) undefined

(S,apply(m,n)) ⇓ Error
~k ,~ℓ

(S,(~ℓ,D,~ℓ′)) ⇓ (S,(~ℓ,D,~ℓ′))

Figure 3: Operational semantics of the ECLNL calculus (excerpt)
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3.3 A constructive property

If we assume, in addition, that E : M → C is fully faithful, then setting M (T,U) := C (ET,EU) for

T,U ∈ M defines a V-enriched category M with the same objects as M, and whose underlying category

is isomorphic to M. Moreover, E enriches to a fully faithful V-functor E : M → C . As a consequence,

our abstract model enjoys the following constructive property:

C(JΦK,JT K ⊸ JUK)∼= C(F(X),JTK ⊸ JUK)∼=

V(X ,G(JTK ⊸ JUK))∼= V(X ,C (JT K,JUK))∼=

V(X ,C (EJTKM,EJUKM)) = V(X ,M (JT KM,JUKM))

where we use the additional structure only in the last step. This means that any well-typed term Φ; /0 ⊢
m : T ⊸ U corresponds to a V-parametrised family of string diagrams. For example, if V = Set (or

V = CPO), then we get precisely a (Scott-continuous) function from X to M (JT KM,JUKM) or in other

words, a (Scott-continuous) family of string diagrams from M.

3.4 Concrete Models

The original concrete model of Rios and Selinger is now easily recovered as an instance of our abstract

model:

MSet Fam([Mop,Set])

−⊙ I

Fam([Mop,Set]) (I,−)

⊢

Y
[Mop,Set]

where Fam(−) is the well-known families construction. However, our abstract treatment of the language

allows us to present a simpler sound model:

MSet

−⊙ I

[Mop,Set](I,−)

⊢

Y
[Mop,Set]

And, an order-enriched model is given by:

MCPO

−⊙ I

[M op,C PO ](I,−)

⊢

Y
[M op,C PO ]

where M is the free CPO-enrichment of M (obtained by discretely ordering its homsets) and CPO is

the self-enrichment of CPO.

4 The ECLNL calculus with recursion

Additional structure for Benton’s LNL models needed to support recursion was discussed by Benton

and Wadler in [1]. This structure allows them to model recursion in related lambda calculi, and in the

LNL calculus (renamed the "adjoint calculus") as well. However, they present no syntax or operational

semantics for recursion in their LNL calculus and instead they ". . . omit the rather messy details". Here

we extend both the CLNL and ECLNL calculi with recursion in a simple way by using exactly the same

additional semantic structure they use. We conjecture the simplicity of our extension is due to our use

of a single type of judgement that employs mixed contexts; this is the main distinguishing feature of our

CLNL calculus compared to the LNL calculus of Benton and Wadler. Furthermore, we also include a

computational adequacy result for the CLNL calculus with recursion.
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4.1 Extension with recursion

We extend the ECLNL calculus by adding the term rec x!A.m and we add an additional typing rule (left)

and an evaluation rule (right) as follows:

Φ,x :!A; /0 ⊢ m : A
(rec)

Φ; /0 ⊢ rec x!A.m : A

(S,m[lift rec x!A.m / x]) ⇓ (S′,v)

(S, rec x!A.m) ⇓ (S′,v)

Notice that in the typing rule, the label contexts are empty and all free variables in m are intuitionistic.

As a special case, the CLNL calculus also can be extended with recursion:

Φ,x :!A ⊢ m : A
(rec)

Φ ⊢ rec x!A.m : A

m[lift rec x!A.m / x] ⇓ v

rec x!A.m ⇓ v

In both cases, (parametrised) algebraic compactness of the !-endofunctor is what is needed to soundly

model the extension; Benton and Wadler make the same assumption.

Definition 4.1. An endofunctor T : C→C is algebraically compact if T has an initial T -algebra T (Ω)
ω
−→

Ω for which Ω
ω−1

−−→ T (Ω) is a final T -coalgebra. If the category C is monoidal, then an endofunctor

T : C → C is parametrically algebraically compact if the endofunctor A⊗T(−) is algebraically compact

for every A ∈ C.

We note that this notion of parametrised algebraic compactness is weaker than Fiore’s corresponding

notion [9], but it suffices for our purposes. This allows us to extend both ECLNL and CLNL models with

recursion in the same way.

Definition 4.2. A model of the (E)CLNL calculus with recursion is given by a model of the (E)CLNL

calculus for which the !-endofunctor is parametrically algebraically compact.

Benton and Wadler point out that if C is symmetric monoidal closed, then algebraic compactness

of ! implies that it also is parametrically algebraically compact. Nevertheless, we include parametric

algebraic compactness in our definition to emphasize that this is exactly what is needed to interpret

recursion in our models.

If Φ ∈ C is an intuitionistic object, then the endofunctor Φ⊗!(−) is algebraically compact. Let

Φ⊗!ΩΦ
ωΦ−→ ΩΦ be its initial algebra and let m : Φ⊗!A → A be an arbitrary morphism. We define γΦ

and σm to be the unique anamorphism and catamorphism, respectively, such that the diagram in Figure 4

commutes. Using this notation, we extend the denotational semantics to interpret recursion by adding

the rule:

JΦ; /0 ⊢ rec x!A.m : AK := σJmK ◦ γJΦK.

Observe that when Φ = /0, we get:

Jrec x!A.mK = JmK◦!Jrec x!A.mK◦ lift = JmK◦ Jlift rec x!A.mK

which is precisely a linear fixpoint in the sense of Braüner [5].

Theorem 4.3. Theorems 3.5 – 3.9 from the previous section remain true for the (E)CLNL calculus ex-

tended with recursion.
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ΦΦ⊗ΦΦ⊗!Φ
∆id⊗ lift

Φ⊗!ΩΦ ΩΦ

ω−1
Φ

γΦid⊗!γΦ

ΩΦ

σm

Φ⊗!ΩΦ

A

ωΦ

Φ⊗!A

id⊗!σm

m

idid

Figure 4: Definition of σm and γΦ.

4.2 Concrete Models

Let CPO be the category of cpo’s (possibly without bottom) and Scott-continuous functions, and let

CPO⊥! be the category of pointed cpo’s and strict Scott-continuous functions.

We present a concrete model for an arbitrary symmetric monoidal M. Let M be the free CPO-

enrichment of M. Then M has the same objects as M and hom-cpo’s M (A,B) given by the hom-sets

M(A,B) equipped with the discrete order. M is then a CPO-symmetric monoidal category with the

same monoidal structure as M.

Let M⊥ be the free CPO⊥!-enrichment of M. Then, M⊥ has the same objects as M and hom-cpo’s

M⊥(A,B) = M (A,B)⊥, where (−)⊥ : C PO → CPO⊥! is the domain-theoretic lifting functor. M⊥

is then a CPO⊥!-symmetric monoidal category with the same monoidal structure as that of M where, in

addition, ⊥A,B satisfies the conditions of Proposition 4.7 (see Section 4.3 below).

By using the enriched Yoneda lemma together with the Day convolution monoidal structure, we see

that the enriched functor category [M
op
⊥ ,C PO⊥!] is CPO⊥!-symmetric monoidal closed.

Theorem 4.4. The following data:

MC PO M⊥[M op
⊥ ,C PO⊥!]

−⊙ I

[M op
⊥ ,C PO⊥!](I,−)

⊢

Y

is a sound model of the ECLNL calculus extended with recursion.

Proof. The subcategory inclusion M →֒M⊥ is CPO-enriched, faithful and strong symmetric monoidal,

as is the enriched Yoneda embedding Y . The CPO-copower (−⊙ I) is given by:

(−⊙ I) = (−• I)◦ (−)⊥,

where (−• I) : C PO⊥! → [M
op
⊥ ,C PO⊥!] is the CPO⊥!-copower with the tensor unit (see [4]). This

follows because the right adjoint and the adjunction factor through C PO⊥!. Parametrised algebraic

compactness of the !-endofunctor follows from [9, pp. 161-162].

Moreover, the concrete model enjoys a constructive property similar to the one in Subsection 3.3.

Using the same argument, if Φ; /0 ⊢ m : T ⊸U, then we obtain:

[M
op

⊥ ,C PO⊥!](JΦK,JT K ⊸ JUK)∼= C PO(X ,M⊥(JT KM,JUKM))
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Therefore, the interpretation of m corresponds to a Scott-continuous function from X to M⊥(JT KM,JUKM).
In other words, this is a family of string diagram computations, in the sense that every element is either

a string diagram of M or a non-terminating computation.

Theorem 4.5. The CLNL model CPO CPO⊥!

(−)⊥

⊢

U

, where U is the forgetful functor, is a

sound model for the CLNL calculus with recursion.

Proof. Again, parametrised algebraic compactness of the !-endofunctor follows from [9, pp. 161-162].

4.3 Computational adequacy

In this subsection we show that computational adequacy holds at intuitionistic types for the concrete

CLNL model given in the previous subsection.

We begin by showing that in any (E)CLNL model with recursion, the category C is pointed, which

allows us to introduce a notion of undefinedness. Towards that end, we first introduce a slightly weaker

notion, following Braüner [5].

Definition 4.6. A symmetric monoidal closed category is weakly pointed if it is equipped with a mor-

phism ⊥A: I → A for each object A, such that for every morphism h : A → B, we have h ◦ ⊥A=⊥B . In

this case, for each pair of objects A and B, there is a morphism ⊥A,B= A
λ−1

A−−→ I⊗A
uncurry(⊥A⊸B)
−−−−−−−−−→ B.

Proposition 4.7 ([5]). Let A be a weakly pointed category. Then:

1. f ◦ ⊥A,B=⊥A,C for each morphism f : B →C;

2. ⊥B,C ◦ f =⊥A,C for each morphism f : A → B;

3. ⊥A,B ⊗ f =⊥A⊗C,B⊗D for each morphism f : C → D.

4. f⊗⊥A,B=⊥C⊗A,D⊗B for each morphism f : C → D.

Lemma 4.8. Any weakly pointed category with an initial object 0 is pointed. Moreover, ⊥A=⊥I,A and

⊥A,B are zero morphisms.

Theorem 4.9. For every model of the (E)CLNL calculus with recursion, C is a pointed category with

⊥A= I
γI
−→ ΩI

σεA−−→ A,

where ΩI is the carrier of the initial algebra for the !-endofunctor.

Proof. It suffices to show for any h : A → B that h ◦ ⊥A=⊥B which follows from the naturality of ε and

initiality of σε .

In particular, we have: J /0; /0 ⊢ rec x!A.force x : AK =⊥JAK . Thus, the interpretation of the simplest

non-terminating program (of any type) is a zero morphism, as one would expect. Naturally, we use the

zero morphisms of C to denote undefinedness in our adequacy result.

Assume that C is CPO-enriched and that ⊥A,B is least in C (A,B). We shall use
∨

i ai to denote the

supremum of the increasing chain (ai)i∈N. For any Scott-continuous function K : C (A,B)→C (A,B), let

K0 =⊥A,B and Ki+1 = K(Ki), for i ∈ N. Then
∨

i Ki is the least fixpoint of K. Note that K isn’t strict in

general.
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Lemma 4.10. Consider an (E)CLNL model with recursion, where V = CPO and where ⊥A,B is least

in C (A,B), for all objects A and B (or equivalently C is CPO⊥!-enriched). Let m : Φ⊗!A → A be a

morphism in C. Let Km be the Scott-continuous function Km : C (Φ,A) → C (Φ,A) given by Km( f ) =
m◦ (id ⊗! f )◦ (id⊗ lift)◦∆. Then:

σm ◦ γΦ =
∨

i

Ki
m.

The significance of this lemma is that it provides an equivalent semantic definition for the (rec) rule

in terms of least fixpoints, provided we assume order-enrichment for our (E)CLNL models.

For the remainder of the section, we consider only the CLNL calculus which we interpret in the

CLNL model of Theorem 4.5. Therefore, in what follows C = CPO⊥!.

Lemma 4.11. Let /0 ⊢ v : P be a well-typed value, where P is an intuitionistic type. Then J /0 ⊢ v : PK 6=⊥ .

Next, we prove adequacy using the standard method based on formal approximation relations, a

notion first devised by Plotkin [15].

Definition 4.12. For any type A, let:

VA := {v | v is a value and /0 ⊢ v : A};

TA := {m | /0 ⊢ m : A}.

We define two families of formal approximation relations:

EA ⊆ (C(I,JAK)−{⊥})×VA

⊑A ⊆ C(I,JAK)×TA

by induction on the structure of A:

(A1) f EI ∗ iff f = idI ;

(A2.1) f EA+B left v iff ∃ f ′. f = left ◦ f ′ and f ′ EA v;

(A2.2) f EA+B right v iff ∃ f ′. f = right ◦ f ′ and f ′ EB v;

(A3) f EA⊗B 〈v,w〉 iff ∃ f ′, f ′′, such that:

f = f ′⊗ f ′′ ◦λ−1
I and f ′ EA v and f ′′ EB w;

(A4) f EA⊸B λx. m iff ∀ f ′ ∈ C(I,JAK),∀v ∈VA :

f ′ EA v ⇒ eval ◦ ( f ⊗ f ′)◦λ−1
I ⊑B m[v/x];

(A5) f E!A lift m iff f is an intuitionistic morphism and

εA ◦ f ⊑A m;

(B) f ⊑A m iff f 6=⊥⇒ ∃v ∈VA. m ⇓ v and f EA v.

So, the relation E relates morphisms to values and ⊑ relates morphisms to terms.

Lemma 4.13. If f EP v, where P is an intuitionistic type, then f is an intuitionistic morphism.

Lemma 4.14. For any m ∈ TA, the property (− ⊑A m) is admissible for the (pointed) cpo C (I,JAK) in

the sense that Scott fixpoint induction is sound.

Proof. One has to show ⊥ ⊑A m, which is trivial, and also that (−⊑A m) is closed under suprema of

increasing chains of morphisms, which is easily proven by induction on A.
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Proposition 4.15. Let Γ ⊢ m : A, where Γ = x1 : A1, . . . ,xn : An. Let vi ∈VAi
such that fi EAi

vi. If f is the

composition:

f := I
∼=
−→ I ⊗·· ·⊗ I

f1⊗···⊗ fn
−−−−−→ JΓK

JΓ⊢m:AK
−−−−−→ JAK,

then f ⊑A m[v / x].

Proof. By induction on the derivation of m. For the (rec) case, one should use Lemma 4.14 and Lemma 4.10.

Definition 4.16. We shall say that a well-typed term m terminates, in symbols m ⇓, iff there exists a

value v, such that m ⇓ v.

The next theorem establishes sufficient conditions for termination at any type.

Theorem 4.17 (Termination). Let /0 ⊢ m : A be a well-typed term. If J /0 ⊢ m : AK 6=⊥, then m ⇓ .

Proof. This is a special case of the previous proposition when Γ = /0. We get J /0 ⊢ m : AK⊑A m, and thus

m ⇓ by definition of ⊑A.

We can now finally state our adequacy result.

Theorem 4.18 (Adequacy). Let /0 ⊢ m : P be a well-typed term, where P is an intuitionistic type. Then:

m ⇓ iff J /0 ⊢ m : PK 6=⊥ .

Proof. The right-to-left direction follows from Theorem 4.17. The other direction follows from sound-

ness and Lemma 4.11.

The model of Theorem 4.5 was presented as an example by Benton and Wadler [1] for their LNL

calculus extended with recursion, however without stating an adequacy result. We have now shown that

it is computationally adequate at intuitionistic types for our CLNL calculus. We also note that the simple

proof is very similar to the classical proof of adequacy for PCF.

5 Conclusion and Future Work

We considered the CLNL calculus, which is a variant of Benton’s LNL calculus [2], and showed that

both calculi have the same categorical models. We then showed the CLNL calculus can be extended

with recursion in a simple way while still using the same categorical model as described by Benton and

Wadler [1]. Moreover, the CLNL calculus also can be extended with language features that turn it into

a lambda calculus for string diagrams, which we named the ECLNL calculus (originally Proto-Quipper-

M [18]). We next identified abstract models for ECLNL by considering the categorical enrichment

of LNL models. Our abstract approach allowed us to identify concrete models that are simpler than

those previously considered, and, moreover, it allowed us to extend the language with general recursion,

thereby solving an open problem posed by Rios and Selinger. The enrichment structure also made

it possible to easily establish the constructivity properties that one would expect to hold for a string

diagram description language. Finally, we proved an adequacy result for the CLNL calculus, which is

the diagram-free fragment of the ECLNL calculus.

For future work, we will consider extending ECLNL with dynamic lifting. In quantum comput-

ing, this would allow the language to execute quantum circuits and then use a measurement outcome to
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parametrize subsequent circuit generation. Another line of future work is to consider the introduction of

inductive/recursive datatypes. Our concrete models appear to have sufficient structure, so we believe this

could be achieved in the usual way. We will also investigate alternative proof strategies for establishing

computational adequacy (at intuitionistic types) for the ECLNL calculus. Finally, we are interested in ex-

tending the language with dependent types. The original model of Proto-Quipper-M was defined in terms

of the Fam(−) construction and has the structure of a strict indexed symmetric monoidal category [23],

which suggests a potential approach for adding type dependency.
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