Étienne Miquey Équipe Gallinette INRIA, LS2N Nantes, France emiquey@inria.fr

#### Abstract

In a recent paper [12], Herbelin developed dPA<sup> $\omega$ </sup>, a calculus in which constructive proofs for the axioms of countable and dependent choices could be derived via the encoding of a proof of countable universal quantification as a stream of it components. However, the property of normalization (and therefore the one of soundness) was only conjectured. The difficulty for the proof of normalization is due to the simultaneous presence of dependent types (for the constructive part of the choice), of control operators (for classical logic), of coinductive objects (to encode functions of type  $\mathbb{N} \rightarrow A$  into streams  $(a_0, a_1, \ldots)$ ) and of lazy evaluation with sharing (for these coinductive objects).

Elaborating on previous works, we introduce in this paper a variant of dPA<sup> $\omega$ </sup> presented as a sequent calculus. On the one hand, we take advantage of a variant of Krivine classical realizability that we developed to prove the normalization of classical call-by-need [21]. On the other hand, we benefit from dL<sub> $\hat{p}$ </sub>, a classical sequent calculus with dependent types in which type safety is ensured by using delimited continuations together with a syntactic restriction [20]. By combining the techniques developed in these papers, we manage to define a realizability interpretation *à la* Krivine of our calculus that allows us to prove normalization and soundness.

*Keywords* Curry-Howard, dependent choice, classical arithmetic, side effects, dependent types, classical realizability, sequent calculus

# 1 Introduction

# 1.1 Realizing $AC_{\mathbb{N}}$ and DC in presence of classical logic

Dependent types are one of the key features of Martin-Löf's type theory [18], allowing formulas to refer to terms. Notably, the existential quantification rule is defined so that a proof term of type  $\exists x^{A}.B$  is a pair (t, p) where t—the *witness*—is of type A, while p—the *proof*—is of type B[t/x]. Dually, the theory enjoys two elimination rules: one with a destructor wit to extract the witness, the second one with a destructor prf to extract the proof. This allows for a simple and constructive proof of the full axiom of choice [18]:

$$\begin{array}{rcl} AC_A & := & \lambda H.(\lambda x. \operatorname{wit}(Hx), \lambda x. \operatorname{prf}(Hx)) \\ & : & (\forall x^A. \exists y^B. P(x,y)) \to \exists f^{A \to B}. \forall x^A. P(x,f(x)) \end{array}$$

This term is nothing more that an implementation of Brouwer-Heyting-Kolomogoroff interpretation of the axiom of choice [13]: given a proof H of  $\forall x^A . \exists y^B . P(x, y)$ , it constructs a choice function which simply maps any x to the witness of Hx, while the proof that this function is sound w.r.t. P returns the corresponding certificate.

Yet, this approach deeply relies on the constructivity of the theory. We present here a continuation of Herbelin's works [12], who proposed a way of scaling up Martin-Löf's proof to classical logic. The first idea is to restrict the dependent types to the fragment of *negative-elimination-free* proofs (NEF) which, intuitively, only contains constructive proofs behaving as values. The second idea is to represent a countable universal quantification as an infinite conjunction. This allows us to internalize into a formal system (called dPA<sup> $\omega$ </sup>) the realizability approach [2, 10] as a direct proofsas-programs interpretation.

Informally, let us imagine that given a proof  $H : \forall x^{\mathbb{N}} \exists y^{B}.P(x, y)$ , we could create the infinite sequence  $H_{\infty} = (H0, H1, ...)$  and select its  $n^{\text{th}}$ -element with some function nth. Then, one might wish that:

$$\lambda H.(\lambda n. wit (nth n H_{\infty}), \lambda n. prf (nth n H_{\infty}))$$

could stand for a proof for  $AC_{\mathbb{N}}$ . One problem is that even if we were effectively able to build such a term,  $H_{\infty}$  might still contain some classical proofs. Therefore, two copies of Hn might end up behaving differently according to the contexts in which they are executed, and thus returning two different witnesses (which is known to lead to logical inconsistencies [11]). This problem can be fixed by using a shared version of  $H_{\infty}$ , that is to say:

 $\lambda H$ . let  $a = H_{\infty}$  in  $(\lambda n.$  wit (nth n a),  $\lambda n.$  prf (nth n a).

In words, the term  $H_{\infty}$  is now shared between all the places which may require some of its components.

It only remains to formalize the intuition of  $H_{\infty}$ , which is done by means of a stream  $\operatorname{cofix}_{fn}^0[(Hn, f(S(n)))]$  iterated on f with parameter n, starting with 0:

$$\begin{split} AC_{\mathbb{N}} &:= \lambda H. \texttt{let} \ a = \texttt{cofix}_{fn}^0[(Hn, f(S(n))] \\ & \texttt{in} \ (\lambda n. \texttt{wit} \ (\texttt{nth} \ n \ a), \lambda n. \texttt{prf} \ (\texttt{nth} \ n \ a) \end{split}$$

The stream is, at the level of formulas, an inhabitant of a coinductively defined infinite conjunction  $v_{Xn}^0(\exists y.P(n, y)) \land X(n+1)$ . Since we cannot afford to pre-evaluate each of its components, and we thus have to use a *lazy* call-by-value evaluation discipline. However, it still might be responsible for some non-terminating reductions, all the more as classical proofs may contain backtrack.

#### **1.2** Normalization of $dPA^{\omega}$

In [12], the property of normalization (on which relies the one of consistency) was only conjectured, and the proof sketch that was given turned out to be hard to formalize properly. Our first attempt to prove the normalization of  $dPA^{\omega}$  was to derive a continuation-passing style translation (CPS), but translations appeared to be hard to obtain for  $dPA^{\omega}$  as such. In addition to the difficulties caused by control operators and co-fixpoints,  $dPA^{\omega}$  reduction system is defined in a natural deduction fashion, with contextual rules where the contexts involved can be of arbitrary depth. This kind of rules are indeed difficult to faithfully translate through a CPS.

Rather than directly proving the normalization of dPA $^{\omega}$ , we choose to first give an alternative presentation of the system under

This is an extended version of LICS 2018 paper.

the form of a sequent calculus, which we call  $dLPA^{\omega}$ . Indeed, sequent calculus presentations of a calculus usually provides good intermediate steps for CPS translations [9, 22, 23] since they enforce a decomposition of the reduction system into finer-grain rules. To this aim, we first handled separately the difficulties peculiar to the definition of such a calculus: on the one hand, we proved with Herbelin the normalization of a calculus with control operators and lazy evaluation [21]; on the other hand, we defined a classical sequent calculus with dependent types [20]. By combining the techniques developed in these frameworks, we finally manage to define  $dLPA^{\omega}$ , which we present here and prove to be normalizing.

#### 1.3 Realizability interpretation of classical call-by-need

In the call-by-need evaluation strategy, the substitution of a variable is delayed until knowing whether the argument is needed. To this end, Ariola *et al.* [1] proposed the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus, a variant of Curien-Herbelin's  $\lambda\mu\mu$ -calculus [7] in which substitutions are stored in an explicit environment. Thanks to Danvy's methodology of semantics artifacts [8], which consists in successively refining the reduction system until getting context-free reduction rules<sup>1</sup>, they obtained an untyped CPS translation for the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus. By pushing one step further this methodology, we showed with Herbelin how to obtain a realizability interpretation *à la* Krivine for this framework [21]. The main idea, in contrast to usual models of Krivine realizability [15], is that realizers are defined as pairs of a term and a substitution. The adequacy of the interpretation directly provided us with a proof of normalization, and we shall follow here the same methodology to prove the normalization of dLPA<sup>\varphi</sup>.

#### 1.4 A sequent calculus with dependent types

While sequent calculi are naturally tailored to smoothly support CPS interpretations, there was no such presentation of language with dependent types compatible with a CPS. In addition to the problem of safely combining control operators and dependent types [11], the presentation of a dependently typed language under the form of a sequent calculus is a challenge in itself. In [20], we introduced lus with classical control and dependent types. In comparison with usual type systems, we decorated typing derivations with a list of dependencies to ensure subject reduction. Besides, the soundness of the calculus was justified by means of a CPS translation taking the dependencies into account. The very definition of the translation constrained us to use delimited continuations in the calculus when reducing dependently typed terms. At the same time, this unveiled the need for the syntactic restriction of dependencies to the negative-elimination-free fragment as in [12]. Additionally, we showed how to relate our calculus to a similar system by Lepigre [17], whose consistency is proved by means of a realizability interpretation. In the present paper, we use the same techniques, namely a list of dependencies and delimited continuations, to ensure the soundness of  $dLPA^{\omega}$ , and we follow Lepigre's interpretation of dependent types for the definition of our realizability model.

# 1.5 Contributions of the paper

The main contributions of this paper can be stated as follows. First, we define dLPA<sup> $\omega$ </sup> (Section 2), a sequent calculus with classical control, dependent types, inductive and coinductive fixpoints and lazy evaluation made available thanks to the presence of stores. This calculus can be seen as a sound combination of dL<sub> $\hat{\mathbf{p}}$ </sub> [20] and the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus [1, 21] extended with the expressive power of dPA<sup> $\omega$ </sup> [12]. Second, we prove the properties of normalization and soundness for dLPA<sup> $\omega$ </sup> thanks to a realizability interpretation  $\dot{a} \, la$  Krivine, which we obtain by applying Danvy's methodology of semantic artifacts (Sections 3 and 4). Lastly, dLPA<sup> $\omega$ </sup> incidentally provides us with a direct proofs-as-programs interpretation of classical arithmetic with dependent choice, as sketched in [12].

This paper is partially taken from the Chapter 8 of the author's PhD thesis [19]. For more detailed proofs, we refer the reader to the different appendices.

# 2 A sequent calculus with dependent types for classical arithmetic

# 2.1 Syntax

The language of dLPA<sup> $\omega$ </sup> is based on the syntax of dL<sub> $\hat{tp}$ </sub> [20], extended with the expressive power of dPA<sup> $\omega$ </sup> [12] and with explicit stores as in the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus [1]. We stick to a stratified presentation of dependent types, that is to say that we syntactically distinguish terms—that represent *mathematical objects*—from proof terms—that represent *mathematical proofs*. In particular, types and formulas are separated as well, matching the syntax of dPA<sup> $\omega$ </sup>'s formulas. Types are defined as finite types with the set of natural numbers as the sole ground type, while formulas are inductively built on atomic equalities of terms, by means of conjunctions, disjunctions, first-order quantifications, dependent products and co-inductive formulas:

**Types**  
**Formulas**  

$$T, U ::= \mathbb{N} | T \to U$$
  
**Formulas**  
 $A, B ::= \top | \bot | t = u | A \land B | A \lor B$   
 $| \Pi a : A.B | \forall x^T.A | \exists x^T.A | v_{x, f}^tA$ 

The syntax of terms is identical to the one in  $dPA^{\omega}$ , including functions  $\lambda x.t$  and applications tu, as well as a recursion operator  $\operatorname{rec}_{xy}^{t}[t_0 \mid t_S]$ , so that terms represent objects in arithmetic of finite types. As for proof terms (and contexts, commands), they are now defined with all the expressiveness of  $dPA^{\omega}$ . Each constructor in the syntax of formulas is reflected by a constructor in the syntax of proofs and by the dual co-proof (i.e. destructor) in the syntax of evaluation contexts. Amongst other things, the syntax includes pairs (t, p) where t is a term and p a proof, which inhabit the dependent sum type  $\exists x^T A$ ; dual co-pairs  $\tilde{\mu}(x, a).c$  which bind the (term and proof) variables x and a in the command c; functions  $\lambda x.p$  inhabiting the type  $\forall x^T A$  together with their dual, stacks  $t \cdot e$  where *e* is a context whose type might be dependent in *t*; functions  $\lambda a.p$ which inhabit the dependent product type  $\Pi a : A.B$ , and, dually, stacks  $q \cdot e$ , where e is a context whose type might be dependent in q; a proof term refl which is the proof of atomic equalities t = t and a destructor  $\tilde{\mu}$ =. c which allows us to type the command c modulo an equality of terms; operators  $fix_{ax}^{t}[p_{0} | p_{S}]$  and  $cofix_{bx}^{t}[p]$ , as in  $dPA^{\omega}$ , for inductive and coinductive reasoning; delimited continuations through proofs  $\mu \hat{\mathbf{p}}.c_{\mathbf{p}}$  and the context  $\hat{\mathbf{p}}$ ; a distinguished context [] of type  $\perp$ , which allows us to reason ex-falso.

<sup>&</sup>lt;sup>1</sup>That is to say reduction rules in an abstract machine for which only the term or the context needs to be analyzed in order to decide whether the rule can be applied.

| Closures<br>Commands        | $l ::= c\tau$ $c ::= \langle p \  e \rangle$                                                                                                                                                                                                                                                                                                                    | Stores<br>Storables             | $\tau ::= \varepsilon \mid \tau[a := p_{\tau}] \mid \tau[\alpha := e]$ $p_{\tau} ::= V \mid fix_{ax}^{V_t}[p_0 \mid p_S] \mid cofix_{bx}^{V_t}[p]$                                                                                                                                                                                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proof terms<br>Proof values | $\begin{array}{l} p,q ::= a \mid \iota_{i}(p) \mid (p,q) \mid (t,p) \mid \lambda x.p \mid \lambda a.p \mid refl \\ \mid \; fix_{ax}^{t}[p_{0} \mid p_{S}] \mid cofix_{bx}^{t}[p] \mid \mu a.c \mid \mu \mathbf{\hat{p}}.c_{\mathbf{\hat{p}}} \\ V \; ::= a \mid \iota_{i}(V) \mid (V,V) \mid (V_{t},V) \mid \lambda x.p \mid \lambda a.p \mid refl \end{array}$ | Contexts<br>Forcing<br>contexts | $\begin{array}{l} e & ::= f \mid \alpha \mid \tilde{\mu}a.c\tau \\ f & ::= [] \mid \tilde{\mu}[a_1.c_1 \mid a_2.c_2] \mid \tilde{\mu}(a_1,a_2).c \\ & \mid \tilde{\mu}(x,a).c \mid t \cdot e \mid p \cdot e \mid \tilde{\mu}=.c \end{array}$                                                                                                                                                                           |
| Terms<br>Terms values       | $\begin{split} t, u &::= x \mid 0 \mid S(t) \mid rec_{xy}^t[t_0 \mid t_S] \mid \lambda x.t \mid t \; u \mid wit \; p \\ V_t &::= x \mid S^n(0) \mid \lambda x.t \end{split}$                                                                                                                                                                                    | Delimited<br>continuations      | $ \begin{aligned} c_{\hat{\mathfrak{p}}} &::= \langle p_N \  e_{\hat{\mathfrak{p}}} \rangle \mid \langle p \  \hat{\mathfrak{p}} \rangle \\ e_{\hat{\mathfrak{p}}} &::= \tilde{\mu} a. c_{\hat{\mathfrak{p}}} \tau \mid \tilde{\mu} [a_1.c_{\hat{\mathfrak{p}}} \mid a_2.c_{\hat{\mathfrak{p}}}'] \\ \mid \tilde{\mu} (a_1, a_2).c_{\hat{\mathfrak{p}}} \mid \tilde{\mu} (x, a).c_{\hat{\mathfrak{p}}} \end{aligned} $ |
|                             | $ \begin{array}{l} ::= \langle p_N \  e_N \rangle \qquad e_N ::= \star \mid \tilde{\mu}[a_1.c_N \mid a_2.c'_N] \mid \tilde{\mu}a.c \\ ::= a \mid \iota_i(p_N) \mid (p_N, q_N) \mid (t, p_N) \mid \lambda x.p \mid \lambda a.p \mid refl \mid f \end{array} $                                                                                                    |                                 | $  \tilde{\mu}(x, a).c_N$                                                                                                                                                                                                                                                                                                                                                                                              |

**Figure 1.** The language of  $dLPA^{\omega}$ 

As in dL<sub> $\hat{\mathfrak{p}}$ </sub>, the syntax of NEF proofs, contexts and commands is defined as a restriction of the previous syntax. Technically, they are defined (modulo  $\alpha$ -conversion) with only one distinguished context variable  $\star$  (and consequently only one binder  $\mu \star .c$ ), and without stacks of the shape  $t \cdot e$  or  $q \cdot e$  (to avoid applications). Intuitively, one can understand NEF proofs as the proofs that cannot drop their continuation<sup>2</sup>. The commands  $c_{\hat{\mathfrak{p}}}$  within delimited continuations are defined as commands of the shape  $\langle p \| \hat{\mathfrak{p}} \rangle$  or formed by a NEF proof and a context of the shape  $\tilde{\mu}a.c_{\hat{\mathfrak{p}}}\tau$ ,  $\tilde{\mu}[a_1.c_{\hat{\mathfrak{p}}}|a_2.c'_{\hat{\mathfrak{p}}}]$ ,  $\tilde{\mu}(a_1, a_2).c_{\hat{\mathfrak{p}}}$  or  $\tilde{\mu}(x, a).c_{\hat{\mathfrak{p}}}$ .

We adopt a call-by-value evaluation strategy except for fixpoint operators<sup>3</sup>, which are evaluated in a lazy way. To this purpose, we use *stores*<sup>4</sup> in the spirit of the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, which are defined as lists of bindings of the shape [a := p] where p is a value or a (co-)fixpoint, and of bindings of the shape  $[\alpha := e]$  where e is any context. We assume that each variable occurs at most once in a store  $\tau$ , we thus reason up to  $\alpha$ -reduction and we assume the capability of generating fresh names. Apart from evaluation contexts of the shape  $\mu a.c$  and co-variables  $\alpha$ , all the contexts are *forcing contexts* which eagerly require a value to be reduced and trigger the evaluation of lazily stored terms. The resulting language is given in Figure 1.

#### 2.2 Reduction rules

The reduction system of dLPA<sup> $\omega$ </sup> is given in Figure 2. The basic rules are those of the call-by-value  $\lambda\mu\tilde{\mu}$ -calculus and of dL<sub> $\hat{\psi}$ </sub>. The rules for delimited continuations are exactly the same as in dL<sub> $\hat{\psi}$ </sub>, except that we have to prevent  $\hat{\psi}$  from being caught and stored by a proof  $\mu\alpha.c$ . We thus distinguish two rules for commands of the shape  $\langle \mu\alpha.c \| e \rangle$ , depending on whether *e* is of the shape  $e_{\hat{\psi}}$  or not. In the former case, we perform the substitution  $[e_{\hat{\psi}}/\alpha]$ , which is linear since  $\mu\alpha.c$  is necessarily NEF. We should also mention in passing that we abuse the syntax in every other rules, since *e* should actually refer to *e* or  $e_{\psi}$  (or the reduction of delimited continuations would be stuck). Elimination rules correspond to commands where the proof is a constructor (say of pairs) applied to values, and where the context is the matching destructor. Call-by-value rules correspond to ( $\varsigma$ ) rule of Wadler's sequent calculus [26]. The next rules express the fact that (co-)fixpoints are lazily stored, and reduced only if their value is eagerly demanded by a forcing context. Lastly, terms are reduced according to the usual  $\beta$ -reduction, with the operator rec computing with the usual recursion rules. It is worth noting that the stratified presentation allows to define the reduction of terms as external: within proofs and contexts, terms are reduced in place. Consequently, as in dL<sub> $\hat{p}$ </sub> the very same happen for NEF proofs embedded within terms. Computationally speaking, this corresponds indeed to the intuition that terms are reduced on an external device.

#### 2.3 Typing rules

As often in Martin-Löf's intensional type theory, formulas are considered up to equational theory on terms. We denote by  $A \equiv B$  the reflexive-transitive-symmetric closure of the relation  $\triangleright$  induced by the reduction of terms and NEF proofs as follows:

$$\begin{array}{lll} A[t] & \triangleright & A[t'] & \text{whenever} & t \to_{\beta} t' \\ A[p] & \triangleright & A[q] & \text{whenever} & \forall \alpha \left( \langle p \| \alpha \rangle \to \langle q \| \alpha \rangle \right) \end{array}$$

in addition to the reduction rules for equality and for coinductive formulas:

We work with one-sided sequents where typing contexts are defined by:

$$\Gamma, \Gamma' ::= \varepsilon \mid \Gamma, x : T \mid \Gamma, a : A \mid \Gamma, \alpha : A^{\perp} \mid \Gamma, \hat{\mathfrak{p}} : A^{\perp}$$

using the notation  $\alpha : A^{\perp}$  for an assumption of the refutation of *A*. This allows us to mix hypotheses over terms, proofs and contexts while keeping track of the order in which they are added (which is necessary because of the dependencies). We assume that a variable occurs at most once in a typing context.

We define nine syntactic kinds of typing judgments:  $\sin^5$  in regular mode, that we write  $\Gamma \vdash^{\sigma} J$ , and three<sup>6</sup> more for the dependent mode, that we write  $\Gamma \vdash_{d} J$ ;  $\sigma$ . In each case,  $\sigma$  is a list of dependencies—we explain the presence of a list of dependencies in

<sup>&</sup>lt;sup>2</sup>See [20] for further details.

<sup>&</sup>lt;sup>3</sup>To highlight the duality between inductive and coinductive fixpoints, we evaluate both in a lazy way. Even though this is not indispensable for inductive fixpoints, we find this approach more natural in that we can treat both in a similar way in the small-step reduction system and thus through the realizability interpretation.

<sup>&</sup>lt;sup>4</sup>Our so-called *stores* somewhat behave like lazy explicit substitutions or mutable environments. See [21] for a discussion on this point.

<sup>&</sup>lt;sup>5</sup>For terms, proofs, contexts, commands, closures and stores.<sup>6</sup>For contexts, commands and closures.

| Basic rules $\langle \lambda x.p \  V_t \cdot e \rangle \tau \rightarrow \langle p [V_t/x] \  e \rangle \tau$ $(q \in \text{NEF})$ $\langle \lambda a.p \  q \cdot e \rangle \tau \rightarrow \langle \mu \hat{\mathfrak{p}}. \langle q \  \tilde{\mu} a. \langle p \  \hat{\mathfrak{p}} \rangle \rangle \  e \rangle \tau$ $(q \notin \text{NEF})$ $\langle \lambda a.p \  q \cdot e \rangle \tau \rightarrow \langle q \  \tilde{\mu} a. \langle p \  e \rangle \rangle \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Delimited continuations<br>(if $c\tau \to c\tau'$ ) $\langle \mu \hat{\mathfrak{p}}.c \  e \rangle \tau \to \langle \mu \hat{\mathfrak{p}}.c \  e \rangle \tau'$<br>$\langle \mu \alpha.c \  e_{\hat{\mathfrak{p}}} \rangle \tau \to c [e_{\hat{\mathfrak{p}}} / \alpha] \tau$<br>$\langle \mu \hat{\mathfrak{p}}.\langle p \  \hat{\mathfrak{p}} \rangle \  e \rangle \tau \to \langle p \  e \rangle \tau$                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(e \neq e_{\hat{\mathfrak{p}}}) \qquad \langle \mu \alpha. c \  e \rangle \tau \to c\tau[\alpha := e] \\ \langle V \  \tilde{\mu} a. c\tau' \rangle \tau \to c\tau[a := V] \tau'$ Elimination rules $\langle \iota_i(V) \  \tilde{\mu}[a_1.c_1 \mid a_2.c_2] \rangle \tau \to c_i \tau[a_i := V]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Call-by-value(a fresh) $\langle \iota_i(p) \  e \rangle \tau \rightarrow \langle p \  \tilde{\mu} a. \langle \iota_i(a) \  e \rangle \rangle \tau$ $(a_1, a_2 \text{ fresh})$ $\langle (p_1, p_2) \  e \rangle \tau \rightarrow \langle p_1 \  \tilde{\mu} a_1. \langle p_2 \  \tilde{\mu} a_2. \langle (a_1, a_2) \  e \rangle \rangle \rangle \tau$ $(a \text{ fresh})$ $\langle (V_t, p) \  e \rangle \tau \rightarrow \langle p \  \tilde{\mu} a. \langle (V_t, a) \  e \rangle \rangle \tau$ |
| $ \begin{split} &\langle (V_1, V_2) \  \tilde{\mu}(a_1, a_2).c \rangle \tau \to c\tau [a_1 := V_1] [a_2 := V_2] \\ &\langle (V_t, V) \  \tilde{\mu}(x, a).c \rangle \tau \to (c[t/x]) \tau [a := V] \\ &\langle refl \  \tilde{\mu} = .c \rangle \tau \to c\tau \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laziness<br>(a fresh) $\langle \operatorname{cofix}_{b_{X}}^{V_{t}}[p] \  e \rangle \tau \rightarrow \langle a \  e \rangle \tau[a := \operatorname{cofix}_{b_{X}}^{V_{t}}[p]]$<br>(a fresh) $\langle \operatorname{fix}_{b_{X}}^{V_{t}}[p_{0}   p_{S}] \  e \rangle \tau \rightarrow \langle a \  e \rangle \tau[a := \operatorname{fix}_{b_{X}}^{V_{t}}[p_{0}   p_{S}]]$                                                                                                                        |
| Lookup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \rightarrow \langle V \  e \rangle \tau[\alpha := e] \tau'  \rightarrow \langle V \  a \rangle \tau[a := V] \tau' $                                                                                                                                                                                                                                                                                                                                                                             |
| $(b' \text{ fresh}) \qquad \langle a \  f \rangle \tau[a := \operatorname{cofix}_{bx}^{V_t}[p]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \rangle \tau[a := \operatorname{fix}_{bx}^0[p_0 p_S]] \tau' \cdot \langle a \  f \  f \  f \  \tau \  f \  f \  \tau \  f \  f \  f$ | $ \rightarrow \langle p[V_t/x][b'/b] \  \tilde{\mu}a. \langle a \  f \rangle \tau' \rangle \tau[b' := \lambda y. \operatorname{cofix}_{bx}^{y}[p]]  \rightarrow \langle p_0 \  \tilde{\mu}a. \langle a \  f \rangle \tau' \rangle \tau $                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\rightarrow \langle p_S[t/x][b'/b] \  \tilde{\mu} a. \langle a \  f \rangle \tau' \rangle \tau[b' := \texttt{fix}_{bx}^t[p_0   p_S]]$                                                                                                                                                                                                                                                                                                                                                            |
| Terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{ll} (\mathrm{if} \ t \longrightarrow_{\beta} \ t') & T[t]\tau \ \to \ T[t']\tau \\ (\forall \alpha, \langle p \  \alpha \rangle \tau \rightarrow \langle (t, p') \  \alpha \rangle \tau) & T[\mathrm{wit} \ p]\tau \longrightarrow_{\beta} T[t] \\ & (\lambda x.t)V_t \longrightarrow_{\beta} t[V_t/x] \\ & \mathrm{rec}_{xy}^{O}[t_0   \ t_S] \longrightarrow_{\beta} t_0 \\ & \mathrm{rec}_{xy}^{S(u)}[t_0   \ t_S] \longrightarrow_{\beta} t_S[u/x][t_0] \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} \text{where:} \\ C_t[] ::= \langle ([],p) \  e \rangle \mid \langle \texttt{fix}_{ax}^{[]}[p_0 \mid p_S] \  e \rangle \\ \mid \langle \texttt{cofix}_{bx}^{[]}[p] \  e \rangle \mid \langle \lambda x.p \  [] \cdot e \rangle \\ T[] ::= C_t[] \mid T[[]u] \mid T[\texttt{rec}_{xy}^{[]}[t_0 \mid t_S]] \end{array} $                                                                                                                                                          |

**Figure 2.** Reduction rules of  $dLPA^{\omega}$ 

each case thereafter—, which are defined from the following grammar:

$$\sigma ::= \varepsilon \mid \sigma\{p|q\}$$

The substitution on formulas according to a list of dependencies  $\sigma$  is defined by:

$$\varepsilon(A) \triangleq \{A\} \qquad \qquad \sigma\{p|q\}(A) \triangleq \begin{cases} \sigma(A[q/p]) & \text{if } q \in \text{NEF} \\ \sigma(A) & \text{otherwise} \end{cases}$$

Because the language of proof terms include constructors for pairs, injections, etc, the notation A[q/p] does not refer to usual substitutions properly speaking: p can be a pattern (for instance  $(a_1, a_2)$ ) and not only a variable.

We shall attract the reader's attention to the fact that all typing judgments include a list of dependencies. Indeed, as in the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, when a proof or a context is caught by a binder, say V and  $\mu a$ , the substitution [V/a] is not performed but rather put in the store:  $\tau[a := V]$ . Now, consider for instance the reduction of a dependent function  $\lambda a.p$  (of type  $\Pi a : A.B$ ) applied to a stack  $V \cdot e^7$ :

$$\begin{split} \langle \lambda a.p \| V \cdot e \rangle \tau &\to \langle \mu \hat{\mathfrak{p}}. \langle V \| \tilde{\mu} a. \langle p \| \hat{\mathfrak{p}} \rangle \rangle \| e \rangle \tau \\ &\to \langle \mu \hat{\mathfrak{p}}. \langle p \| \hat{\mathfrak{p}} \rangle \| e \rangle \tau [a := V] \to \langle p \| e \rangle \tau [a := V] \end{split}$$

Since *p* still contains the variable *a*, whence his type is still B[a], whereas the type of *e* is B[V]. We thus need to compensate the missing substitution<sup>8</sup>.

We are mostly left with two choices. Either we mimic the substitution in the type system, which would amount to the following typing rule:

$$\begin{array}{c|c} & \underline{\Gamma, \Gamma' \vdash \tau(c) \quad \Gamma \vdash \tau : \Gamma'} \\ \hline & \Gamma \vdash c\tau \end{array}$$
where:  

$$\tau[\alpha := e](c) \triangleq \tau(c) \qquad \tau[a := p](c) \triangleq \tau(c) \qquad (p \in \text{NEF}) \\ \tau[a := p](c) \triangleq \tau(c) \qquad (p \notin \text{NEF}) \end{array}$$

Or we type stores in the spirit of the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, and we carry along the derivations all the bindings liable to be used in types, which constitutes again a list of dependencies.

The former solution has the advantage of solving the problem before typing the command, but it has the flaw of performing computations which would not occur in the reduction system. For instance, the substitution  $\tau(c)$  could duplicate co-fixpoints (and their typing derivations), which would never happen in the calculus. That is the reason why we favor the other solution, which is closer to the calculus in our opinion. Yet, it has the drawback that it forces us to carry a list of dependencies even in regular mode. Since this list is fixed (it does not evolve in the derivation except

<sup>&</sup>lt;sup>7</sup>We refer the reader to [20] for detailed explanations on this rule.

<sup>&</sup>lt;sup>8</sup>On the contrary, the reduced command in  $dL_{\hat{\mathfrak{b}}}$  would have been  $\langle p[V/a] || e \rangle$ , which is typable with the (CUT) rule over the formula B[V/a].

| Regular types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\Gamma \vdash^{\sigma} p : A  \Gamma \vdash^{\sigma} e : B^{\perp}  \sigma(A) = \sigma(B)}{\Gamma \vdash^{\sigma} \langle p \  e \rangle}  (Cur) \qquad \frac{\Gamma, \Gamma' \vdash^{\sigma\sigma'} c  \Gamma \vdash^{\sigma} \tau : (\Gamma'; \sigma')}{\Gamma \vdash c\tau}  (l) \qquad \frac{\Gamma \vdash^{\sigma} \tau : (\Gamma'; \sigma')  \Gamma, \Gamma' \vdash^{\sigma\sigma'} p : A}{\Gamma \vdash^{\sigma} \tau [a := p] : (\Gamma', a : A; \sigma' \{a   p\})}  (\tau_p)$                                                                                                                                                                                      |
| $\Gamma \vdash \sigma  \langle p \  e \rangle \qquad \qquad \Gamma \vdash c\tau \qquad \qquad \Gamma \vdash \sigma  \tau[a := p] : (\Gamma', a : A; \sigma'\{a p\})  \langle P \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{(a:A) \in \Gamma}{\Gamma \vdash^{\sigma} a:A} (Ax_{r}) \qquad \frac{(\alpha:A^{\perp}) \in \Gamma}{\Gamma \vdash^{\sigma} \alpha:A^{\perp}} (Ax_{l}) \qquad \frac{\Gamma, \alpha:A^{\perp} \vdash^{\sigma} c}{\Gamma \vdash^{\sigma} \mu \alpha. c:A} (\mu) \qquad \frac{\Gamma \vdash^{\sigma} \tau: (\Gamma'; \sigma')  \Gamma, \Gamma' \vdash^{\sigma\sigma'} \alpha:A^{\perp}}{\Gamma \vdash^{\sigma} \tau[\alpha:=e]: (\Gamma', \alpha:A^{\perp}; \sigma')} (\tau_{e})$                                                                                                                                                                                                 |
| $\frac{\Gamma, a: A \vdash^{\sigma} c\tau}{\Gamma \vdash^{\sigma} \tilde{\mu} a. c\tau: A^{\perp \perp}}(\tilde{\mu}) \qquad \frac{\Gamma \vdash^{\sigma} p_{1}: A  \Gamma \vdash^{\sigma} p_{2}: B}{\Gamma \vdash^{\sigma} (p_{1}, p_{2}): A \land B}(\land_{r}) \qquad \frac{\Gamma, a_{1}: A_{1}, a_{2}: A_{2} \vdash^{\sigma} c}{\Gamma \vdash^{\sigma} \tilde{\mu}(a_{1}, a_{2}).c: (A_{1} \land A_{2})^{\perp \perp}}(\land_{l}) \qquad \frac{\Gamma \vdash^{\sigma} p: A_{i}}{\Gamma \vdash^{\sigma} \iota_{i}(p): A_{1} \lor A_{2}}(\lor_{r})$                                                                                                                              |
| $\frac{\Gamma, a_1 : A_1 \vdash^{\sigma} c_1  \Gamma, a_2 : A_2 \vdash^{\sigma} c_2}{\Gamma \vdash^{\sigma} \tilde{\mu}[a_1.c_1 \mid a_2.c_2] : (A_1 \lor A_2)^{\perp}} (\lor_l) \qquad \frac{\Gamma \vdash^{\sigma} p : A[t/x]  \Gamma \vdash^{\sigma} t : T}{\Gamma \vdash^{\sigma} (t, p) : \exists x^T.A} (\exists_r) \qquad \frac{\Gamma, x : T, a : A \vdash^{\sigma} c}{\Gamma \vdash^{\sigma} \tilde{\mu}(x, a).c : (\exists x^T.A)^{\perp}} (\exists_l) = \frac{\Gamma \cdot f^T (x)}{\Gamma \vdash^{\sigma} (t, p) : \exists x^T.A} (\exists_r)$                                                                                                                          |
| $\frac{\Gamma, x: T \vdash^{\sigma} p: A}{\Gamma \vdash^{\sigma} \lambda x. p: \forall x^{T}. A} \ (\forall_{r}) \qquad \frac{\Gamma \vdash^{\sigma} t: T  \Gamma \vdash^{\sigma} e: A[t/x]^{\perp}}{\Gamma \vdash^{\sigma} t \cdot e: (\forall x^{T}. A)^{\perp}} \ (\forall_{l}) \qquad \frac{\Gamma \vdash^{\sigma} t: \mathbb{N}}{\Gamma \vdash^{\sigma} \operatorname{refl}: t = t} \ \operatorname{refl} \qquad \frac{\Gamma \vdash^{\sigma} p: A  \Gamma \vdash^{\sigma} e: A[u/t]}{\Gamma \vdash^{\sigma} \tilde{\mu}: \langle p \  e \rangle: (t = u)^{\perp}} \ (=_{l})$                                                                                                  |
| $\frac{\Gamma, a: A \vdash^{\sigma} p: B}{\Gamma \vdash^{\sigma} \lambda a. p: \Pi a: A.B} (\rightarrow_{r}) \qquad \frac{\Gamma \vdash^{\sigma} q: A  \Gamma \vdash^{\sigma} e: B[q/a]^{\perp}  \text{if } q \notin \text{NEF then } a \notin A}{\Gamma \vdash^{\sigma} q \cdot e: (\Pi a: A.B)^{\perp}} (\rightarrow_{l})$                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{\Gamma \vdash^{\sigma} p : A  A \equiv B}{\Gamma \vdash^{\sigma} p : B} \ (\equiv_{r}) \qquad \frac{\Gamma \vdash^{\sigma} e : A^{\perp}  A \equiv B}{\Gamma \vdash^{\sigma} e : B^{\perp}} \ (\equiv_{l}) \qquad \frac{\Gamma \vdash^{\sigma} t : \mathbb{N}  \Gamma \vdash^{\sigma} p_{0} : A[0/x]  \Gamma, x : T, a : A \vdash^{\sigma} p_{S} : A[S(x)/x]}{\Gamma \vdash^{\sigma} \text{fix}_{ax}^{t}[p_{0} \mid p_{S}] : A[t/x]} \ (\text{fix})$                                                                                                                                                                                                                         |
| $\frac{\Gamma \vdash^{\sigma} t: T  \Gamma, f: T \to \mathbb{N}, x: T, b: \forall y^{T}. f(y) = 0 \vdash^{\sigma} p: A  f \text{ positive in } A}{\Gamma \vdash^{\sigma} \operatorname{cofix}_{bx}^{t}[p]: v_{fx}^{t}A}  (\operatorname{cofix})$                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} \textbf{Dependent mode} \\ \underline{\Gamma, \Gamma' \vdash_d c_{\hat{\mathfrak{p}}}; \sigma\sigma'  \Gamma \vdash^{\sigma} \tau : (\Gamma'; \sigma')}}{\Gamma \vdash_d c_{\hat{\mathfrak{p}}} \tau; \sigma} (l^d) \\ \end{array} \qquad \qquad \frac{\Gamma, \Gamma' \vdash^{\sigma} p : A  \Gamma, \hat{\mathfrak{p}} : B^{\perp}, \Gamma' \vdash_d e : A^{\perp}; \sigma\{\cdot   p\}}{\Gamma, \hat{\mathfrak{p}} : B^{\perp}, \Gamma' \vdash_d \langle p \  e \rangle; \sigma} (Cur^d) \\ \end{array} $                                                                                                                                                     |
| $\frac{\Gamma, \hat{\mathfrak{p}}: A^{\perp} \vdash_{d} c_{\hat{\mathfrak{p}}}; \sigma}{\Gamma \vdash^{\sigma} \mu \hat{\mathfrak{p}}. c_{\hat{\mathfrak{p}}}: A} \ (\mu \hat{\mathfrak{p}}) \qquad \frac{\sigma(A) = \sigma(B)}{\Gamma, \hat{\mathfrak{p}}: A^{\perp}, \Gamma' \vdash_{d} \hat{\mathfrak{p}}: B^{\perp}; \sigma\{\cdot p\}} \ (\hat{\mathfrak{p}}) \qquad \frac{\Gamma, a_{i}: A_{i} \vdash_{d} c_{\hat{\mathfrak{p}}}^{i}; \sigma\{\iota_{i}(a_{i}) p_{N}\})  \forall i \in \{1, 2\}}{\Gamma \vdash_{d} \tilde{\mu}[a_{1}.c_{\hat{\mathfrak{p}}}^{1} \mid a_{2}.c_{\hat{\mathfrak{p}}}^{2}]: (A_{1} \lor A_{2})^{\perp}; \sigma\{\cdot p_{N}\}} \ (\vee_{l}^{d})$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\frac{\Gamma, a: A \vdash_d c_{\hat{\mathfrak{p}}} \tau'; \sigma\{a   p_N\}}{\Gamma \vdash_d \tilde{\mu} a. c_{\hat{\mathfrak{p}}} \tau': A^{\perp}; \sigma\{\cdot   p_N\}} (\tilde{\mu}^d) \qquad \qquad \frac{\Gamma, x: T, a: A \vdash_d c_{\hat{\mathfrak{p}}}; \sigma\{(x, a)   p_N\}}{\Gamma \vdash_d \tilde{\mu}(x, a). c_{\hat{\mathfrak{p}}}: (\exists x^T A)^{\perp}; \sigma\{\cdot   p_N\}} (\exists_l^d) \qquad \qquad \frac{\Gamma, a_1: A_1, a_2: A_2 \vdash_d c_{\hat{\mathfrak{p}}}; \sigma\{(a_1, a_2)   p_N\}}{\Gamma \vdash_d \tilde{\mu}(a_1, a_2). c_{\hat{\mathfrak{p}}}: (A_1 \land A_2)^{\perp}; \sigma\{\cdot   p_N\}} (\wedge_l^d)$                      |
| $ \begin{array}{ccc} \textbf{Terms} & & \\ \hline \Gamma \vdash^{\sigma} 0: \mathbb{N} \end{array} \begin{pmatrix} 0 \end{pmatrix} & & \\ \hline \Gamma \vdash^{\sigma} S(t): \mathbb{N} \end{array} \begin{pmatrix} S \end{pmatrix} & & \\ \hline \Gamma \vdash^{\sigma} x: T \end{array} \begin{pmatrix} Ax_t \end{pmatrix} & & \\ \hline \Gamma \vdash^{\sigma} \lambda x: t: U \to T \end{array} \begin{pmatrix} \lambda \end{pmatrix} $                                                                                                                                                                                                                                        |
| $\frac{\Gamma \vdash^{\sigma} t: U \to T  \Gamma \vdash^{\sigma} u: U}{\Gamma \vdash^{\sigma} t u: T} (@) \qquad \frac{\Gamma \vdash^{\sigma} t: \mathbb{N}  \Gamma \vdash^{\sigma} t_{0}: U  \Gamma, x: \mathbb{N}, y: U \vdash^{\sigma} t_{S}: U}{\Gamma \vdash^{\sigma} \operatorname{rec}_{xy}^{t}[t_{0} \mid t_{S}]: U} (\operatorname{rec})  \frac{\Gamma \vdash^{\sigma} p: \exists x^{T} A  p \operatorname{NEF}}{\Gamma \vdash^{\sigma} \operatorname{wit} p: T} (\operatorname{wit}) $                                                                                                                                                                                    |

**Figure 3.** Type system for  $dLPA^{\omega}$ 

when stores occur), we differentiate the denotation of regular typing judgments, written  $\Gamma \vdash^{\sigma} J$ , from the one of judgments in dependent mode, which we write  $\Gamma \vdash_{d} J$ ;  $\sigma$  to highlight that  $\sigma$  grows along derivations. The type system we obtain is given in Figure 3.

# 2.4 Subject reduction

We shall now prove that typing is preserved along reduction. As for the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, the proof is simplified by the fact that substitutions are not performed (except for terms), which keeps us from proving the safety of the corresponding substitutions. Yet, we first need to prove some technical lemmas about dependencies. To this aim, we define a relation  $\sigma \Rightarrow \sigma'$  between lists of dependencies, which expresses the fact that any typing derivation obtained with  $\sigma$  could be obtained as well as with  $\sigma'$ :

$$\sigma \Rightarrow \sigma' \triangleq \sigma(A) = \sigma(B) \Rightarrow \sigma'(A) = \sigma'(B)$$
 (for any A, B)

**Proposition 2.1** (Dependencies weakening). If  $\sigma$ ,  $\sigma'$  are two lists of dependencies such that  $\sigma \Rightarrow \sigma'$ , then any derivation using  $\sigma$  can be done using  $\sigma'$  instead. In other words, the following rules are admissible:

$$\frac{\Gamma \vdash^{\sigma} J}{\Gamma \vdash^{\sigma'} J} (w) \qquad \qquad \frac{\Gamma \vdash_{d} J; \sigma}{\Gamma \vdash_{d} J; \sigma'} (w^{d})$$

We can prove the safety of reduction with respect to typing:

**Theorem 2.2** (Subject reduction). For any context  $\Gamma$  and any closures  $c\tau$  and  $c'\tau'$  such that  $c\tau \rightarrow c'\tau'$ , we have:

1. If 
$$\Gamma \vdash c\tau$$
 then  $\Gamma \vdash c'\tau'$ . 2. If  $\Gamma \vdash_d c\tau$ ;  $\varepsilon$  then  $\Gamma \vdash_d c'\tau'$ ;  $\varepsilon$ .

*Proof.* The proof follows the usual proof of subject reduction, by induction on the reduction  $c\tau \rightarrow c'\tau'$ . See Appendix A.

$$\frac{\Gamma \vdash p : \exists x^T . A \quad \Gamma, x : T, a : A \vdash q : B[(x, a)/\bullet] \quad p \notin \text{NEF} \Rightarrow \bullet \notin B}{\Gamma \vdash \text{dest } p \text{ as } (x, a) \text{ in } q : B[p/\bullet]} (\text{dest}) \quad \frac{\Gamma \vdash p : \bot}{\Gamma \vdash \text{exfalso } p : B}(\bot) \quad \frac{\Gamma, a : A \vdash q : B[a/\bullet] \quad p \notin \text{NEF} \Rightarrow \bullet \notin B}{\Gamma \vdash \text{let } a = p \text{ in } q : B[p/\bullet]} (\text{let}) \\ \frac{\Gamma \vdash p : A_1 \land A_2 \quad \Gamma, a_1 : A_1, a_2 : A_2 \vdash q : B[(a_1, a_2)/\bullet] \quad p \notin \text{NEF} \Rightarrow \bullet \notin B}{\Gamma \vdash \text{psplit } p \text{ as } (a_1, a_2) \text{ in } q : B[p/\bullet]} (\text{split}) \quad \frac{\Gamma \vdash p : A_1 \land A_2}{\Gamma \vdash \pi_i(p) : A_i} (\wedge_E^i) \quad \frac{\Gamma, a : A^{\perp} \vdash p : A}{\Gamma, a : A^{\perp} \vdash \text{throw } a p : B} (\text{throw}) \\ \frac{\Gamma \vdash p : A_1 \lor A_2 \quad \Gamma, a_i : A_i \vdash q : B[\iota_i(a)_i/\bullet] \quad \text{for } i = 1, 2 \quad p \notin \text{NEF} \Rightarrow \bullet \notin B}{\Gamma \vdash \text{case } p \text{ of } [a_1.p_1 \mid a_2.p_2] : B[p/\bullet]} (\text{case}) \quad \frac{\Gamma, a : A^{\perp} \vdash p : A}{\Gamma \vdash \text{catch}_{\alpha} p : A} (\text{catch}) \quad \frac{\Gamma \vdash p : \exists x^T.A(x)}{\Gamma \vdash \text{prf } p : A(\text{wit } p)} (\text{prf })$$

**Figure 4.** Typing rules of  $dPA^{\omega}$ 

# 2.5 Natural deduction as macros

We can recover the usual proof terms for elimination rules in natural deduction systems, and in particular the ones from  $dPA^{\omega}$ , by defining them as macros in our language. The definitions are straightforward, using delimited continuations for let... in and the constructors over NEF proofs which might be dependently typed:

$$\begin{array}{c} \left| \det a = p \text{ in } q \, \triangleq \, \mu \alpha_p . \langle p \| \tilde{\mu} a. \langle q \| \alpha_p \rangle \rangle \\ \text{split } p \text{ as } (a_1, a_2) \text{ in } q \, \triangleq \, \mu \alpha_p . \langle p \| \tilde{\mu} (a_1, a_2) . \langle q \| \alpha_p \rangle \rangle \\ \text{case } p \text{ of } [a_1.p_1 \mid a_2.p_2] \, \triangleq \, \mu \alpha_p . \langle p \| \tilde{\mu} [a_1.\langle p_1 \| \alpha_p \rangle |a_2.\langle p_2 \| \alpha_p \rangle] \rangle \\ \text{ dest } p \text{ as } (a, x) \text{ in } q \, \triangleq \, \mu \alpha_p . \langle p \| \tilde{\mu} (x, a) . \langle q \| \alpha_p \rangle \rangle \\ \text{ prf } p \, \triangleq \, \mu \hat{\mathbf{p}} . \langle p \| \tilde{\mu} (x, a) . \langle a \| \hat{\mathbf{p}} \rangle \rangle \\ \text{ subst } p q \, \triangleq \, \mu \alpha . \langle p \| \tilde{\mu} = . \langle q \| \alpha \rangle \rangle \\ \text{ exfalso } p \, \triangleq \, \mu \alpha . \langle p \| [] \rangle \end{array} \right| \begin{array}{c} \text{ catch}_{\alpha} p \, \triangleq \, \mu \alpha . \langle p \| \alpha \rangle \\ \text{ throw } \alpha p \, \triangleq \, \mu . . \langle p \| \alpha \rangle \end{array}$$

where  $\alpha_p = \hat{\mathbf{p}}$  if *p* is NEF and  $\alpha_p = \alpha$  otherwise.

It is then straightforward to check that the macros match the expected typing rules:

**Proposition 2.3** (Natural deduction). The typing rules from  $dPA^{\omega}$ , given in Figure 4, are admissible.

One can even check that the reduction rules in dLPA<sup> $\omega$ </sup> for these proofs almost mimic the ones of dPA<sup> $\omega$ </sup>. To be more precise, the rules of dLPA<sup> $\omega$ </sup> do not allow to simulate each rule of dPA<sup> $\omega$ </sup>, due to the head-reduction strategy amongst other things. Nonetheless, up to a few details the reduction of a command in dLPA<sup> $\omega$ </sup> follows one particular reduction path of the corresponding proof in dPA<sup> $\omega$ </sup>, or in other words, one reduction strategy.

The main result is that using the macros, the same proof terms are suitable for countable and dependent choice [12]. We do not state it here, but following the approach of [12], we could also extend dLPA<sup> $\omega$ </sup> to obtain a proof for the axiom of bar induction.

Theorem 2.4 (Countable choice [12]). We have:

$$\begin{array}{rcl} AC_{\mathbb{N}} & := \lambda H. \texttt{let} \, a = \texttt{cofix}_{bn}^{0}[(Hn, b(S(n))] \\ & & \texttt{in} \, (\lambda n. \texttt{wit} \, (\texttt{nth}_n \, a), \lambda n. \texttt{prf} \, (\texttt{nth}_n \, a) \\ & : & \forall x^{\mathbb{N}} \exists y^T P(x, y) \to \exists f^{\mathbb{N} \to T} \forall x^{\mathbb{N}} P(x, f(x)) \end{array}$$

where  $nth_n a := \pi_1(fix_{x,c}^n[a | \pi_2(c)]).$ 

Theorem 2.5 (Dependent choice [12]). We have:

$$\begin{split} DC &:= \lambda H.\lambda x_0. \, \text{let} \, a = (x_0, \text{cofix}_{bn}^0[d_n]) f six \\ & \text{in} \, (\lambda n. \, \text{wit} \, (\text{nth}_n \, a), (\text{refl}, \lambda n. \pi_1(\text{prf} \, (\text{prf} \, (\text{nth}_n \, a))))) \\ & : \, \forall x^T. \exists y^T. P(x, y) \rightarrow \\ & \forall x_0^T. \exists f \in T^{\mathbb{N}}. (f(0) = x_0 \wedge \forall n^{\mathbb{N}}. P(f(n), f(s(n)))) \end{split}$$

where  $d_n := \text{dest } Hn \text{ as}(y, c) \text{ in}(y, (c, b y)))$ 

and  $\operatorname{nth}_{n} a := \operatorname{fix}_{x,d}^{n}[a \mid (\operatorname{wit}(\operatorname{prf} d), \pi_{2}(\operatorname{prf}(\operatorname{prf}(d))))].$ 

# 3 Small-step calculus

As for the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus [1, 21], we follow here Danvy's methodology of semantic artifacts [1, 8] to obtain a realizability interpretation. We first decompose the reduction system of dLPA<sup> $\omega$ </sup> into small-step reduction rules, that we denote by  $\rightsquigarrow_s$ . This requires a refinement and an extension of the syntax, that we shall now present. To keep us from boring the reader stiff with new (huge) tables for the syntax, typing rules and so forth, we will introduce them step by step. We hope it will help the reader to convince herself of the necessity and of the somewhat naturality of these extensions.

# 3.1 Values

First of all, we need to refine the syntax to distinguish between strong and weak values in the syntax of proof terms. As in the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus, this refinement is induced by the computational behavior of the calculus: weak values are the ones which are stored by  $\tilde{\mu}$  binders, but which are not values enough to be eliminated in front of a forcing context, that is to say variables. Indeed, if we observe the reduction system, we see that in front of a forcing context f, a variable leads a search through the store for a "stronger" value, which could incidentally provoke the evaluation of some fixpoints. On the other hand, strong values are the ones which can be reduced in front of the matching forcing context, that is to say functions, ref1, pairs of values, injections or dependent pairs:

Weak values $V ::= a \mid v$ Strong values $v ::= \iota_i(V) \mid (V, V) \mid (V_t, V) \mid \lambda x.p \mid \lambda a.p \mid refl$ 

This allows us to distinguish commands of the shape  $\langle v \| f \rangle \tau$ , where the forcing context (and next the strong value) are examined to determine whether the command reduces or not; from commands of the shape  $\langle a \| f \rangle \tau$  where the focus is put on the variable *a*, which leads to a lookup for the associated proof in the store.

#### 3.2 Terms

Next, we need to explicit the reduction of terms. To this purpose, we include a machinery to evaluate terms in a way which resemble the evaluation of proofs. In particular, we define new commands which we write  $\langle t \| \pi \rangle$  where *t* is a term and  $\pi$  is a context for terms (or co-term). Co-terms are either of the shape  $\tilde{\mu}x.c$  or stacks of the shape  $u \cdot \pi$ . These constructions are the usual ones of the  $\lambda \mu \tilde{\mu}$ -calculus (which are also the ones for proofs). We also extend the definitions of commands with delimited continuations to include the corresponding commands for terms:

| Commands | $c ::= \langle p \  e \rangle \mid \langle t \  \pi \rangle$ | $c_{\hat{\mathbf{tp}}} ::= \cdots \mid \langle t \  \pi_{\hat{\mathbf{tp}}} \rangle$                    |
|----------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Co-terms | $\pi ::= t \cdot \pi \mid \tilde{\mu} x.c$                   | $\pi_{\hat{\mathrm{tp}}} ::= t \cdot \pi_{\hat{\mathrm{tp}}} \mid \tilde{\mu} x. c_{\hat{\mathrm{tp}}}$ |

We give typing rules for these new constructions, which are the usual rules for typing contexts in the  $\lambda \mu \tilde{\mu}$ -calculus:

$$\begin{array}{c} \frac{\Gamma \vdash t:T \quad \Gamma \vdash \pi: U^{\perp \!\!\!\!\perp}}{\Gamma \vdash t \cdot \pi: (T \to U)^{\perp \!\!\!\!\perp}} \quad (\to_l) \qquad \qquad \frac{c:(\Gamma, x:T)}{\Gamma \vdash \tilde{\mu} x.c:T^{\perp \!\!\!\!\perp}} \quad (\tilde{\mu}_x) \\ \\ \frac{\Gamma \vdash^{\sigma} t:T \quad \Gamma \vdash^{\sigma} \pi:T^{\perp \!\!\!\!\perp}}{\Gamma \vdash^{\sigma} \langle t \parallel \pi \rangle} \quad (\text{cut}_t) \end{array}$$

It is worth noting that the syntax as well as the typing and reduction rules for terms now match exactly the ones for proofs<sup>9</sup>. In other words, with these definitions, we could abandon the stratified presentation without any trouble, since reduction rules for terms will naturally collapse to the ones for proofs.

#### 3.3 Co-delimited continuations

Finally, in order to maintain typability when reducing dependent pairs of the strong existential type, we need to add what we call *co-delimited continuations*. As observed in [20], the CPS translation of pairs (t, p) in dL<sub> $\hat{\mathbb{T}}$ </sub> is not the expected one, reflecting the need for a special reduction rule. Indeed, consider such a pair of type  $\exists x^T.A$ , the standard way of reducing it would be a rule like:

$$\langle (t,p) \| e \rangle \tau \rightsquigarrow_{s} \langle t \| \tilde{\mu} x . \langle p \| \tilde{\mu} a . \langle (x,a) \| e \rangle \rangle \rangle \tau$$

but such a rule does not satisfy subject reduction. Consider indeed a typing derivation for the left-hand side command, when typing the pair (t, p), p is of type A[t]. On the command on the right-hand side, the variable a will then also be of type A[t], while it should be of type A[x] for the pair (x, a) to be typed. We thus need to compensate this mismatching of types, by reducing t within a context where a is not linked to p but to a co-reset  $\check{\Phi}$  (dually to reset  $\hat{\Phi}$ ), whose type can be changed from A[x] to A[t] thanks to a list of dependencies:

$$\langle (t,p) \| e \rangle_p \tau \rightsquigarrow_s \langle p \| \tilde{\mu} \dot{\mathfrak{p}} . \langle t \| \tilde{\mu} x . \langle \dot{\mathfrak{p}} \| \tilde{\mu} a . \langle (x,a) \| e \rangle \rangle \rangle_p \tau$$

We thus equip the language with new contexts  $\tilde{\mu} \dot{\Phi}.c_{\tilde{\Phi}}$ , which we call *co-shifts* and where  $c_{\tilde{\Phi}}$  is a command whose last cut is of the shape  $\langle \dot{\Phi} \| e \rangle$ . This corresponds formally to the following syntactic sets, which are dual to the ones introduced for delimited continuations:

| Contexts                   | е                                 | ::= | $\cdots \mid 	ilde{\mu}$ ຫຼ້. $c_{ar{\mathbf{tp}}}$                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|-----------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Co-delimited continuations |                                   |     | $ \begin{array}{l} \langle p_N \  e_{\check{\mathfrak{t}} \mathfrak{p}} \rangle \mid \langle t \  \pi_{\check{\mathfrak{t}} \mathfrak{p}} \rangle \mid \langle \check{\mathfrak{t}} \  e \rangle \\ \tilde{\mu} a. c_{\check{\mathfrak{t}} \mathfrak{p}} \mid \tilde{\mu} [a_1. c_{\check{\mathfrak{t}} \mathfrak{p}} \mid a_2. c_{\check{\mathfrak{t}} \mathfrak{p}}'] \end{array} $ |
| ••••••                     | Ψ                                 |     | $\tilde{\mu}(a_1, a_2).c_{t\bar{t}D} \mid \tilde{\mu}(x, a).c_{t\bar{t}D}$                                                                                                                                                                                                                                                                                                            |
|                            | $\pi_{\check{\operatorname{tp}}}$ | ::= | $t \cdot \pi_{\check{\mathrm{tp}}} \mid \tilde{\mu} x. c_{\check{\mathrm{tp}}}$                                                                                                                                                                                                                                                                                                       |
| NEF                        | $e_N$                             | ::= | $\cdots \mid \tilde{\mu} \check{\mathrm{tp}}.c_{\check{\mathrm{tp}}}$                                                                                                                                                                                                                                                                                                                 |

This might seem to be a heavy addition to the language, but we insist on the fact that these artifacts are merely the dual constructions of delimited continuations introduced in  $dL_{\hat{\psi}}$ , with a very similar intuition. In particular, it might be helpful for the reader to think of the fact that we introduced delimited continuations for type safety of the evaluation of dependent products in  $\Pi a : A.B$  (which naturally extends to the case  $\forall x^T.A$ ). Therefore, to maintain type safety of dependent sums in  $\exists x^T.A$ , we need to introduce the dual constructions of co-delimited continuations. We also give

typing rules to these constructions, which are dual to the typing rules for delimited-continuations:

$$\frac{\Gamma, \, \mathfrak{p} : A \vdash_{d} c_{\check{\mathfrak{p}}}; \sigma}{\Gamma \vdash^{\sigma} \tilde{\mu} \check{\mathfrak{p}} c_{\check{\mathfrak{p}}} : A^{\perp}} \stackrel{(\tilde{\mu} \check{\mathfrak{p}})}{(\tilde{\mathfrak{p}})} \qquad \qquad \frac{\Gamma, \Gamma' \vdash^{\sigma} e : A^{\perp} \quad \sigma(A) = \sigma(B)}{\Gamma, \, \check{\mathfrak{p}} : B, \Gamma' \vdash_{d} \langle \check{\mathfrak{p}} \| e \rangle; \sigma} (\check{\mathfrak{p}})$$

Note that we also need to extend the definition of list of dependencies to include bindings of the shape  $\{x|t\}$  for terms, and that we have to give the corresponding typing rules to type commands of terms in dependent mode:

$$\frac{c:(\Gamma, x:T; \sigma\{x|t\})}{\Gamma \vdash_{d} \tilde{\mu}x.c:T^{\perp}; \sigma\{\cdot|t\}} (\tilde{\mu}_{x}^{d}) \qquad \frac{\Pi_{t} \quad \Gamma, \mathring{\mathfrak{\psi}}:B, \Gamma' \vdash_{d} \pi: A^{\perp}; \sigma\{\cdot|t\}}{\Gamma, \check{\mathfrak{\psi}}:B, \Gamma' \vdash_{d} \langle t \| \pi \rangle; \sigma} (\operatorname{Cur}_{t}^{d})$$

where  $\Pi_t \triangleq \Gamma, \Gamma' \vdash^{\sigma} t : T$ .

The small-step reduction system is given in Appendix C. The rules are written  $c_t \tau \rightsquigarrow_s c'_o \tau'$  where the annotation  $\iota, p$  on commands are indices (*i.e.*  $c, p, e, V, f, t, \pi, V_t$ ) indicating which part of the command is in control. As in the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, we observe an alternation of steps descending from p to f for proofs and from t to  $V_t$  for terms. The descent for proofs can be divided in two main phases. During the first phase, from p to e we observe the call-by-value process, which extracts values from proofs, opening recursively the constructors and computing values. In the second phase, the core computation takes place from V to f, with the destruction of constructors and the application of function to their arguments. The laziness corresponds precisely to a skip of the first phase, waiting to possibly reach the second phase before actually going through the first one.

Here again, reduction is safe with respect to the type system:

**Proposition 3.1** (Subject reduction). *The small-step reduction rules satisfy subject reduction.* 

*Proof.* The proof is again an induction on  $\rightsquigarrow_s$ , see Appendix C.  $\Box$ 

It is also direct to check that the small-step reduction system simulates the big-step one, and in particular that it preserves the normalization :

**Proposition 3.2.** If a closure  $c\tau$  normalizes for the reduction  $\rightsquigarrow_s$ , then it normalizes for  $\rightarrow$ .

Proof. By contraposition, see Appendix C.

# 4 A realizability interpretation of $dLPA^{\omega}$

We shall now present the realizability interpretation of dLPA<sup> $\omega$ </sup>, which will finally give us a proof of its normalization. Here again, the interpretation combines ideas of the interpretations for the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus [21] and for dL<sub> $\hat{\psi}$ </sub> through the embedding in Lepigre's calculus [17, 20]. Namely, as for the  $\overline{\lambda}_{[l\upsilon\tau\star]}$ -calculus, formulas will be interpreted by sets of proofs-in-store of the shape  $(p|\tau)$ , and the orthogonality will be defined between proofs-in-store  $(p|\tau)$  and contexts-in-store  $(e|\tau')$  such that the stores  $\tau$  and  $\tau'$  are compatible.

We recall the main definitions necessary to the realizability interpretation:

**Definition 4.1** (Proofs-in-store). We call *closed proof-in-store* (resp. *closed context-in-store, closed term-in-store,* etc) the combination of a proof p (resp. context e, term t, etc) with a closed store  $\tau$  such that  $FV(p) \subseteq \text{dom}(\tau)$ . We use the notation  $(p|\tau)$  to denote such

<sup>&</sup>lt;sup>9</sup>Except for substitutions of terms, which we could store as well.

a pair. In addition, we denote by  $\Lambda_p$  (resp.  $\Lambda_e$ , etc.) the set of all proofs and by  $\Lambda_p^{\tau}$  (resp.  $\Lambda_e^{\tau}$ , etc.) the set of all proofs-in-store.

We denote the sets of closed closures by  $C_0$ , and we identify  $(c|\tau)$  with the closure  $c\tau$  when c is closed in  $\tau$ .

We now recall the notion of compatible stores [21], which allows us to define an orthogonality relation between proofs- and contexts-in-store.

**Definition 4.2** (Compatible stores and union). Let  $\tau$  and  $\tau'$  be stores, we say that:

- they are *independent* and note  $\tau \# \tau'$  if dom $(\tau) \cap dom(\tau') = \emptyset$ .
- they are *compatible* and note  $\tau \diamond \tau'$  if for all variables *a* (resp. co-variables  $\alpha$ ) present in both stores:  $a \in \text{dom}(\tau) \cap \text{dom}(\tau')$ ; the corresponding proofs (resp. contexts) in  $\tau$  and  $\tau'$  coincide.
- $\tau'$  is an *extension* of  $\tau$  and we write  $\tau \lhd \tau'$  whenever  $\tau \diamond \tau'$  and dom $(\tau) \subseteq \text{dom}(\tau')$ .
- $\overline{\tau\tau'}$  is the compatible union of compatible closed stores  $\tau$ and  $\tau'$ . It is defined as  $\overline{\tau\tau'} \triangleq \text{join}(\tau, \tau')$ , which itself given by:

$$\begin{array}{l} \mathsf{join}(\tau_0[a := p]\tau_1, \tau_0'[a := p]\tau_1') \triangleq \tau_0\tau_0'[a := p]\mathsf{join}(\tau_1, \tau_1') \\ \mathsf{join}(\tau_0[\alpha := e]\tau_1, \tau_0'[\alpha := e]\tau_1') \triangleq \tau_0\tau_0'[\alpha := e]\mathsf{join}(\tau_1, \tau_1') \\ \mathsf{join}(\tau_0, \tau_0') \triangleq \tau_0\tau_0' \end{array}$$

where  $\tau_0 \# \tau'_0$ .

The next lemma (which follows from the previous definition) states the main property we will use about union of compatible stores.

**Lemma 4.3.** If  $\tau$  and  $\tau'$  are two compatible stores, then  $\tau \triangleleft \overline{\tau\tau'}$ and  $\tau' \triangleleft \overline{\tau\tau'}$ . Besides, if  $\tau$  is of the form  $\tau_0[x := t]\tau_1$ , then  $\overline{\tau\tau'}$  is of the form  $\overline{\tau_0}[x := t]\overline{\tau_1}$  with  $\tau_0 \triangleleft \overline{\tau_0}$  and  $\tau_1 \triangleleft \overline{\tau_1}$ .

We can now define the notion of pole, which has to satisfy an extra condition due to the presence of delimited continuations

**Definition 4.4** (Pole). A subset  $\bot$   $\in$   $C_0$  is said to be *saturated* or *closed by anti-reduction* whenever for all  $(c|\tau), (c'|\tau') \in C_0$ , we have:

$$(c'\tau' \in \bot\!\!\!\bot) \land (c\tau \to c'\tau') \Rightarrow (c\tau \in \bot\!\!\!\bot)$$

It is said to be *closed by store extension* if whenever  $c\tau$  is in  $\bot$ , for any store  $\tau'$  extending  $\tau$ ,  $c\tau'$  is also in  $\bot$ :

$$(c\tau \in \bot\!\!\!\bot) \land (\tau \lhd \tau') \implies (c\tau' \in \bot\!\!\!\bot)$$

It is said to be *closed under delimited continuations* if whenever  $c[e/\hat{\mathfrak{P}}]\tau$  (resp.  $c[V/\check{\mathfrak{P}}]\tau$ ) is in  $\bot$ , then  $\langle \mu \hat{\mathfrak{P}}.c || e \rangle \tau$  (resp.  $\langle V || \tilde{\mu} \check{\mathfrak{P}}.c \rangle \tau$ ) belongs to  $\bot$ :

$$(c[e/\mathfrak{p}]\tau \in \mathbb{L}) \implies (\langle \mu\mathfrak{p}.c||e\rangle\tau \in \mathbb{L})$$
$$(c[V/\check{\mathfrak{p}}]\tau \in \mathbb{L}) \implies (\langle V||\tilde{\mu}\check{\mathfrak{p}}.c\rangle\tau \in \mathbb{L})$$

A *pole* is defined as any subset of  $C_0$  that is closed by anti-reduction, by store extension and under delimited continuations.

We verify that the set of normalizing command is indeed a pole:

**Proposition 4.5.** The set  $\perp\!\!\!\perp_{\downarrow} = \{c\tau \in C_0 : c\tau \text{ normalizes}\}$  is a pole.

We finally recall the definition of the orthogonality relation w.r.t. a pole, which is identical to the one for the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus:

**Definition 4.6** (Orthogonality). Given a pole  $\bot$ , we say that a proof-in-store  $(p|\tau)$  is *orthogonal* to a context-in-store  $(e|\tau')$  and write  $(p|\tau)\bot (e|\tau')$  if  $\tau$  and  $\tau'$  are compatible and  $\langle p || e \rangle \overline{\tau \tau'} \in \bot$ . The orthogonality between terms and co-terms is defined identically.

We are now equipped to define the realizability interpretation of dLPA<sup> $\omega$ </sup>. Firstly, in order to simplify the treatment of coinductive formulas, we extend the language of formulas with second-order variables *X*, *Y*,... and we replace  $v_{f_X}^t A$  by  $v_{X_X}^t A[X(y)/f(y) = 0]$ . The typing rule for co-fixpoint operators then becomes:

$$\frac{\Gamma \vdash^{\sigma} t: T \quad \Gamma, x: T, b: \forall y^{T} X(y) \vdash^{\sigma} p: A \quad X \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} \mathsf{cofix}_{bx}^{t}[p]: v_{Xx}^{t} A} \tag{cofix}$$

where X has to be positive in A.

Secondly, as in the interpretation of  $dL_{\hat{tp}}$  through Lepigre's calculus, we introduce two new predicates,  $p \in A$  for NEF proofs and  $t \in T$  for terms. This allows us to decompose the dependent products and sums into:

$$\forall x^T A \triangleq \forall x. (x \in T \to A)$$
 
$$\Pi a : A.B \triangleq A \to B \qquad (a \notin FV(B))$$
 
$$\Pi a : A.B \triangleq \forall a. (a \in A \to B) \qquad (otw.)$$
 
$$\Pi a : A.B \triangleq \forall a. (a \in A \to B) \qquad (otw.)$$
 
$$Ibis corresponds to the language of formulas and types defined$$

This corresponds to the language of formulas and types defined by:

Types
$$T, U ::= \mathbb{N} | T \to U | t \in T$$
Formulas $A, B ::= \top | \bot | X(t) | t = u | A \land B | A \lor B$  $| \forall x.A | \exists x.A | \forall a.A | v_{Xx}^t A | a \in A$ 

and to the following inference rules:

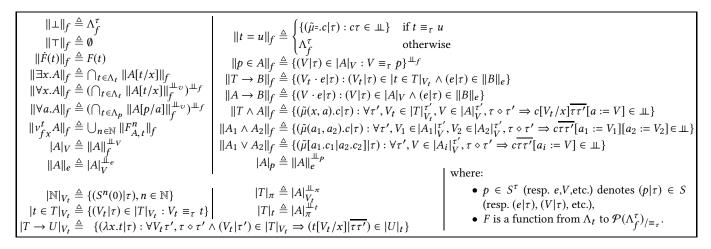
$$\begin{array}{ll} \displaystyle \frac{\Gamma \vdash^{\sigma} v : A & a \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} v : \forall a.A} \ (\forall_{r}^{a}) & \displaystyle \frac{\Gamma \vdash^{\sigma} e : A[q/a] \quad q \operatorname{NEF}}{\Gamma \vdash^{\sigma} e : (\forall a.A)^{\perp}} \ (\forall_{l}^{a}) \\ \\ \displaystyle \frac{\Gamma \vdash^{\sigma} v : A \quad x \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} v : \forall x.A} \ (\forall_{r}^{x}) & \displaystyle \frac{\Gamma \vdash^{\sigma} e : A[t/x]}{\Gamma \vdash^{\sigma} e : (\forall x.A)^{\perp}} \ (\forall_{l}^{x}) \\ \\ \displaystyle \frac{\Gamma \vdash^{\sigma} v : A[t/x]}{\Gamma \vdash^{\sigma} v : \exists x.A} \ (\exists_{r}^{x}) & \displaystyle \frac{\Gamma \vdash^{\sigma} e : A \quad x \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} e : (\exists x.A)^{\perp}} \ (\exists_{l}^{x}) \\ \\ \displaystyle \frac{\Gamma \vdash^{\sigma} p : A \quad p \operatorname{NEF}}{\Gamma \vdash^{\sigma} p : p \in A} \ (\epsilon_{r}^{p}) & \displaystyle \frac{\Gamma \vdash^{\sigma} e : A^{\perp}}{\Gamma \vdash^{\sigma} e : (q \in A)^{\perp}} \ (\epsilon_{l}^{p}) \\ \\ \displaystyle \frac{\Gamma \vdash^{\sigma} t : T}{\Gamma \vdash^{\sigma} t : t \in T} \ (\epsilon_{r}^{t}) & \displaystyle \frac{\Gamma \vdash^{\sigma} \pi : T^{\perp}}{\Gamma \vdash^{\sigma} \pi : (t \in T)^{\perp}} \ (\epsilon_{l}^{t}) \end{array}$$

These rules are exactly the same as in Lepigre's calculus [17] up to our stratified presentation in a sequent calculus fashion, and modulo our syntactic restriction to NEF proofs instead of his semantical restriction. It is a straightforward verification to check that the typability is maintained through the decomposition of dependent products and sums.

Another similarity with Lepigre's realizability model is that truth/falsity values will be closed under observational equivalence of proofs and terms. To this purpose, for each store  $\tau$  we introduce the relation  $\equiv_{\tau}$ , which we define as the reflexive-transitive-symmetric closure of the relation  $\triangleright_{\tau}$ :

$$\begin{array}{ll} t & \triangleright_{\tau} & t' & \text{whenever} & \exists \tau', \forall \pi, (\langle t \| \pi \rangle \tau \to \langle t' \| \pi \rangle \tau') \\ p & \triangleright_{\tau} & q & \text{whenever} & \exists \tau', \forall f (\langle p \| f \rangle \tau \to \langle q \| f \rangle \tau') \end{array}$$

All this being settled, it only remains to determine how to interpret coinductive formulas. While it would be natural to try to interpret them by fixpoints in the semantics, this poses difficulties for the proof of adequacy. We discuss this matter in Appendix E,



**Figure 5.** Realizability interpretation for  $dLPA^{\omega}$ 

but as for now, we will give a simpler interpretation. We stick to the intuition that since cofix operators are lazily evaluated, they actually are realizers of every finite approximation of the (possibly infinite) coinductive formula. Consider for instance the case of a stream:

$$\operatorname{str}_{\infty}^{0} p \triangleq \operatorname{cofix}_{hx}^{0}[(px, b(S(x)))]$$

of type  $v_{Xx}^0 A(x) \wedge X(S(x))$ . Such stream will produce on demand any tuple  $(p0, (p1, ...(pn, \Box)...))$  where  $\Box$  denotes the fact that it could be any term, in particular  $\operatorname{str}_{\infty}^{n+1} p$ . Therefore,  $\operatorname{str}_{\infty}^0 p$  should be a successful defender of the formula

$$(A(0) \land (A(1) \land \dots (A(n) \land \top) \dots))$$

Since cofix operators only reduce when they are bound to a variable in front of a forcing context, it suggests interpreting the coinductive formula  $v_{Xx}^0 A(x) \wedge X(S(x))$  at level f as the union of all the opponents to a finite approximation <sup>10</sup>.

To this end, given a coinductive formula  $v_{Xx}^0 A$  where X is positive in A, we define its finite approximations by:

$$F_{A,t}^{0} \triangleq \top \qquad \qquad F_{A,t}^{n+1} \triangleq A[t/x][F_{A,y}^{n}/X(y)]$$

Since *X* is positive in *A*, we have for any integer *n* and any term *t* that  $||F_{A,t}^n||_f \subseteq ||F_{A,t}^{n+1}||_f$ . We can finally define the interpretation of coinductive formulas by:

$$\|v_{Xx}^t A\|_f \triangleq \bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f$$

The realizability interpretation of closed formulas and types is defined in Figure 5 by induction on the structure of formulas at level f, and by orthogonality at levels V, e, p. When S is a subset of  $\mathcal{P}(\Lambda_p^{\tau})$  (resp.  $\mathcal{P}(\Lambda_e^{\tau}), \mathcal{P}(\Lambda_t^{\tau}), \mathcal{P}(\Lambda_{\pi}^{\tau})$ ), we use the notation  $S^{\perp f}$  (resp.  $S^{\perp V}$ , etc.) to denote its orthogonal set restricted to  $\Lambda_f^{\tau}$ :

$$S^{\perp f} \triangleq \{ (f|\tau) \in \Lambda_f^{\tau} : \forall (p|\tau') \in S, \tau \diamond \tau' \Rightarrow \langle p \| f \rangle \overline{\tau \tau'} \in \bot \}$$

At level f, closed formulas are interpreted by sets of strong forcing contexts-in-store  $(f|\tau)$ . As explained earlier, these sets are besides closed under the relation  $\equiv_{\tau}$  along their component  $\tau$ , we thus denote them by  $\mathcal{P}(\Lambda_f^{\tau})_{\equiv_{\tau}}$ . Second-order variables  $X, Y, \ldots$ are then interpreted by functions from the set of terms  $\Lambda_t$  to  $\mathcal{P}(\Lambda_f^{\tau})_{\equiv_{\tau}}$ . and as is usual in Krivine realizability [15], for each such function F we add a predicate symbol  $\dot{F}$  in the language.

We shall now prove the adequacy of the interpretation with respect to the type system. To this end, we need to recall a few definitions and lemmas. Since stores only contain proof terms, we need to define valuations for term variables in order to close formulas<sup>11</sup>. These valuations are defined by the usual grammar:

$$\rho ::= \varepsilon \mid \rho[x \mapsto V_t] \mid \rho[X \mapsto \dot{F}]$$

We denote by  $(p|\tau)_{\rho}$  (resp.  $p_{\rho}$ ,  $A_{\rho}$ ) the proof-in-store  $(p|\tau)$  where all the variables  $x \in \text{dom}(\rho)$  (resp.  $X \in \text{dom}(\rho)$ ) have been substituted by the corresponding term  $\rho(x)$  (resp. falsity value  $\rho(x)$ ).

**Definition 4.7.** Given a closed store  $\tau$ , a valuation  $\rho$  and a fixed pole  $\bot$ , we say that the pair  $(\tau, \rho)$  realizes  $\Gamma$ , which we write<sup>12</sup>  $(\tau, \rho) \Vdash \Gamma$ , if:

- 1. for any  $(a : A) \in \Gamma$ ,  $(a|\tau)_{\rho} \in |A_{\rho}|_{V}$ ,
- 2. for any  $(\alpha : A_{\rho}^{\perp}) \in \Gamma$ ,  $(\alpha | \tau)_{\rho} \in ||A_{\rho}||_{e}$ ,
- 3. for any  $\{a|p\} \in \sigma$ ,  $a \equiv_{\tau} p$ ,
- 4. for any  $(x : T) \in \Gamma$ ,  $x \in \text{dom}(\rho)$  and  $(\rho(x)|\tau) \in |T_{\rho}|_{V_t}$ .

We can check that the interpretation is indeed defined up to the relations  $\equiv_{\tau}$ :

**Proposition 4.8.** For any store  $\tau$  and any valuation  $\rho$ , the component along  $\tau$  of the truth and falsity values defined in Figure 5 are closed under the relation  $\equiv_{\tau}$ :

1. 
$$if(f|\tau)_{\rho} \in ||A_{\rho}||_{f}$$
 and  $A_{\rho} \equiv_{\tau} B_{\rho}$ , then  $(f|\tau)_{\rho} \in ||B_{\rho}||_{f}$ ,

2. if 
$$(V_t|\tau)_{\rho} \in |A_{\rho}|_{V_t}$$
 and  $A_{\rho} \equiv_{\tau} B_{\rho}$ , then  $(V_t|\tau)_{\rho} \in |B_{\rho}|_{\upsilon}$ .  
The same applies with  $|A_{\rho}|_{\rho}$ ,  $||A_{\rho}||_{e}$ , etc.

We can now prove the main property of our interpretation:

**Proposition 4.9** (Adequacy). The typing rules are adequate with respect to the realizability interpretation, i.e. typed proofs (resp. values, terms, contexts, etc.) belong to the corresponding truth values.

*Proof.* By induction on typing derivations such as given in the system extended for the small-step reduction. See Appendix D.  $\Box$ 

<sup>&</sup>lt;sup>10</sup>See Appendix E for a discussion on this point.

<sup>&</sup>lt;sup>11</sup>Alternatively, we could have modified the small-step reduction rules to include substitutions of terms. <sup>12</sup>Once again, we should formally write  $(\tau, \rho) \models_{\perp} \Gamma$  but we will omit the annotation

<sup>&</sup>lt;sup>12</sup>Once again, we should formally write  $(\tau, \rho) \Vdash_{\perp} \Gamma$  but we will omit the annotation by  $\perp$  as often as possible.

We can finally deduce that  $\mathrm{dLPA}^\omega$  is normalizing and sound.

**Theorem 4.10** (Normalization). If  $\Gamma \vdash^{\sigma} c$ , then c is normalizable.

*Proof.* Direct consequence of Propositions 4.5 and 4.9.

**Theorem 4.11** (Consistency).  $\nvdash_{dLPA^{\omega}} p : \bot$ 

*Proof.* Assume there is such a proof p, by adequacy  $(p|\varepsilon)$  is in  $|\perp|_p$  for any pole. Yet, the set  $\perp \perp \triangleq \emptyset$  is a valid pole, and with this pole,  $|\perp|_p = \emptyset$ , which is absurd.

# 5 Conclusion and perspectives

**Conclusion** At the end of the day, we met our main objective, namely proving the soundness and the normalization of a language which includes proof terms for dependent and countable choice in a classical setting. This language, which we called  $dLPA^{\omega}$ , provides us with the same computational features as  $dPA^{\omega}$  but in a sequent calculus fashion. These computational features allow  $dLPA^{\omega}$  to internalize the realizability approach of [2, 10] as a direct proofs-asprograms interpretation: both proof terms for countable and dependent choices furnish a lazy witness for the ideal choice function which is evaluated on demand. This interpretation is in line with the slogan that with new programing principles—here the lazy evaluation and the co-inductive objects—come new reasoning principles—here the axioms  $AC_{\mathbb{N}}$  and DC.

Interestingly, in our search for a proof of normalization for dLPA<sup> $\omega$ </sup>, we developed novel tools to study these side effects and dependent types in presence of classical logic. On the one hand, we set out in [20] the difficulties related to the definition of a sequent calculus with dependent types. On the other hand, building on [21], we developed a variant of Krivine realizability adapted to a lazy calculus where delayed substitutions are stored in an explicit environment. The sound combination of both frameworks led us to the definition of dLPA<sup> $\omega$ </sup> together with its realizability interpretation.

Krivine's interpretations of dependent choice The computational content we give to the axiom of dependent choice is pretty different of Krivine's usual realizer of the same [14]. Indeed, our proof uses dependent types to get witnesses of existential formulas, and we represent choice functions through the lazily evaluated stream of their values <sup>13</sup>. In turn, Krivine realizes a statement which is logically equivalent to the axiom of dependent choice thanks to the instruction quote, which injectively associates a natural number to each closed  $\lambda_c$ -term. In a more recent work [16], Krivine proposes a realizability model which has a bar-recursor and where the axiom of dependent choice is realized using the bar-recursion. This realizability model satisfies the continuum hypothesis and many more properties, in particular the real numbers have the same properties as in the ground model. However, the very structure of this model, where  $\Lambda$  is of cardinal  $\aleph_1$  (in particular infinite streams of integer are terms), makes it incompatible with quote.

It is clear that the three approaches are different in terms of programming languages. Nonetheless, it could be interesting to compare them from the point of view of the realizability models they give rise to. In particular, our analysis of the interpretation of co-inductive formulas<sup>14</sup> may suggest that the interest of lazy cofixpoints is precisely to approximate the limit situation where  $\Lambda$ has infinite objects.

Reduction of the consistency of classical arithmetic in finite types with dependent choice to the consistency of second-order arithmetic The standard approach to the computational content of classical dependent choice in the classical arithmetic in finite types is via realizability as initiated by Spector [25] in the context of Gödel's functional interpretation, and later adapted to the context of modified realizability by Berardi *et al* [2]. The aforementioned works of Krivine [14, 16] in the different settings of PA2 and  $ZF_{\varepsilon}$  also give realizers of dependent choice. In all these approaches, the correctness of the realizer, which implies consistency of the system, is itself justified by a use at the meta-level of a principle classically equivalent to dependent choice (dependent choice itself in [14], bar induction or update induction [3] in the case of [2, 25].).

Our approach is here different, since we directly interpret proofs of dependent choice in classical arithmetic computationally. Besides, the structure of our realizability interpretation for dLPA<sup> $\omega$ </sup> suggests the definition of a typed CPS to an extension of system  $F^{15}$ , but it is not clear whether its consistency is itself conservative or not over system *F*. Ultimately, we would be interested in a computational reduction of the consistency of dPA<sup> $\omega$ </sup> or dLPA<sup> $\omega$ </sup> to the one of PA2, that is to the consistency of second-order arithmetic. While it is well-known that *DC* is conservative over second-order arithmetic with full comprehension (see [24, Theorem VII.6.20]), it would nevertheless be very interesting to have such a direct computational reduction. The converse direction has been recently studied by Valentin Blot, who presented in [4] a translation of System F into a simply-typed total language with a variant of bar recursion.

#### Acknowledgments

The author warmly thanks Hugo Herbelin for numerous discussions and attentive reading of this work during his PhD years.

#### References

- Z. M. Ariola, P. Downen, H. Herbelin, K. Nakata, and A. Saurin. Classical call-byneed sequent calculi: The unity of semantic artifacts. In *FLOPS 2012, Proceedings*, LNCS, pages 32–46, 2012. doi:10.1007/978-3-642-29822-6.
- [2] S. Berardi, M. Bezem, and T. Coquand. On the computational content of the axiom of choice. J. Symb. Log., 63(2):600-622, 1998. doi:10.2307/2586854.
- [3] U. Berger. A computational interpretation of open induction. In LICS 2004, Proceedings, page 326. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.1319627.
- [4] V. Blot. An interpretation of system F through bar recursion. In LICS 2017, Proceedings, pages 1-12, 2017. doi:10.1109/LICS.2017.8005066.
- [5] L. Cohen, V. Rahli, M. Bickford, and R. L. Constable. Computability beyond church-turing using choice sequences. In *LICS 2018, Proceedings*, 2018.
- [6] P. Cousot and R. Cousot. Constructive versions of Tarski's fixed point theorems. Pacific Journal of Mathematics, 81(1):43–57, 1979.
- [7] P.-L. Curien and H. Herbelin. The duality of computation. In ICFP 2000, Proceedings, SIGPLAN Notices 35(9), pages 233-243. ACM, 2000. doi:10.1145/351240.351262.
- [8] O. Danvy, K. Millikin, J. Munk, and I. Zerny. Defunctionalized interpreters for call-by-need evaluation. In M. Blume, N. Kobayashi, and G. Vidal, editors, *FLOPS* 2010, Proceedings, pages 240–256, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-12251-4\_18.
- [9] P. Downen, L. Maurer, Z. M. Ariola, and S. P. Jones. Sequent calculus as a compiler intermediate language. In *ICFP 2016, Proceedings*, 2016. URL: http://research.microsoft.com/en-us/um/people/simonpj/papers/sequent-core/scfp\_ext.pdf, doi:10.1145/2951913.2951931.

 $<sup>^{13}\</sup>mathrm{A}$  similar idea can be found in NuPrl BITT type theory, where choice sequences are used in place of functions [5].

<sup>&</sup>lt;sup>14</sup>See also Appendix E.

<sup>&</sup>lt;sup>15</sup>See [19, Chapitre 8] for further details.

- [10] M. H. Escardó and P. Oliva. Bar recursion and products of selection functions. CoRR, abs/1407.7046, 2014. URL: http://arxiv.org/abs/1407.7046.
- [11] H. Herbelin. On the degeneracy of sigma-types in presence of computational classical logic. In P. Urzyczyn, editor, *TLCA 2005, Proceedings*, volume 3461 of *Lecture Notes in Computer Science*, pages 209–220. Springer, 2005. URL: http://dx.doi.org/10.1007/11417170\_16, doi:10.1007/11417170\_16.
- [12] H. Herbelin. A constructive proof of dependent choice, compatible with classical logic. In *LICS 2012, Proceedings*, pages 365–374. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/LICS.2012.47, doi:10.1109/LICS.2012.47.
- [13] A. Kolmogoroff. Zur deutung der intuitionistischen logik. Mathematische Zeitschrift, 35(1):58-65, Dec 1932. URL: http://dx.doi.org/10.1007/BF01186549, doi:10.1007/BF01186549.
- [14] J.-L. Krivine. Dependent choice, 'quote' and the clock. Th. Comp. Sc., 308:259– 276, 2003.
- [15] J.-L. Krivine. Realizability in classical logic. In interactive models of computation and program behaviour. *Panoramas et synthèses*, 27, 2009.
- [16] J.-L. Krivine. Bar Recursion in Classical Realisability: Dependent Choice and Continuum Hypothesis. In J.-M. Talbot and L. Regnier, editors, *CSL 2016, Proceedings*, volume 62 of *LIPIcs*, pages 25:1–25:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.25.
- [17] R. Lepigre. A classical realizability model for a semantical value restriction. In P. Thiemann, editor, *ESOP 2016, Proceedings*, volume 9632 of *LNCS*, pages 476– 502. Springer, 2016. doi:10.1007/978-3-662-49498-1\_19.
- [18] P. Martin-Löf. An intuitionistic theory of types. In twenty-five years of constructive type theory. Oxford Logic Guides, 36:127–172, 1998.
- [19] É. Miquey. Classical realizability and side-effects. Theses, Univ.é Paris Diderot ; Univ. de la República, Uruguay, Nov. 2017. URL: https://hal.inria.fr/tel-01653733.
- [20] É. Miquey. A classical sequent calculus with dependent types. In H. Yang, editor, ESOP 2017, Proceedings, pages 777-803, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/978-3-662-54434-1\_29, doi:10.1007/978-3-662-54434-1\_29.
- [21] É. Miquey and H. Herbelin. Realizability interpretation and normalization of typed call-by-need  $\lambda$ -calculus with control. In C. Baier and U. Dal Lago, editors, FoSSaCS, Proceedings, pages 276–292, Cham, 2018.
- [22] G. Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.
- [23] G. Munch-Maccagnoni and G. Scherer. tation of Lambda Calculus with Sums. In LICS 2015, Proceedings, 2015. doi:10.1109/LICS.2015.22.
- [24] S. G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cambridge University Press, 2 edition, 2009. doi:10.1017/CB09780511581007.
- [25] C. Spector. Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker, editor, *Recursive function theory: Proceedings of symposia in pure mathematics*, volume 5, page 1–27, Providence, Rhode Island, 1962. American Mathematical Society.
- [26] P. Wadler. Call-by-value is dual to call-by-name. In C. Runciman and O. Shivers, editors, *ICFP 2003, Proceedings*, pages 189–201. ACM, 2003. URL: http://doi.acm.org/10.1145/944705.944723, doi:10.1145/944705.944723.

Since most of the proofs contain typing derivations, we switch to a one column format to ease their display.

# A Subject reduction (Proofs of Section 2.4)

We detail here the proof of subject reduction for dLPA<sup> $\omega$ </sup>. Recall that we define the relation  $\sigma \Rightarrow \sigma'$  between lists of dependencies by:

$$\sigma \Rightarrow \sigma' \triangleq \sigma(A) = \sigma(B) \Rightarrow \sigma'(A) = \sigma'(B)$$
 (for any *A*, *B*)

We first show that the cases which we encounter in the proof of subject reduction satisfy this relation:

**Lemma A.1** (Dependencies implication). The following holds for any  $\sigma$ ,  $\sigma'$ ,  $\sigma''$ :

| 1. $\sigma\sigma'' \Rrightarrow \sigma\sigma'\sigma'$                                                                                           | 5. $\sigma\{\cdot (p_1, p_2)\} \Rightarrow \sigma\{a_1 p_1\}\{a_2 p_2\}\{\cdot (a_1, a_2)\}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 2. $\sigma\{(a_1, a_2) (V_1, V_2)\} \Rightarrow \sigma\{a_1 V_1\}\{a_2 V_2\}$<br>3. $\sigma\{\iota_i(a) \iota_i(V)\} \Rightarrow \sigma\{a V\}$ | 6. $\sigma\{\cdot \iota_i(p)\} \Rightarrow \sigma\{a p\}\{\cdot \iota_i(a)\}$                |
| $\begin{array}{l} f(a) f(v)\rangle \Rightarrow \sigma\{a v\} \\ 4. \ \sigma\{(x,a) (t,V)\} \Rightarrow \sigma\{a V\}\{x t\} \end{array}$        | 7. $\sigma\{\cdot (t,p)\} \Rightarrow \sigma\{a p\}\{\cdot (t,a)\}$                          |

where the fourth item abuse the definition of list of dependencies to include a substitution of terms.

*Proof.* All the properties are trivial from the definition of the substitution  $\sigma(A)$ .

We can now prove that the relation  $\Rightarrow$  indeed matches the expected intuition:

**Proposition 2.1** (Dependencies weakening). If  $\sigma$ ,  $\sigma'$  are two dependencies list such that  $\sigma \Rightarrow \sigma'$ , then any derivation using  $\sigma$  can be one using  $\sigma'$  instead. In other words, the following rules are admissible:

$$\frac{\Gamma \vdash^{\sigma} J}{\Gamma \vdash^{\sigma'} J} (w) \qquad \qquad \frac{\Gamma \vdash_{d} J; \sigma}{\Gamma \vdash_{d} J; \sigma'} (w^{d})$$

*Proof.* Simple induction on the typing derivations. The rules ( $\hat{\psi}$ ) and (CUT) where the list of dependencies is used exactly match the definition of  $\Rightarrow$ . Every other case is direct using the first item of Lemma A.1.

In addition to the previous proposition, we need the following extra lemma to simplify the proof of subject reduction, which we will use when concatenating two stores:

**Lemma A.2.** *The following rule is admissible:* 

$$\frac{\Gamma \vdash^{\sigma} \tau_0 : (\Gamma_0; \sigma_0) \quad \Gamma, \Gamma_0 \vdash^{\sigma \sigma_0} \tau_1 : (\Gamma_1; \sigma_1)}{\Gamma \vdash^{\sigma} \tau_0 \tau_1 : (\Gamma_0, \Gamma_1; \sigma_0, \sigma_1)} \quad (\tau \tau')$$

*Proof.* By induction on the structure of  $\tau_1$ .

Finally, we need to prove that substitutions of terms are safe with respect to typing (recall that substitutions of proofs are handled through the typing rules for stores):

**Lemma A.3.** [Safe term substitution] If  $\Gamma \vdash^{\sigma} t$ : T then for any conclusion J for typing proofs, contexts, terms, etc; the following holds:

1. If 
$$\Gamma, x: T, \Gamma' \vdash_{\sigma} J$$
 then  $\Gamma, \Gamma'[t/x] \vdash_{\sigma} [t/x]$ .  
2. If  $\Gamma, x: T, \Gamma' \vdash_{d} J; \sigma$  then  $\Gamma, \Gamma'[t/x] \vdash_{d} J[t/x]; \sigma[t/x]$ .

Proof. By induction on typing rules.

We are now equipped to prove the expected property:

**Theorem 2.2.** For any context  $\Gamma$  and any closures  $c\tau$  and  $c'\tau'$  such that  $c\tau \rightarrow c'\tau'$ , we have:

1. If  $\Gamma \vdash c\tau$  then  $\Gamma \vdash c'\tau'$ . 2. If  $\Gamma \vdash_d c\tau$ ;  $\varepsilon$  then  $\Gamma \vdash_d c'\tau'$ ;  $\varepsilon$ .

*Proof.* The proof follows the usual proof of subject reduction, by induction on the typing derivation and the reduction  $c\tau \rightarrow c'\tau'$ . Since there is no substitution but for terms (proof terms and contexts being stored), there is no need for auxiliary lemmas about the safety of substitution. We sketch it by examining all the rules from Figure 3 from top to bottom.

• The cases for reductions of  $\lambda$  are identical to the cases proven in the previous chapter for  $dL_{\text{fr}}$ .

• The rules for reducing  $\mu$  and  $\tilde{\mu}$  are almost the same except that elements are stored, which makes it even easier. For instance in the case of  $\tilde{\mu}$ , the reduction rule is:

$$\langle V \| \tilde{\mu} a. c \tau_1 \rangle \tau_0 \to c \tau_0 [a := V] \tau_1$$

A typing derivation in regular mode for the command on the left-hand side is of the shape:

$$\frac{\frac{\Pi_{c}}{\Gamma,\Gamma_{0} + \sigma^{\sigma_{0}} V : A} \frac{\Pi_{c}}{\frac{\Gamma,\Gamma_{0}, a : A,\Gamma_{1} + \sigma^{\sigma_{0}\sigma_{1}} c}{\Gamma,\Gamma_{0}, a : A + \sigma^{\sigma_{0}} \tau_{1} : (\Gamma_{1};\sigma_{1})}}{\frac{\Gamma,\Gamma_{0}, a : A + \sigma^{\sigma_{0}} c\tau_{1}}{\Gamma,\Gamma_{0} + \sigma^{\sigma_{0}} \tilde{\mu}a.c\tau_{1} : A^{\perp}}}_{(Cur)} (l)}{\frac{\Gamma,\Gamma_{0} + \sigma^{\sigma_{0}} \langle V \| \tilde{\mu}a.c\tau_{1} \rangle}{\Gamma + \sigma^{\sigma_{0}} \langle V \| \tilde{\mu}a.c\tau_{1} \rangle \tau_{0}}} (l)}$$

Thus we can type the command on the right-hand side:

$$\frac{\Pi_{c}}{\Gamma, \Gamma_{0}, a: A, \Gamma_{1} \vdash^{\sigma \sigma_{0}\{a|V\}\sigma_{1}} c} (w) = \frac{\Pi_{\tau_{0}}}{\Gamma \vdash^{\sigma} \tau_{0} : (\Gamma_{0}; \sigma_{0})} = \frac{\Pi_{V}}{\Gamma, \Gamma_{0} \vdash^{\sigma \sigma_{0}} V: A} (\tau_{p}) = \frac{\Pi_{\tau_{1}}}{\Gamma, \Gamma_{0}, a: A \vdash^{\sigma \sigma_{0}} \tau_{1} : (\Gamma_{1}; \sigma_{1})} (\tau_{p})}{\Gamma \vdash^{\sigma} \tau_{0}[a:=V] : (\Gamma_{0}, a: A, \sigma_{0}, \{a|V\})} (\tau_{p}) = \frac{\Pi_{\tau_{1}}}{\Gamma, \Gamma_{0}, a: A \vdash^{\sigma \sigma_{0}} \tau_{1} : (\Gamma_{1}; \sigma_{1})} (\tau_{p})} (\tau_{p}) = \frac{\Pi_{\tau_{1}}}{\Gamma, \Gamma_{0}, a: A \vdash^{\sigma \sigma_{0}} \tau_{1} : (\Gamma_{1}; \sigma_{1})} (\tau_{p})} (\tau_{p}) = \frac{\Pi_{\tau_{1}}}{\Gamma, \Gamma_{0}, a: A \vdash^{\sigma \sigma_{0}} \tau_{1} : (\Gamma_{1}; \sigma_{1})} (\tau_{p})} (\tau_{p}) = \frac{\Gamma_{v}}{\Gamma, \Gamma_{v}, \sigma_{v}} (\tau_{v}) = \frac{\Gamma_{v}}{\Gamma, \Gamma_{v}, \sigma_{v}} (\tau_{v})} (\tau_{v}) = \frac{\Gamma_{v}}{\Gamma, \sigma_{v}} (\tau_{v}) = \frac{\Gamma$$

As for the dependent mode, the binding  $\{a|p\}$  within the list of dependencies is compensated when typing the store as shown in the last derivation.

• Similarly, elimination rules for contexts  $\tilde{\mu}[a_1.c_1|a_2.c_2]$ ,  $\tilde{\mu}(a_1, a_2).c$ ,  $\tilde{\mu}(x, a).c$  or  $\tilde{\mu}$ =.*c* are easy to check, using Lemma A.1 and the rule ( $\tau_p$ ) in dependent mode to prove the safety with respect to dependencies.

The cases for delimited continuations are identical to the corresponding cases for dL<sub>ŵ</sub>.

• The cases for the so-called "call-by-value" rules opening constructors are straightforward, using again Lemma A.1 in dependent mode to prove the consistency with respect to the list of dependencies.

The cases for the lazy rules are trivial.

• The first case in the "lookup" section is trivial. The three lefts correspond to the usual unfolding of inductive and co-inductive fixpoints. We only sketch the latter in regular mode. The reduction rule is:

$$\langle a \| f \rangle \tau_0[a := \operatorname{cofix}_{bx}^t[p]] \tau_1 \to \langle p[t/x][b'/b] \| \tilde{\mu}a. \langle a \| f \rangle \tau_1 \rangle \tau_0[b' := \lambda y. \operatorname{cofix}_{bx}^y[p]]$$

The crucial part of the derivation for the left-hand side command is the derivation for the cofix in the store:

$$\frac{\frac{\Pi_{t}}{\Gamma \vdash^{\sigma} \tau_{0}:(\Gamma_{0};\sigma_{0})}}{\Gamma \vdash^{\sigma} \tau_{0}:(\Gamma_{0};\sigma_{0})} \frac{\frac{\Pi_{t}}{\Gamma \vdash^{\sigma\sigma_{0}} t:T} \frac{\Pi_{p}}{\Gamma,\Gamma_{0},f:T \to \mathbb{N}, x:T, b: \forall y^{T}.f(y) = 0 \vdash^{\sigma\sigma_{0}} p:A}{\Gamma,\Gamma_{0} \vdash^{\sigma\sigma_{0}} \operatorname{cofix}_{bx}^{t}[p]:v_{fx}^{t}A}{\Gamma \vdash^{\sigma} \tau_{0}[a := \operatorname{cofix}_{bx}^{t}[p]]:(\Gamma_{0},a:v_{fx}^{t}A;\sigma_{0})} (\operatorname{cofix}_{t}) (\tau_{p})$$

Then, using this derivation, we can type the store of the right-hand side command:

$$\frac{\Pi_{p}}{\Gamma, \Gamma_{0}, y: T \vdash^{\sigma\sigma_{0}} y: T} \frac{\Pi_{p}}{\Gamma, \Gamma_{0}, f: T \to \mathbb{N}, x: T, b: \forall y^{T}. f(y) = 0 \vdash^{\sigma\sigma_{0}} p: A}{\Gamma, \Gamma_{0}, y: T \vdash^{\sigma\sigma_{0}} \operatorname{cofix}_{bx}^{y}[p]: v_{fx}^{y}A} (\forall_{r})}{\Gamma, \Gamma_{0} \vdash^{\sigma\sigma_{0}} \lambda y. \operatorname{cofix}_{bx}^{y}[p]: \forall y. v_{fx}^{t}A} (\tau_{p})}$$

$$\frac{\Gamma \vdash^{\sigma} \tau_{0}[b' := \lambda y. \operatorname{cofix}_{bx}^{y}[p]]: \Gamma_{0}, b' : -\forall y. v_{fx}^{y}A} (\tau_{p})$$

It only remains to type (we avoid the rest of the derivation, which is less interesting) the proof p[t/x] with this new store to ensure us that the reduction is safe (since the variable *a* will still be of type  $v_{fx}^t A$  when typing the rest of the command):

$$\frac{\prod_{p}}{\frac{\Gamma, \Gamma_{0}, b: \forall y. v_{fx}^{y} A \vdash^{\sigma} p[t/x]: A[t/x][v_{fx}^{y} A/f(y) = 0]}{\Gamma, \Gamma_{0}, b: \forall y. v_{fx}^{y} A \vdash^{\sigma} p[t/x]: v_{fx}^{t} A} = A[t/x][v_{fx}^{y} A/f(y) = 0]} (\equiv_{r})$$

• The cases for reductions of terms are easy. Since terms are reduced in place within proofs, the only things to check is that the reduction of wit preserves types (which is trivial) and that the  $\beta$ -reduction verifies the subject reduction (which is a well-known fact).

# **B** Natural deduction as macros (Proofs of Section 2.5)

We give here two examples of typing rules for the macros subst pq and prf pq (in natural deduction) that are admissible in dLPA<sup> $\omega$ </sup>. Recall that we have the following typing rules in dLPA<sup> $\omega$ </sup>:

$$\frac{\Gamma, x: T, a: A \vdash^{\sigma} c}{\Gamma \vdash^{\sigma} \tilde{\mu}(x, a). c: (\exists x^{T}. A)^{\perp}} (\exists_{l}) \qquad \frac{\Gamma \vdash^{\sigma} p: A \quad \Gamma \vdash^{\sigma} e: A[u/t]}{\Gamma \vdash^{\sigma} \tilde{\mu} = .\langle p \| e \rangle : (t = u)^{\perp}} (=_{l})$$

and that we defined prf p and subst pq as syntactic sugar:

prf 
$$p \triangleq \mu \hat{\mathfrak{p}}. \langle p \| \tilde{\mu}(x, a). \langle a \| \hat{\mathfrak{p}} \rangle \rangle$$
 subst  $p$ 

Observe that prf *p* is now only definable if *p* is a NEF proof term. For any  $p \in NEF$  and any variables *a*,  $\alpha$ , we can prove the admissibility of the (prf)-rule:

$$\frac{a:A(x) \vdash^{\sigma} a:A(x)}{a:A(x) \vdash^{\sigma} a:A(\operatorname{wit}(x,a))} (\equiv_{r}) \qquad \frac{\sigma\{(x,a)|p\}(A(\operatorname{wit} p) = \sigma\{(x,a)|p\}(A(\operatorname{wit}(x,a))))}{\Gamma \mid \hat{\mathfrak{p}}:A(\operatorname{wit}(x,a)) \vdash_{d} \hat{\mathfrak{p}}:A(\operatorname{wit}(x,a)))} (\hat{\mathfrak{p}}) \qquad (\hat{\mathfrak{p}})$$

$$\frac{\Gamma \vdash^{\sigma} p: \exists x^{\mathbb{N}}.A \mid \Delta}{\Gamma \mid \tilde{\mu}(x,a).\langle a \parallel \hat{\mathfrak{p}} \rangle: \exists x^{\mathbb{N}}.A \vdash_{d} \Delta, \hat{\mathfrak{p}}:A(\operatorname{wit} p); \sigma\{\cdot|p\}}{\Gamma \vdash^{\sigma} \mu \hat{\mathfrak{p}}.\langle p \parallel \tilde{\mu}(x,a).\langle a \parallel \hat{\mathfrak{p}} \rangle: F \vdash_{d} \Delta, \hat{\mathfrak{p}}:A(\operatorname{wit} p) \mid \Delta} (\operatorname{Cur}) \qquad (Cur)$$

Similarly, we can prove that the (subst)-rule is admissible:

$$\frac{\Gamma \vdash^{\sigma} p: t = u \mid \Delta}{\frac{\langle p \mid \tilde{\mu} = .\langle q \mid \alpha \rangle : \Gamma \vdash^{\sigma} \Delta, \alpha : B[u] \vdash^{\sigma} \alpha : B[u] \mid \Delta}{\Gamma \mid \tilde{\mu} = .\langle q \mid \alpha \rangle : \Gamma \vdash^{\sigma} \Delta, \alpha : B[u]} (Cur)} \begin{pmatrix} (AI) \\ (=_{l}) \end{pmatrix} (Cur) \\ (=_{l}) \end{pmatrix} (Cur)$$

Theorem 2.4 (Countable choice [12]). We have:

$$\begin{array}{rl} AC_{\mathbb{N}} & := \lambda H. \texttt{let} \ a = \texttt{cofix}_{bn}^0[(Hn, b(S(n))] \\ & \texttt{in} \ (\lambda n. \texttt{wit} \ (\texttt{nth}_n \ a), \lambda n. \texttt{prf} \ (\texttt{nth}_n \ a) \\ & : \quad \forall x^{\mathbb{N}} \exists y^T P(x, y) \to \exists f^{\mathbb{N} \to T} \forall x^{\mathbb{N}} P(x, f(x)) \end{array}$$

where  $\operatorname{nth}_n a := \pi_1(\operatorname{fix}_{x,c}^n[a \mid \pi_2(c)]).$ 

*Proof.* The complete typing derivation of the proof term for  $AC_{\mathbb{N}}$  from Herbelin's paper [12] is given in Figure 6.

Theorem 2.5 (Dependent choice [12]). We have:

$$\begin{array}{lll} DC &:= & \lambda H.\lambda x_0. \, \texttt{let} \, a = (x_0, \texttt{cofix}_{bn}^0[d_n]) f six \\ & & \texttt{in} \, (\lambda n. \texttt{wit} \, (\texttt{nth}_n \, a), (\texttt{refl}, \lambda n. \pi_1(\texttt{prf} \, (\texttt{prf} \, (\texttt{nth}_n \, a))))) \\ & : & \forall x^T. \exists y^T. P(x, y) \rightarrow \\ & & \forall x_0^T. \exists f \in T^{\mathbb{N}}. (f(0) = x_0 \wedge \forall n^{\mathbb{N}}. P(f(n), f(s(n)))) \end{array}$$

where  $d_n := \text{dest } Hn \text{ as } (y, c) \text{ in } (y, (c, b y)))$ and  $\text{nth}_n a := \text{fix}_{x,d}^n [a | (wit (prf d), \pi_2(prf(prf(d))))].$ 

*Proof.* Left to the reader.

subst  $p q \triangleq \mu \alpha . \langle p \| \tilde{\mu} = . \langle q \| \alpha \rangle \rangle$ .

( ... )

| Notations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • $\operatorname{nth}_t p \triangleq \pi_1(\operatorname{fix}_{e_T}^t[p \mid \pi_2(s)])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| • $A_{\infty}^n \stackrel{\Delta}{=} v_{f_X}^n [A(x) \wedge f(S(x)) = 0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| • $\operatorname{str}_{\infty}^{t} H \stackrel{\sim}{\triangleq} \operatorname{cofix}_{hn}^{t} [(Hn, b(S(n))]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| • $A(x) \triangleq \exists y^T . P(x, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Typing derivation for nth ( $\Pi_{nth}$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $\frac{\overline{s:A_{\infty}^{m} \vdash s:A_{\infty}^{S(m)}} (Ax_{r})}{a:A_{\infty}^{0} \vdash a:A_{\infty}^{0}} (Ax_{r}) \frac{m:\mathbb{N},s:A_{\infty}^{m} \vdash s:A(m) \land A_{\infty}^{S(m)}}{m:\mathbb{N},s:A_{\infty}^{m} \vdash x:A(m) \land A_{\infty}^{S(m)}} (A_{E}^{2})}$ $\frac{a:A_{\infty}^{0},n:\mathbb{N} \vdash fix_{sx}^{t}[a \mid \pi_{2}(s)]:A_{\infty}^{0} A_{\infty}^{0} \equiv A(n) \land A_{\infty}^{S(n)}} (A_{E}^{2})}{a:A_{\infty}^{0},n:\mathbb{N} \vdash fix_{sx}^{t}[a \mid \pi_{2}(s)]:A(n) \land A_{\infty}^{S(n)}} (A_{E}^{1})} (A_{E}^{1})}$ $\frac{a:A_{\infty}^{0},n:\mathbb{N} \vdash fix_{sx}^{t}[a \mid \pi_{2}(s)]:A(n) \land A_{\infty}^{S(n)}} (A_{E}^{1})}{a:A_{\infty}^{0},n:\mathbb{N} \vdash nth_{n}a:A(n)} (def)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $\frac{s: A_{\infty} \vdash s: A_{\infty}}{\sum} = A_{\infty} \equiv A(m) \land A_{\infty} \equiv (m) \land (m) = (m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $(A_{Y_{\infty}}) = \frac{m : \mathbb{N}, s : A_{\infty}^m \vdash s : A(m) \land A_{\infty}^{\mathcal{O}(m)}}{(\wedge_F^2)}  (\wedge_F^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $\underline{n:\mathbb{N}\vdash n:\mathbb{N}} \xrightarrow{(AX_n)} a: A^0_{\infty}\vdash a: A^0_{\infty} \xrightarrow{(AX_n)} m:\mathbb{N}, s: A^m_{\infty}\vdash \pi_2(s): A^{S(m)}_{\infty} \xrightarrow{\mathbb{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $\underline{a:A_{\infty}^{0},n:\mathbb{N} \vdash fix_{sx}^{t}[a \mid \pi_{2}(s)]:A_{\infty}^{n} \qquad \qquad A_{\infty}^{n} \equiv A(n) \land A_{\infty}^{S(n)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $a: A^0_{\infty}, n: \mathbb{N} \vdash fix^t_{sx}[a \mid \pi_2(s)]: A(n) \land A^{S(n)}_{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $\frac{a:A_{\infty}^{0},n:\mathbb{N} \vdash \pi_{1}(\texttt{fix}_{sx}^{t}[a \mid \pi_{2}(s)]):A(n)}{(\wedge_{E})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\overline{a:A_{\infty}^{0},n:\mathbb{N}\vdashnth_{n}\:a:A(n)}  (\texttt{def})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Typing derivation for str $^0_\infty$ ( $\Pi_{str_\infty}$ ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\frac{H:\forall x^{\mathbb{N}} \exists y^{T} P(x, y) \vdash H:\forall x^{\mathbb{N}} \exists y^{T} P(x, y)}{H:\forall x^{\mathbb{N}} \exists y^{T} P(x, y), n: \mathbb{N} \vdash Hn: \exists y^{T}.P(n, y)} \xrightarrow{(Ax_{r})} (\forall_{r})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $H: \forall x^{\mathbb{N}} \exists y^{\mathbb{I}} P(x, y), n: \mathbb{N} \vdash Hn: \exists y^{\mathbb{I}} . P(n, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| $\frac{1}{H:\forall x^{\mathbb{N}} \exists y^{T} P(x, y), n: \mathbb{N}, b:\forall z^{N}. f(z) = 0 \vdash (Hn, b(S(n)): \exists y^{T}. P(n, y) \land f(S(n)) = 0}{H:\forall x^{\mathbb{N}} \exists y^{T} P(x, y) \vdash \operatorname{cofix}_{bn}^{0}[(Hn, b(S(n))]: v_{fx}^{0} \exists y^{T}. P(x, y) \land f(S(x)) = 0} $ $(def)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| $H: \forall x^{\mathbb{N}} \exists y^{1} P(x, y) \vdash \operatorname{cofix}_{bn}^{0}[(Hn, b(S(n))]: v_{fx}^{0} \exists y^{1} . P(x, y) \land f(S(x)) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $\frac{1}{H: \forall x^{\mathbb{N}} \exists y^T P(x, y) \vdash str_{\infty}^0 H: A_{\infty}^0} $ (def)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Typing derivation for $AC_{\mathbb{N}}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Π <sub>nth</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $\Pi_{nth} \qquad \qquad \overline{a:A_{\infty}^{0},n:\mathbb{N}\vdash nth_{n}a:A(n)} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $\frac{\frac{\Pi_{nth}}{a:A_{\infty}^{0},n:\mathbb{N}\vdash nth_{n}a:A(n)}}{\frac{a:A_{\infty}^{0},n:\mathbb{N}\vdash nth_{n}a:\exists y^{T}.P(n,y)}{\frac{a:A_{\infty}^{0},n:\mathbb{N}\vdash wit(nth_{n}a):T}{a:A_{\infty}^{0},n:\mathbb{N}\vdash hth_{n}a:\exists y^{T}.P(n,y)}} \overset{(def)}{(wit)} \xrightarrow{\frac{a:A_{\infty}^{0},n:\mathbb{N}\vdash nth_{n}a:\exists y^{T}.P(n,y)}{a:A_{\infty}^{0},x:\mathbb{N}\vdash prf(nth_{n}a):P(x,wit(nth_{x}a))}} \overset{(def)}{(=,)} \xrightarrow{(=,)} $                                                                                                               |  |
| $\overline{a:A_{\infty}^{0},n:\mathbb{N}\vdashnth_{n}a:\exists y^{T}.P(n,y)} \xrightarrow{(def)} \overline{a:A_{\infty}^{0},x:\mathbb{N}\vdashprf(nth_{n}a):P(x,wit(nth_{x}a))} \xrightarrow{(\equiv_{r})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $\overline{a:A_{\infty}^{0},n:\mathbb{N}\vdashwit(nth_{n}a):T} \xrightarrow{(wit)} \overline{a:A_{\infty}^{0},x:\mathbb{N}\vdashprf(nth_{n}a):P(x,\lambda n.wit(nth_{n}a)x)} \xrightarrow{(\equiv_{r})} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $\frac{a: A_{\infty}^{0} + \lambda n. \text{ wit} (\operatorname{nth}_{n} a): \mathbb{N} \to T}{a: A_{\infty}^{0} + \lambda n. \text{ wit} (\operatorname{nth}_{n} a): \mathbb{N} \to T} \qquad \frac{a: A_{\infty}^{0} + \lambda n. \operatorname{prf} (\operatorname{nth}_{n} a): \mathbb{V} \times \mathbb{N} \cdot \operatorname{prf} (\operatorname{nth}_{n} a): \mathbb{V} \times \mathbb{N} \cdot \operatorname{prf} (\operatorname{nth}_{n} a): \mathbb{V} \times \mathbb{N} \cdot \operatorname{prf} (\operatorname{nth}_{n} a) \times \mathbb{V} \times \mathbb{N} \cdot \mathbb{N} \cdot \mathbb{N} \times $ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\frac{a: A_{\infty}^{0} \vdash (\lambda n. \text{wit} (\operatorname{nth}_{n} a), \lambda n. \operatorname{prf} (\operatorname{nth}_{n} a) : \exists f^{\mathbb{N} \to T}. \forall x^{\mathbb{N}}. P(x, f(x))}{H: \forall x^{\mathbb{N}} \exists y^{T} P(x, y) \vdash \operatorname{let} a = \operatorname{str}_{\infty}^{0} H \operatorname{in} (\lambda n. \operatorname{wit} (\operatorname{nth}_{n} a), \lambda n. \operatorname{prf} (\operatorname{nth}_{n} a) : \exists f^{\mathbb{N} \to T}. \forall x^{\mathbb{N}}. P(x, f(x))} \xrightarrow{(\operatorname{her})} (\operatorname{her}) \\ \vdash \lambda H. \operatorname{let} a = \operatorname{str}_{\infty}^{0} H \operatorname{in} (\lambda n. \operatorname{wit} (\operatorname{nth}_{n} a), \lambda n. \operatorname{prf} (\operatorname{nth}_{n} a) : \forall x^{\mathbb{N}}. \exists y^{T}. P(x, y) \to \exists f^{\mathbb{N} \to T}. \forall x^{\mathbb{N}}. P(x, f(x))} \xrightarrow{(\to r)} (\operatorname{her})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\frac{1}{1 + \lambda H. \text{let } a = \text{str}_{0}^{0} H \text{ in } (\lambda n. \text{wit } (\text{nth}_{n} a), \lambda n. \text{prf } (\text{nth}_{n} a) : \forall x^{\mathbb{N}} \exists u^{T} P(x, u) \to \exists f^{\mathbb{N} \to T} \forall x^{\mathbb{N}} P(x, f(x)) \qquad (\rightarrow_{r})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| where we omit the conversion $P(x, (\lambda n. wit (nth_n a))x) \equiv P(x, wit (nth_x a))$ on the right-hand side derivation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| (x,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Figure 6. Proof of the axiom of countable choice in  $\mathrm{dLPA}^\omega$ 

#### C Small-step reduction rules (Proofs of Section 3)

We give in Figure 7 the full reduction system based on small-step reduction rules which are described in Section 3. We detail thereafter the proofs of the two main properties of the small-step reduction system.

# Proposition 3.1 (Subject Reduction). The small-step reduction rules satisfy subject reduction.

*Proof.* The proof is again a tedious induction on the reduction  $\rightsquigarrow_s$ . There is almost nothing new in comparison with the cases for the big-step reduction rules: the cases for reduction of terms are straightforward, as well as the administrative reductions changing the focus on a command. We only give the case for the reduction of pairs (t, p). The reduction rule is:

$$\langle (t,p) \| e \rangle_p \tau \rightsquigarrow_s \langle p \| \tilde{\mu} \dot{\mathfrak{p}} . \langle t \| \tilde{\mu} x . \langle \dot{\mathfrak{p}} \| \tilde{\mu} a . \langle (x,a) \| e \rangle \rangle \rangle_p \tau$$

Consider a typing derivation for the command on the left-hand side, which is of the shape (we omit the rule (l) and the store for conciseness):

$$\frac{\frac{\Pi_{t}}{\Gamma \vdash^{\sigma} t:T} \quad \frac{\Pi_{p}}{\Gamma \vdash^{\sigma} p:A[t/x]}}{\frac{\Gamma \vdash^{\sigma} (t,p): \exists x^{T}.A}{\Gamma \vdash^{\sigma} \langle (t,p) \| e \rangle}} \xrightarrow{(\exists_{r})} \quad \frac{\Pi_{e}}{\Gamma \vdash^{\sigma} e: (\exists x^{T}.A)^{\perp}}$$
(Cut)

Then we can type the command on the right-hand side with the following derivation:

$$\frac{\prod_{(x,a)} \prod_{e} (C_{UT})}{\frac{\Gamma, x: T, a: A[x] \vdash^{\sigma} \langle (x, a) \| e \rangle : A[x]^{\perp}}{\Gamma, \dot{x}: T \vdash^{\sigma} \tilde{\mu} a. \langle (x, a) \| e \rangle : A[x]^{\perp}} (\tilde{\mu})^{A[t]} = (\{x|t\})(A[x])} (C_{UT})^{A[t]} \frac{\Gamma, \check{\Psi}: A[t], x: T \vdash_{d} \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle; \sigma\{x|t\}}{\Gamma, \check{\Psi}: A[t], x: T \vdash_{d} \tilde{\mu} x. \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle; T; \sigma\{\cdot|t\}} (\tilde{\mu}_{x})} (C_{UT})^{A[t]} \frac{\Gamma, \check{\Psi}: A[t] \vdash \langle t \| \tilde{\mu} x. \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle; \sigma\{\cdot|t\}}{\Gamma \vdash^{\sigma} \tilde{\mu} \check{\Psi}. \langle t \| \tilde{\mu} x. \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle; T \cap (C_{UT})} (C_{UT})^{A[t]}} (C_{UT})^{A[t]} \frac{\Gamma \vdash^{\sigma} \tilde{\mu} \check{\Psi}. \langle t \| \tilde{\mu} x. \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle; \sigma\{\cdot|t]^{\perp}}{\Gamma \vdash^{\sigma} \langle p \| \tilde{\mu} \check{\Psi}. \langle \check{\Psi} \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle \rangle \rho} (C_{UT})^{A[t]}$$

where  $\Pi_{(x,a)}$  is as expected.

**Proposition 3.2.** If a closure  $c\tau$  normalizes for the reduction  $\rightsquigarrow_s$ , then it normalizes for  $\rightarrow$ .

*Proof.* By contraposition, one proves that if a command  $c\tau$  produces an infinite number of steps for the reduction  $\rightarrow$ , then it does not normalize for  $\rightsquigarrow_s$  either. This is proved by showing by induction on the reduction  $\rightarrow$  that each step, except for the contextual reduction of terms, is reflected in at least on for the reduction  $\rightsquigarrow_s$ . The rules for term reductions require a separate treatment, which is really not interesting at this point. We claim that the reduction of terms, which are usual simply-typed  $\lambda$ -terms, is known to be normalizing anyway and does not deserve that we spend another page proving it in this particular setting.

| Command                       | S / - II - \                                                                                                                                                                             | ( <b>b</b>   _0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                               | $ \begin{array}{c} \langle p \  e \rangle_c \tau \rightsquigarrow_s \\ \langle t \  \pi \rangle_c \tau \rightsquigarrow_s \end{array} $                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle l \  \pi \rangle_c \tau \rightsquigarrow_s$                                                                                                                                     | $\langle l \  \pi \rangle_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| Delimited                     | continuations                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| for any <i>ı</i> , <i>o</i> ) | $\langle \mu \hat{\mathfrak{p}}. c \tau^{\prime \prime} \  e \rangle_p \tau \rightsquigarrow_s$                                                                                          | $\langle \mu \hat{\mathbf{tp}}. c' \tau'' \  e \rangle_p \tau'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (if $c_l \tau \rightsquigarrow_{s} c'_o \tau'$ )                                 |
|                               | $\langle \mu \hat{\mathfrak{p}} . \langle p \  \hat{\mathfrak{p}} \rangle \  e \rangle_p \tau \rightsquigarrow_s$                                                                        | $\langle p \  e \rangle_p \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| (for any $\iota, o$ )         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\text{if } c_{\iota}\tau \rightsquigarrow_{s} c'_{o}\tau')$                    |
|                               | $\langle V \  \tilde{\mu} \check{\mathfrak{p}}. \langle \check{\mathfrak{p}} \  e \rangle  angle_e 	au \rightsquigarrow_s$                                                               | $\langle V \  e \rangle_e \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| Proofs                        | <i>.</i>                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| $(e \neq e_{\hat{tp}})$       | $\langle \mu \alpha. c \  e \rangle_p \tau \rightsquigarrow_s$                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle \mu \alpha. c \  e_{\hat{\mathrm{tp}}} \rangle_p \tau \rightsquigarrow_s$                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |
| (a fresh)                     |                                                                                                                                                                                          | $\langle p_1 \  \tilde{\mu} a_1. \langle p_2 \  \tilde{\mu} a_2. \langle (a_1, a_2) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_2) \ e\rangle\rangle\rangle_p \tau$                                           |
| (a fresh)                     |                                                                                                                                                                                          | $\langle p \  \tilde{\mu} a. \langle \iota_i(a) \  e \rangle \rangle_p \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| (a fresh)                     | $\langle (t,p) \  e \rangle_p \tau \leadsto_s$                                                                                                                                           | $\langle p \  \tilde{\mu} \dot{\Phi} \cdot \langle t \  \tilde{\mu} x \cdot \langle \dot{\Phi} \  \tilde{\mu} a \cdot \langle \dot{\Phi} \  \tilde{\mu}$ | $(x,a) \  e \rangle \rangle \rangle_p \tau$                                      |
| (y, a fresh)                  | $\langle fix_{bx}^t[p \mid q] \  e \rangle_p \tau \rightsquigarrow_s$                                                                                                                    | $\langle \mu \hat{\mathbf{p}}. \langle t \  \tilde{\mu} y. \langle a \  \hat{\mathbf{p}} \rangle [a :=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= \operatorname{fix}_{hr}^{y}[p   q]] \rangle \  e \rangle_{p} \tau$            |
| (y, a fresh)                  | $\langle \operatorname{cofix}_{hx}^{t}[p] \  e \rangle_{p} \tau \rightsquigarrow_{s}$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle V \  e \rangle_p \tau \rightsquigarrow_s$                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $DX \sim F$                                                                      |
| Contents                      | \`"' <i>p</i> ' 3                                                                                                                                                                        | v 11°7 <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| Contexts                      | $\langle V \  \alpha \rangle_e \tau [\alpha := e] \tau' \rightsquigarrow_s$                                                                                                              | $\langle V \  e \rangle_e \tau[\alpha := e] \tau'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |
|                               | $\langle V \  \tilde{\mu} a. c \tau' \rangle_e \tau \rightsquigarrow_s$                                                                                                                  | $c_c \tau[a := V] \tau'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
|                               | $\langle V \  f \rangle_e \tau \rightsquigarrow_s$                                                                                                                                       | $\langle V \  f \rangle_V \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| alues                         |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle a \  f \rangle_V \tau[a := V] \tau' \rightsquigarrow_s$                                                                                                                         | $\langle V \  f \rangle_V \tau[a := V] \tau'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
|                               | $\langle v \  f \rangle_V \tau \rightsquigarrow_s$                                                                                                                                       | $\langle v \  f \rangle_f \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| (b' fresh)                    | $\langle a \  f \rangle_V \tau[a = \operatorname{cofix}_{h_Y}^t[p]] \tau' \rightsquigarrow_s$                                                                                            | $\langle p[t/x][b'/b] \  \tilde{\mu}a.\langle a \  \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\langle \tau' \rangle_p \tau[b' := \lambda y. \operatorname{cofix}_{h=1}^y[p]]$ |
| ,                             | $\langle a \  f \rangle_V \tau [a = \operatorname{fix}_{bx}^0 [p_0   p_S]] \tau' \rightsquigarrow_s$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , pt 5 <sub>bx</sub> th                                                          |
| b' fresh)                     | $\langle a \  f \rangle_{\upsilon} \tau [a = \operatorname{fix}_{bx}^{S(t)} [p_0   p_S]] \tau' \rightsquigarrow_s$                                                                       | $p_0 \  \mu \alpha \cdot \langle \alpha \  j / t / j t \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ f\rangle \sigma'\rangle = fix^t [b_1 + b_2]$                                   |
|                               |                                                                                                                                                                                          | $\langle p_S[l/x][l/x][l/x][l/x]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $J/i /pi[b := lix_{bx}[p_0   p_S]]]$                                             |
| Forcing con                   | ntexts $\langle \lambda x, p \  t \cdot e \rangle c \tau \sim c$                                                                                                                         | $\langle \mu \hat{\mathbf{p}}. \langle t \  \tilde{\mu} x. \langle p \  \hat{\mathbf{p}} \rangle \rangle \  e \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-\tau$                                                                          |
| $q \in \text{Nef}$            |                                                                                                                                                                                          | $\langle \mu \hat{\mathbf{p}} \cdot \langle q \  \tilde{\mu} a \cdot \langle p \  \hat{\mathbf{p}} \rangle \rangle \  e \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
| $(q \notin \text{NEF})$       | $\langle \lambda a. p \  q \cdot e \rangle_f \tau \sim s$                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ľ                                                                                |
| (1, ,                         | $\langle \iota_i(V) \  \tilde{\mu}[a_1.c^1 \mid a_2.c^2] \rangle_f \tau \rightsquigarrow_s$                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |
|                               | $\frac{\langle l_1(V) \  \mu[u_1.V + u_2.V] \rangle_f \tau \rightsquigarrow_s}{\langle (V_1, V_2) \  \tilde{\mu}(a_1, a_2).c \rangle_f \tau \rightsquigarrow_s}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]                                                                                |
|                               | $ \langle (V_1, V_2) \  \mu(u_1, u_2) \cdot \mathcal{C} \rangle_f \tau \rightsquigarrow_s \\ \langle (V_t, V) \  \tilde{\mu}(x, a) \cdot \mathcal{C} \rangle_f \tau \rightsquigarrow_s $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .]                                                                               |
|                               | $\langle (v_t, v) \  \mu(x, u) c \rangle_f t \rightsquigarrow_s \langle \operatorname{refl} \  \tilde{\mu} = .c \rangle_f \tau \rightsquigarrow_s$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| <b>Common c</b>               | ()                                                                                                                                                                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| <b>Ferms</b>                  | $\langle tu \  \pi \rangle_t \tau \rightsquigarrow_s$                                                                                                                                    | $\langle t \  u \cdot \pi \rangle_t \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| (x fresh)                     |                                                                                                                                                                                          | $\langle t \  \tilde{\mu} x. \langle S(x) \  \pi \rangle \rangle_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |
| (x, a fresh)                  |                                                                                                                                                                                          | $\langle p \  \tilde{\mu}(x,a) . \langle x \  \pi \rangle \rangle_p \tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| $(t \notin V_t)$              | $\langle \operatorname{rec}_{xy}^t[t_0   t_S] \  \pi \rangle_t \tau \rightsquigarrow_s$                                                                                                  | $\langle t \  \tilde{\mu} z. \langle \operatorname{rec}_{xy}^{z} [t_0   t_S] \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\langle \pi \rangle \rangle_t \tau$                                             |
|                               | $\langle \operatorname{rec}_{xy}^0[t_0   t_S]    \pi \rangle_t \tau \rightsquigarrow_s$                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle \operatorname{rec}_{xy}^{S(V_t)}[t_0   t_S] \  \pi \rangle_t \tau \rightsquigarrow_s$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $S[/y]    \pi \rangle_t \tau$                                                    |
|                               | $\langle V_t \  \pi \rangle_t \tau \sim s$                                                                                                                                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 31 (7 211 / 14                                                                 |
|                               | $\langle \lambda x.t \  u \cdot \pi \rangle_{\pi} \tau \sim s$                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle V_t \  \tilde{\mu} x. c_t \rangle_{\pi} \tau \sim s$                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
|                               | $\langle V_t \  \mu X.C_t \rangle_{\pi} T \sim \to c$                                                                                                                                    | $(U_t U_f V_t / \Lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |

Figure 7. Small-step reduction rules

#### D Realizability interpretation (Proofs of Section 4)

We give here the different proofs relative to the realizability interpretation of dLPA<sup>\u03b2</sup>. First, we verify that the set of normalizing closures is indeed a pole:

**Proposition 4.5.** The set  $\perp \parallel = \{c\tau \in C_0 : c\tau \text{ normalizes }\}$  is a pole.

*Proof.* The first two conditions are already verified for the  $\overline{\lambda}_{[l \upsilon \tau \star]}$ -calculus [21]. The third one is straightforward, since if a closure  $\langle \mu \hat{\psi}.c \| e \rangle \tau$  is not normalizing, it is easy to verify that  $c[e/\hat{\psi}]$  is not normalizing either. Roughly, there is only two possible reduction steps for a command  $\langle \mu \hat{\psi}.c \| e \rangle \tau$ : either it reduces to  $\langle \mu \hat{\psi}.c' \| e \rangle \tau'$ , in which case  $c[e/\hat{\psi}]\tau$  also reduces to a closure which is almost  $(c'\tau')[e/\hat{\psi}]$ ; or c is of the shape  $\langle p \| \hat{\psi} \rangle$  and it reduces to  $c[e/\hat{\psi}]\tau$ . In both cases, if  $\langle \mu \hat{\psi}.c \| e \rangle \tau$  can reduce, so can  $c[e/\hat{\psi}]\tau$ . The same reasoning allows us to show that if  $c[V/\check{\psi}]\tau$  normalizes, then so does  $\langle V \| \tilde{\mu} \check{\psi}.c \rangle \tau$  for any value V.

We recall two key properties of the interpretation, whose proofs are similar to the proofs for the corresponding statements in the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus [21]:

**Lemma D.1** (Store weakening). Let  $\tau$  and  $\tau'$  be two stores such that  $\tau \lhd \tau'$ , let  $\Gamma$  be a typing context, let  $\bot$  be a pole and  $\rho$  a valuation. The following statements hold:

1. 
$$\overline{\tau\tau'} = \tau$$

- 2. If  $(p|\tau)_{\rho} \in |A_{\rho}|_{p}$  for some closed proof-in-store  $(p|\tau)_{\rho}$  and formula A, then  $(p|\tau')_{\rho} \in |A_{\rho}|_{p}$ . The same holds for each level  $e, E, V, f, t, \pi, V_{t}$  of the interpretation.
- 3. If  $(\tau, \rho) \Vdash \Gamma$  then  $(\tau', \rho) \Vdash \Gamma$ .

**Proposition D.2** (Monotonicity). For any closed formula A, any type T and any given pole  $\perp$ , we have the following inclusions:

 $|A|_V \subseteq |A|_p \qquad \qquad ||A||_f \subseteq ||A||_e \qquad \qquad |T|_{V_t} \subseteq |T|_t$ 

Truth and falsity values are defined up to observational equivalence:

**Lemma 4.8.** For any store  $\tau$  and any valuation  $\rho$ , the component along  $\tau$  of the truth and falsity values defined in Figure 5 are closed under the relation  $\equiv_{\tau}$ :

- 1.  $if(f|\tau)_{\rho} \in ||A_{\rho}||_{f}$  and  $A_{\rho} \equiv_{\tau} B_{\rho}$ , then  $(f|\tau)_{\rho} \in ||B_{\rho}||_{f}$ ,
- 2.  $if(V_t|\tau)_{\rho} \in |A_{\rho}|_{V_t}$  and  $A_{\rho} \equiv_{\tau} B_{\rho}$ , then  $(V_t|\tau)_{\rho} \in |B_{\rho}|_{\upsilon}$ .

The same applies with  $|A_{\rho}|_{p}$ ,  $||A_{\rho}||_{e}$ , etc.

*Proof.* By induction on the structure of  $A_{\rho}$  and the different levels of interpretation. The different base cases  $(p \in A_{\rho}, t \in T, t = u)$  are direct since their components along  $\tau$  are defined modulo  $\equiv_{\tau}$ , the other cases are trivial inductions.

We can now give the complete proof of adequacy of the typing rules with respect to the realizability interpretation, defined in Figure 5.

**Proposition 4.9.** The typing rules are adequate with respect to the realizability interpretation. In other words, if  $\Gamma$  is a typing context,  $\perp a$  pole,  $\rho$  a valuation and  $\tau$  a store such that  $(\tau, \rho) \Vdash \Gamma$ ;  $\sigma$ , then the following hold:

- 1. If v is a strong value such that  $\Gamma \vdash^{\sigma} v : A$  or  $\Gamma \vdash_{d} v : A; \sigma$ , then  $(v|\tau)_{\rho} \in |A_{\rho}|_{V}$ .
- 2. If f is a forcing context such that  $\Gamma \vdash^{\sigma} f : A^{\perp}$  or  $\Gamma \vdash_{d} f : A^{\perp}; \sigma$ , then  $(f|\tau)_{\rho} \in ||A_{\rho}||_{f}$ .
- 3. If V is a weak value such that  $\Gamma \vdash^{\sigma} V : A$  or  $\Gamma \vdash_{d} V : A; \sigma$ , then  $(V|\tau)_{\rho} \in |A_{\rho}|_{V}$ .
- 4. If e is a context such that  $\Gamma \vdash^{\sigma} e : A^{\perp}$  or  $\Gamma \vdash_{d} e : A^{\perp}; \sigma$ , then  $(e|\tau)_{\rho} \in ||A_{\rho}||_{e}$ .
- 5. If p is a proof term such that  $\Gamma \vdash^{\sigma} p : A$  or  $\Gamma \vdash_{d} p : A; \sigma$ , then  $(p|\tau)_{\rho} \in |A_{\rho}|_{p}$ .
- 6. If  $V_t$  is a term value such that  $\Gamma \vdash^{\sigma} V_t : T$ , then  $(V_t | \tau)_{\rho} \in |T_{\rho}|_{V_t}$ .
- 7. If  $\pi$  is a term context such that  $\Gamma \vdash^{\sigma} \pi : T$ , then  $(\pi | \tau)_{\rho} \in |T_{\rho}|_{\pi}$ .
- 8. If t is a term such that  $\Gamma \vdash^{\sigma} t : T$ , then  $(t|\tau)_{\rho} \in |T_{\rho}|_{t}$ .
- 9. If  $\tau'$  is a store such that  $\Gamma \vdash^{\sigma} \tau' : (\Gamma';)\sigma'$ , then  $(\tau\tau', \rho) \Vdash (\Gamma, \Gamma'; \sigma\sigma')$ .
- 10. If c is a command such that  $\Gamma \vdash^{\sigma} c$  or  $\Gamma \vdash_{d} c; \sigma$ , then  $(c\tau)_{\rho} \in \square$ .
- 11. If  $c\tau'$  is a closure such that  $\Gamma \vdash^{\sigma} c\tau'$  or  $\Gamma \vdash_{d} c\tau'; \sigma$ , then  $(c\tau\tau')_{\rho} \in \bot$ .

*Proof.* The proof is done by induction on the typing derivation such as given in the system extended with the small-step reduction  $\rightsquigarrow_s$ . Most of the cases correspond to the proof of adequacy for the interpretation of the  $\overline{\lambda}_{[lv\tau\star]}$ -calculus, so that we only give the most interesting cases. To lighten the notations, we omit the annotation by the valuation  $\rho$  whenever it is possible.

• **Case**  $(\exists_r)$ . We recall the typing rule through the decomposition of dependent sums:

$$\frac{\Gamma \vdash^{\sigma} t : u \in T \quad \Gamma \vdash^{\sigma} p : A[u/x]}{\Gamma \vdash^{\sigma} (t, p) : (u \in T \land A[u])}$$

By induction hypothesis, we obtain that  $(t|\tau) \in |u \in T|_t$  and  $(p|\tau) \in |A[u]|_p$ . Consider thus any context-in-store  $(e|\tau') \in ||u \in T \land A[u]||_e$ such that  $\tau$  and  $\tau'$  are compatible, and let us denote by  $\tau_0$  the union  $\tau\tau'$ . We have:

$$\langle (t,p) \| e \rangle_{p} \tau_{0} \rightsquigarrow_{s} \langle p \| \tilde{\mu} \dot{\mathfrak{p}} . \langle t \| \tilde{\mu} x. \langle \dot{\mathfrak{p}} \| \tilde{\mu} a. \langle (x,a) \| e \rangle \rangle \rangle_{p} \tau_{0}$$

so that by anti-reduction, we need to show that  $\tilde{\mu} \dot{\Psi} \cdot \langle t \| \tilde{\mu} x \cdot \langle \dot{\Psi} \| \tilde{\mu} a \cdot \langle (x, a) \| e \rangle \rangle \in \|A[u]\|_e$ . Let us then consider a value-in-store  $(V | \tau'_0) \in |A[u]|_V$  such that  $\tau_0$  and  $\tau'_0$  are compatible, and let us denote by  $\tau_1$  the union  $\overline{\tau_0 \tau'_0}$ . By closure under delimited continuations, to show that  $\langle V \| \tilde{\mu} \dot{\Psi} \cdot \langle t \| \tilde{\mu} x \cdot \langle \dot{\Psi} \| \tilde{\mu} a \cdot \langle (x, a) \| e \rangle \rangle \rangle_p \tau_1$  is in the pole it is enough to show that the closure  $\langle t \| \tilde{\mu} x \cdot \langle V \| \tilde{\mu} a \cdot \langle (x, a) \| e \rangle \rangle \tau_1$  is in  $\bot$ . Thus it suffices to show that the coterm-in-store  $(\tilde{\mu} x \cdot \langle V \| \tilde{\mu} a \cdot \langle (x, a) \| e \rangle \rangle \tau_1$  is in  $|u \in T|_{\pi}$ .

Consider a term value-in-store  $(V_t | \tau_1') \in |u \in T|_{V_t}$ , such that  $\tau_1$  and  $\tau_1'$  are compatible, and let us denote by  $\tau_2$  the union  $\overline{\tau_1 \tau_1'}$ . We have:

$$\langle V_t \| \tilde{\mu} x. \langle V \| \tilde{\mu} a. \langle (x, a) \| e \rangle \rangle \rangle \tau_2 \rightsquigarrow_s \langle V \| \tilde{\mu} a. \langle (V_t, a) \| e \rangle \rangle \tau_2 \rightsquigarrow_s \langle (V_t, a) \| e \rangle \tau_2 [a := V]$$

It is now easy to check that  $((V_t, a)|\tau_2[a := V]) \in |u \in T \land A[u]|_V$  and to conclude, using Lemma D.1 to get  $(e|\tau_2[a := V]) \in ||u \in T \land A[u]||_e$ , that this closure is finally in the pole.

• Case  $(\equiv_r), (\equiv_l)$ . These cases are direct consequences of Proposition 4.8 since if A, B are two formulas such that  $A \equiv B$ , in particular  $A \equiv_{\tau} B$  and thus  $|A|_{\upsilon} = |B|_{\upsilon}$ .

• Case (ref1),(=<sub>1</sub>). The case for ref1 is trivial, while it is trivial to show that  $(\tilde{\mu}=.\langle p \| e \rangle | \tau)$  is in  $\|t = u\|_f$  if  $(p|\tau) \in |A[t]|_p$  and  $(e|\tau) \in \|A[u]\|_e$ . Indeed, either  $t \equiv_{\tau} u$  and thus  $A[t] \equiv_{\tau} A[u]$  (Proposition 4.8, or  $t \neq_{\tau} u$  and  $\|t = u\|_f = \Lambda_f^{\tau}$ .

• **Case**  $(\forall_r^x)$ . This case is standard in a call-by-value language with value restriction. We recall the typing rule:

$$\frac{\Gamma \vdash^{\sigma} \upsilon : A \quad x \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} \upsilon : \forall x.A} \ (\forall_r^x)$$

The induction hypothesis gives us that  $(v|\tau)_{\rho}$  is in  $|A_{\rho}|_{V}$  for any valuation  $\rho[x \mapsto t]$ . Then for any t, we have  $(v|\tau)_{\rho} \in ||A_{\rho}[t/x]||_{f}^{\perp_{v}}$  so that  $(v|\tau)_{\rho} \in (\bigcap_{t \in \Lambda_{t}} ||A[t/x]||_{f}^{\perp_{v}})$ . Therefore if  $(f|\tau')_{\rho}$  belongs to  $||\forall x.A_{\rho}||_{f} = (\bigcap_{t \in \Lambda_{t}} ||A[t/x]||_{f}^{\perp_{v}})^{\perp_{f}}$ , we have by definition that  $(v|\tau)_{\rho} \perp (f|\tau')_{\rho}$ .

• **Case** (fix). We recall the typing rule:

$$\frac{\Gamma \vdash^{\sigma} t: \mathbb{N} \quad \Gamma \vdash^{\sigma} p_0: A[0/x] \quad \Gamma, x: T, a: A \vdash^{\sigma} p_S: A[S(x)/x]}{\Gamma \vdash^{\sigma} \operatorname{fix}_{ax}^t[p_0 \mid p_S]: A[t/x]}$$
(fix

We want to show that  $(fix_{ax}^t[p_0 | p_S] | \tau) \in |A[t]|_p$ , let us then consider  $(e|\tau') \in ||A[t]||_e$  such that  $\tau$  and  $\tau'$  are compatible, and let us denote by  $\tau_0$  the union  $\tau\tau'$ . By induction hypothesis, we have<sup>16</sup>  $t \in |t \in \mathbb{N}|_t$  and we have:

$$\langle \mathsf{fix}_{bx}^t [p_0 \mid p_S] \| e \rangle_p \tau_0 \rightsquigarrow_s \langle \mu \hat{\mathfrak{p}} . \langle t \| \tilde{\mu} y . \langle a \| \hat{\mathfrak{p}} \rangle [a := \mathsf{fix}_{bx}^y [p_0 \mid p_S]] \rangle \| e \rangle_p \tau_0$$

so that by anti-reduction and closure under delimited continuations, it is enough to show that the coterm-in-store  $(\tilde{\mu}y.\langle a \| e)[a := fix_{bx}^{y}[p_0 | p_S]]|\tau_0)$ is in  $|t \in \mathbb{N}|_{\pi}$ . Let us then consider  $(V_t | \tau'_0) \in |t \in \mathbb{N}|_{V_t}$  such that  $\tau_0$  and  $\tau'_0$  are compatible, and let us denote by  $\tau_1$  the union  $\overline{\tau_0\tau'_0}$ . By definition,  $V_t = S^n(0)$  for some  $n \in \mathbb{N}$  and  $t \equiv_{\tau_1} S^n(0)$ , and we have:

$$\langle S^n(0) \| \tilde{\mu} y. \langle a \| e \rangle [a := \mathsf{fix}_{bx}^y [p_0 \mid p_S]] \rangle \tau_1 \rightsquigarrow_s \langle a \| e \rangle \tau_1 [a := \mathsf{fix}_{bx}^{S^n(0)} [p_0 \mid p_S]]$$

We conclude by showing by induction on the natural numbers that for any  $n \in N$ , the value-in-store  $(a|\tau_1[a := fix_{bx}^{S^n(0)}[p_0|p_S]])$  is in  $|A[S^n(0)]|_V$ . Let us consider  $(f|\tau_1') \in ||A[S^n(0)]|_f$  such that the store  $\tau_1[a := fix_{bx}^{S^n(0)}[p_0|p_S]]$  and  $\tau_1'$  are compatible, and let us denote by  $\tau_2[a := fix_{bx}^{S^n(0)}[p_0|p_S]]\tau_2'$  their union.

• If *n* = 0, we have:

$$\langle a \| f \rangle \tau_2[a := \operatorname{fix}_{h_x}^0[p_0 | p_S]] \tau'_2 \rightsquigarrow_s \langle p_0 \| \tilde{\mu} a \langle a \| f \rangle \tau'_2 \rangle \tau_2$$

We conclude by anti-reduction and the induction hypothesis for  $p_0$ , since it is easy to show that  $(\tilde{\mu}a.\langle a \| f \rangle \tau'_2 | \tau_2) \in \|A[0]\|_e$ .

• If n = S(m), we have:

$$\langle a \| f \rangle \tau_2[a := \mathsf{fix}_{bx}^{S(S^m(0))}[p_0 \,|\, p_S]] \tau'_2 \rightsquigarrow_s \langle p_S[S^m(0)/x][b'/b] \| \tilde{\mu}a. \langle a \| f \rangle \tau'_2 \rangle_p \tau_2[b' := \mathsf{fix}_{bx}^{S^m(0)}[p_0 \,|\, p_S]]$$

Since we have by induction that  $(b'|\tau_2[b' := fix_{bx}^{S^m(0)}[p_0 | p_S]])$  is in  $|A[S^m(0)]|_V$ , we can conclude by anti-reduction, using the induction hypothesis for  $p_S$  and the fact that  $(\tilde{\mu}a.\langle a \| f \rangle \tau_2' | \tau_2)$  belongs to  $||A[S(S^m(0))]||_e$ .

<sup>&</sup>lt;sup>16</sup>Recall that any term *t* of type *T* can be given the type  $t \in T$ .

• **Case** (cofix). We recall the typing rule:

$$\frac{\Gamma \vdash^{\sigma} t: T \quad \Gamma, x: T, b: \forall y^{T} X(y) \vdash^{\sigma} p: A \quad X \text{ positive in } A \quad X \notin FV(\Gamma)}{\Gamma \vdash^{\sigma} \operatorname{cofix}_{br}^{t}[p]: v_{Xr}^{t} A}$$
(cofix)

We want to show that  $(cofix_{bx}^t[p]|\tau) \in |v_{Xx}^tA|_p$ , let us then consider  $(e|\tau') \in ||v_{Xx}^tA||_e$  such that  $\tau$  and  $\tau'$  are compatible, and let us denote by  $\tau_0$  the union  $\tau\tau'$ . By induction hypothesis, we have  $t \in |t \in T|_t$  and we have:

 $\langle \operatorname{cofix}_{bx}^t[p] \| e \rangle_p \tau_0 \rightsquigarrow_s \langle \mu \hat{\mathfrak{p}} . \langle t \| \tilde{\mu} y . \langle a \| \hat{\mathfrak{p}} \rangle [a := \operatorname{cofix}_{bx}^y[p]] \rangle \| e \rangle_p \tau_0$ 

so that by anti-reduction and closure under delimited continuations, it is enough to show that the coterm-in-store  $(\tilde{\mu}y.\langle a \| e)[a := \operatorname{cofix}_{bx}^{y}[p]]|\tau_{0})$ is in  $|t \in \mathbb{N}|_{\pi}$ . Let us then consider  $(V_{t}|\tau_{0}') \in |t \in T|_{V_{t}}$  such that  $\tau_{0}$  and  $\tau_{0}'$  are compatible, and let us denote by  $\tau_{2}$  the union  $\overline{\tau_{0}\tau_{0}'}$ . We have:

$$\langle V_t \| \tilde{\mu} y. \langle a \| e \rangle [a := \operatorname{cofix}_{bx}^y [p]] \rangle \tau_1 \rightsquigarrow_s \langle a \| e \rangle \tau_1 [a := \operatorname{cofix}_{bx}^{V_t} [p]]$$

It suffices to show now that the value-in store  $(a|\tau_1[a := cofix_{bx}^{V_t}[p]])$  is in  $|v_{Xx}^{V_t}A|_V$ . By definition, we have:

$$|v_{Xx}^{V_t}A|_V = (\bigcup_{n \in \mathbb{N}} ||F_{A, V_t}^n||_f)^{\perp V} = \bigcap_{n \in \mathbb{N}} ||F_{A, V_t}^n||_f^{\perp V} = \bigcap_{n \in \mathbb{N}} |F_{A, V_t}^n|_V$$

We conclude by showing by induction on the natural numbers that for any  $n \in N$  and any  $V_t$ , the value-in-store  $(a|\tau_1[a := cofix_{bx}^{V_t}[p]])$  is in  $|F_{A,V_t}^n|_V$ .

The case n = 0 is trivial since  $|F_{A,V_t}^0|_V = |\top|_V = \Lambda_V^{\tau}$ . Let then n be an integer and any  $V_t$  be a term value. Let us consider  $(f|\tau_1') \in ||F_{A,V_t}^{n+1}A||_f$  such that  $\tau_1[a := \operatorname{cofix}_{bx}^{V_t}[p]]$  and  $\tau_1'$  are compatible, and let us denote by  $\tau_2[a := \operatorname{cofix}_{bx}^{V_t}[p]]\tau_2'$  their union. By definition, we have:

$$\langle a\|f\rangle\tau_2[a:=\operatorname{cofix}_{bx}^{V_t}[p]]\tau_2' \rightsquigarrow_s \langle p[V_t/x][b'/b]\|\tilde{\mu}a.\langle a\|f\rangle\tau_2'\rangle\tau_2[b':=\lambda y.\operatorname{cofix}_{bx}^y[p]]$$

It is straightforward to check, using the induction hypothesis for *n*, that  $(b'|\tau_2[b' := \lambda y.cofix_{bx}^y[p]])$  is in  $|\forall y.y \in T \rightarrow F_{A,y}^n|_V$ . Thus we deduce by induction hypothesis for *p*, denoting by *S* the function  $t \mapsto ||F_{A,t}^n||_f$ , that:

$$(p[V_t/x][b'/b]|\tau_2[b' := \lambda y.\texttt{cofix}_{bx}^y[p]]) \in |A[V_t/x][\dot{S}/X]|_p = |A[V_t/x][F_{A,y}^n/X(y)]|_p = |F_{A,V_t}^{n+1}|_p$$

It only remains to show that  $(\tilde{\mu}a.\langle a \| f)\tau'_2|\tau_2) \in \|F^{n+1}_{A,V_t}\|_e$ , which is trivial from the hypothesis for f.

# **Theorem 4.11** (Consistency). $\nvdash_{dLPA^{\omega}} p : \bot$

*Proof.* Assume there is such a proof p, by adequacy  $(p|\varepsilon)$  is in  $|\perp|_p$  for any pole. Yet, the set  $\perp \perp \triangleq \emptyset$  is a valid pole, and with this pole,  $|\perp|_p = \emptyset$ , which is absurd.

#### E About the interpretation of coinductive formulas

While our realizability interpretation give us a proof of normalization and soundness for dLPA<sup> $\omega$ </sup>, it has two aspects that we should discuss. First, regarding the small-step reduction system, one could have expected the lowest level of interpretation to be v instead of f. Moreover, if we observe our definition, we notice that most of the cases of  $\|\cdot\|_f$  are in fact defined by orthogonality to a subset of strong values. Indeed, except for coinductive formulas, we could indeed have defined instead an interpretation  $|\cdot|_v$  of formulas at level v and then the interpretation  $\|\cdot\|_f$  by orthogonality:

$$\begin{split} |\bot|_{\upsilon} & \triangleq & \emptyset \\ |t = u|_{\upsilon} & \triangleq & \begin{cases} \operatorname{refl} & \operatorname{if} t \equiv u \\ \emptyset & \operatorname{otherwise} \end{cases} \\ |p \in A|_{\upsilon} & \triangleq & \{(\upsilon|\tau) \in |A|_{\upsilon} : \upsilon \equiv_{\tau} p\} \\ |T \to B|_{\upsilon} & \triangleq & \{(\lambda x.p|\tau) : \forall V_{t} \tau', \tau \diamond \tau' \land (V_{t}|\tau') \in |T|_{V} \Rightarrow (p[V_{t}/x]|\tau\tau') \in |B|_{p}\} \\ |A \to B|_{\upsilon} & \triangleq & \{(\lambda a.p|\tau) : \forall V\tau', \tau \diamond \tau' \land (V|\tau') \in |A|_{V} \Rightarrow (p|\tau\tau'[a := V]) \in |B|_{p}\} \\ |T \land A|_{\upsilon} & \triangleq & \{((V_{t}, V)|\tau) : (V_{t}|\tau) \in |T|_{V_{t}} \land (V|\tau) \in |A_{2}|_{V}\} \\ |A_{1} \land A_{2}|_{\upsilon} & \triangleq & \{(\iota(V), V_{2})|\tau) : (V_{1}|\tau) \in |A_{1}|_{V} \land (V_{2}|\tau) \in |A_{2}|_{V}\} \\ |A_{1} \lor A_{2}|_{\upsilon} & \triangleq & \{(\iota_{i}(V)|\tau) : (V|\tau) \in |A_{i}|_{V}\} \\ |\exists x.A|_{\upsilon} & \triangleq & \bigcup_{t \in \Lambda_{t}} |A[t,x]|_{\upsilon} \\ |\forall x.A|_{\upsilon} & \triangleq & \bigcap_{t \in \Lambda_{t}} |A[t,x]|_{\upsilon} \\ |\forall a.A|_{\upsilon} & \triangleq & \bigcap_{p \in \Lambda_{p}} |A[p,x]|_{\upsilon} \\ \|A\|_{f} & \triangleq & \{(f|\tau) : \forall \upsilon \tau', \tau \diamond \tau' \land (\upsilon|\tau') \in |A|_{\upsilon} \Rightarrow (\upsilon|\tau') \amalg(F|\tau)\} \end{split}$$

If this definition is somewhat more natural, it poses a problem for the definition of coinductive formulas. Indeed, there is a priori no strong value in the orthogonal of  $\|v_{fv}^t A\|_f$ , which is:

$$(\|v_{fv}^t A\|_f)^{\perp_v} = (\bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f)^{\perp_v} = \bigcap_{n \in \mathbb{N}} (\|F_{A,t}^n\|_f)^{\perp_v})$$

For instance, consider again the case of a stream of type  $v_{fx}^0 A(x) \wedge f(S(x)) = 0$ , a strong value in the intersection should be in every  $|A(0) \wedge (A(1) \wedge \ldots (A(n) \wedge \top) \ldots)|_{\upsilon}$ , which is not possible due to the finiteness of terms<sup>17</sup>. Thus, the definition  $|v_{fv}^t A|_{\upsilon} \triangleq \bigcap_{n \in \mathbb{N}} |F_{A,t}^n|_{\upsilon}$  would give  $|v_{fx}^t A|_{\upsilon} = \emptyset = |\perp|_{\upsilon}$ .

Interestingly, and this is the second aspect that we shall discuss here, we could have defined instead the truth value of coinductive formulas directly by :

$$|v_{f_x}^t A|_{\upsilon} \triangleq |A[t/x][v_{f_x}^y A/f(y) = 0]|_{\upsilon}$$

Let us sketch the proof that such a definition is well-founded. We consider the language of formulas without coinductive formulas and extended with formulas of the shape X(t) where X, Y, ... are parameters. At level v, closed formulas are interpreted by sets of strong valuesin-store  $(v|\tau)$ , and as we already observed, these sets are besides closed under the relation  $\equiv_{\tau}$  along their component  $\tau$ . If A(x) is a formula whose only free variable is x, the function which associates to each term t the set  $|A(t)|_v$  is thus a function from  $\Lambda_t$  to  $\mathcal{P}(\Lambda_v^{\tau})_{\equiv_{\tau}}$ , let us denote the set of these functions by  $\mathscr{L}$ .

# **Proposition E.1.** The set $\mathscr{L}$ is a complete lattice with respect to the order $\leq_{\mathscr{L}}$ defined by:

$$F \leq_{\mathscr{L}} G \triangleq \forall t \in \Lambda_t . F(t) \subseteq G(t)$$

П

*Proof.* Trivial since the order on functions is defined pointwise and the co-domain  $\mathcal{P}(\Lambda_{\upsilon}^{\tau})$  is itself a complete lattice.

We define valuations, which we write  $\rho$ , as functions mapping each parameter X to a function  $\rho(X) \in \mathscr{L}$ . We then define the interpretations  $|A|_{v}^{\rho}, ||A||_{f}^{\rho}, ...$  of formulas with parameters exactly as above with the additional rule<sup>18</sup>:

$$|X(t)|_{\mathcal{V}}^{\rho} \triangleq \{(v|\tau) \in \rho(X)(t)\}$$

Let us fix a formula A which has one free variable x and a parameter X such that sub-formulas of the shape X t only occur in positive positions in A.

**Lemma E.2.** Let B(x) is a formula without parameters whose only free variable is x, and let  $\rho$  be a valuation which maps X to the function  $t \mapsto |B(t)|_{v}$ . Then  $|A|_{v}^{\rho} = |A[B(t)/X(t)]|_{v}$ 

$$\bigcup_{n\in\mathbb{N}}(\|F_{A,t}^n\|_f)\subset (\bigcap_{n\in\mathbb{N}}|F_{A,t}^n|_t)^{\perp f}=\|v_{fx}^tA\|_f$$

which is strict in general. By orthogonality, this gives us that  $|v_{f_X}^t A|_V \subseteq \bigcup_{n \in \mathbb{N}} (\|F_{A,t}^n\|_f))^{\perp V}$ , while the proof of adequacy only proves that  $(a|\tau[a := cfix_b^t[x]p])$  belongs to the latter set.

<sup>&</sup>lt;sup>17</sup>Yet, it might possible to consider interpretation with infinite proof terms, the proof of adequacy for proofs and contexts (which are finite) will still work exactly the same. However, another problem will arise for the adequacy of the cofix operator. Indeed, with the interpretation above, we would obtain the inclusion:

<sup>&</sup>lt;sup>18</sup>Observe that this rule is exactly the same as in the previous section (see Figure 5)

Étienne Miquey

*Proof.* By induction on the structure of *A*, all cases are trivial, and this is true for the basic case  $A \equiv X(t)$ :

$$|X(t)|_{v}^{\rho} = \rho(X)(t) = |B(t)|_{v}$$

Let us now define  $\varphi_A$  as the following function:

$$\varphi_A : \left\{ \begin{array}{ccc} \mathscr{L} & \to & \mathscr{L} \\ F & \mapsto & t \mapsto |A[t/x]|_{\mathcal{V}}^{[X \mapsto F]} \end{array} \right.$$

#### **Proposition E.3.** The function $\varphi_A$ is monotone.

*Proof.* By induction on the structure of *A*, where *X* can only occur in positive positions. The case  $|X(t)|_{v}$  is trivial, and it is easy to check that truth values are monotonic with respect to the interpretation of formulas in positive positions, while falsity values are anti-monotonic.

We can thus apply Knaster-Tarski theorem to  $\varphi_A$ , and we denote by gfp( $\varphi_A$ ) its greatest fixpoint. We can now define:

$$|v_{X_{x}}^{t}A|_{v} \triangleq \mathsf{gfp}(\varphi_{A})(t)$$

This definition satisfies the expected equality:

Proposition E.4. We have:

$$|v_{Xx}^t A|_{\upsilon} = |A[t/x][v_{Xx}^y A/X(y)]|_{\upsilon}$$

*Proof.* Observe first that by definition, the formula  $B(z) = |v_{Xx}^z A|_v$  satisfies the hypotheses of Lemma E.2 and that  $gfp(\varphi_A) = t \mapsto B(t)$ . Then we can deduce :

$$|v_{Xx}^t A|_{\upsilon} = \mathsf{gfp}(\varphi_A)(t) = \varphi_A(\mathsf{gfp}(\varphi_A))(t) = |A[t/x]|_{\upsilon}^{[X \mapsto \mathsf{gfp}(\varphi_A)]} = |A[t/x][v_{Xx}^y A/X(y)]|_{\upsilon}$$

Back to the original language, it only remains to define  $|v_{fx}^t A|_v$  as the set  $|v_{Xx}^t A[X(y)/f(y) = 0]|_v$  that we just defined. This concludes our proof that the interpretation of coinductive formulas through the equation in Proposition E.4 is well-founded.

We could also have done the same reasoning with the interpretation from the previous section, by defining  $\mathscr{L}$  as the set of functions from  $\Lambda_t$  to  $\mathcal{P}(\Lambda_f^{\tau})_{\equiv_{\tau}}$ . The function  $\varphi_A$ , which is again monotonic, is then:

$$\rho_A : \left\{ \begin{array}{ccc} \mathscr{L} & \to & \mathscr{L} \\ F & \mapsto & t \mapsto |A[t/x]|_{\mathcal{D}}^{[X \mapsto F]} \end{array} \right.$$

We recognize here the definition of the formula  $F_{A,t}^n$ . Defining  $f^0$  as the function  $t \mapsto ||\top||_f$  and  $f^{n+1} \triangleq \varphi_A(f^n)$  we have:

$$\forall n \in \mathbb{N}, \|F_{A,t}^n\|_f = f^n(t) = \varphi_A^n(f^0)(t)$$

However, in both cases (defining primitively the interpretation at level v or f), this definition does not allow us to prove<sup>19</sup> the adequacy of the (cofix) rule. In the case of an interpretation defined at level f, the best that we can do is to show that for any  $n \in \mathbb{N}$ ,  $f^n$  is a post-fixpoint since for any term t, we have:

$$f^{n}(t) = \|F_{A,t}^{n}\|_{f} \subseteq \|F_{A,t}^{n+1}\|_{f} = f^{n+1}(t) = \varphi_{A}(f^{n})(t)$$

With  $\|v_{f_X}^t A\|_f$  defined as the greatest fixpoint of  $\varphi_A$ , for any term t and any  $n \in \mathbb{N}$  we have the inclusion  $f^n(t) \subseteq gfp(\varphi_A)(t) = \|v_{f_X}^t A\|_f$ and thus:

$$\bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f = \bigcup_{n \in \mathbb{N}} f^n(t) \subseteq \|v_{fx}^t A\|_f$$

By orthogonality, we get:

$$|v_{fx}^t A|_V \subseteq \bigcap_{n \in \mathbb{N}} |F_{A,t}^n|_V$$

and thus our proof of adequacy from the last section is not enough to conclude that  $cofix_{bx}^t[p] \in |v_{fx}^tA|_p$ . For this, we would need to prove that the inclusion is an equality. An alternative to this would be to show that the function  $t \mapsto \bigcup_{n \in \mathbb{N}} ||F_{A,t}^n||_f$  is a fixpoint for  $\varphi_A$ . In that case, we could stick to this definition and happily conclude that it satisfies the equation:

$$\|v_{Xx}^t A\|_f = \|A[t/x][v_{Xx}^y A/X(y)]\|_f$$

This would be the case if the function  $\varphi_A$  was Scott-continuous on  $\mathscr{L}$  (which is a dcpo), since we could then apply Kleene fixed-point theorem<sup>20</sup> to prove that  $t \mapsto \bigcup_{n \in \mathbb{N}} \|F_{A,t}^n\|_f$  is the stationary limit of  $\varphi_A^n(f_0)$ . However,  $\varphi_A$  is not Scott-continuous<sup>21</sup> (the definition of falsity values involves double-orthogonal sets which do not preserve supremums), and this does not apply.

<sup>&</sup>lt;sup>19</sup>To be honest, we should rather say that we could not manage to find a proof, and that we would welcome any suggestion from insightful readers.

 $<sup>^{20}</sup>$ In fact, Cousot and Cousot proved a constructive version of Kleene fixed-point theorem which states that without any continuity requirement, the transfinite sequence  $(\varphi_{\alpha}^{\alpha}(f^{0}))_{\alpha \in \Omega_{n}}$  is stationary [6]. Yet, we doubt that the gain of the desired equality is worth a transfinite definition of the realizability interpretation.

 $<sup>(\</sup>varphi_A^{\alpha}(f^0))_{\alpha \in O_n}$  is stationary [6]. Yet, we doubt that the gain of the desired equality is worth a transfinite definition of the realizability interpretation. <sup>21</sup>In fact, this is nonetheless a good news about our interpretation. Indeed, it is well-know that the more "regular" a model is, the less interesting it is. For instance, Streicher showed that the realizability model induced by Scott domains (using it as a realizability structure) was not only a forcing model by also equivalent to the ground model.