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Abstract

Church-Turing computability was extended by Brouwer who con-

sidered non-lawlike computability in the form of free choice se-

quences. Those are essentially unbounded sequences whose ele-

ments are chosen freely, i.e. not subject to any law. In this work

we develop a new type theory BITT, which is an extension of the

type theory of the Nuprl proof assistant, that embeds the notion

of choice sequences. Supporting the evolving, non-deterministic

nature of these objects required major modifications to the under-

lying type theory. Even though the construction of a choice se-

quence is non-deterministic, once certain choices were made, they

must remain consistent. To ensure this, BITT uses the underly-

ing library as state and store choices as they are created. Another

salient feature of BITT is that it uses a Beth-like semantics to ac-

count for the dynamic nature of choice sequences. We formally

define BITT and use it to interpret and validate essential axioms

governing choice sequences. These results provide a foundation

for a fully intuitionistic version of Nuprl.
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1 Introduction

Brouwer’s broader notion of computability extends that of Church-

Turing by the inclusion of non-lawlike computability based on free

choice sequences. Those are fundamental objects introduced by

Brouwer [10] that lay at the heart of intuitionistic mathematics.

They are there described as “new mathematical entities. . . in the

form of infinitely proceeding sequences, whose terms are chosen

more or less freely frommathematical entities previously acquired”.

The first key feature of free choice sequences is the fact that they

are infinitely proceeding. This is a non-platonic approach in which

a free choice sequence comes into existence by a never ending pro-

cess of picking elements from a previously well-defined collection,

e.g. natural numbers. Therefore, a free choice sequence is never
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theory presented in this paper. The Coq formalization is by Rahli.
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fully completed and can always be extended. The second compo-

nent of free choice sequences is that the choices are made freely,

that is, not governed by any law.

In this work we show that the constructive type theory imple-

mented by the Nuprl proof assistant [15; 4] can be consistently

extended to an intuitionistic type theory that supports Brouwer’s

broader sense of computability through the embedding of free choice

sequences. Since the concept of non-lawlike computations, as well

as the notion of spreads, Bar Induction, and the Continuity Princi-

ple, are the salient consequences of Brouwer’s intuitions [11; 12],

we call this new extended type theory BITT.1 BITT then paves the

way for turning Nuprl into a fully intuitionistic proof assistant.

The theory governing free choice sequences has been widely

studied, but the various works on the subject take different inter-

pretations of the basic notions.2 This results in a variety of in-

terpretations of free choice sequences (e.g., [26; 7; 44; 43; 30; 48;

35]). In this paper we aim to create a completely formal account of

choice sequences, driven by the design constraints of their imple-

mentation in a theorem prover. That is, we offer an account that

captures fundamental notions concerning free choice sequences,

while being suitable for implementation.

In [39] the assumption of existence of choice sequences was ex-

ploited to establish Bar Induction, a key intuitionistic principle, in

Nuprl. However, choice sequences were there used only as an in-

strumental tool in the metatheory, not embedded into the theory

itself. Choice sequences were generated using Coq functions, in-

cluding such that use non-computable axioms. As noted in [39]:

“choice sequences do not have to be—and are not—part of the syn-

tax of Nuprl definitions and proofs, i.e., the syntax visible to users”.

This approach had some undesired consequences. Mainly, it made

Nuprl’s syntax infinitary, which in turn had the side effect that

many properties, such as syntactic equality or α-equality, became

undecidable (in the metatheoretical syntax of Nuprl).

In this work we remedy this situation by implementing the con-

cept of choice sequences in the theory itself as finite, unbounded

sequences, as opposed to infinite sequences in [39]. The formal-

ization presented here resolves both aforementioned issues. It in-

corporates choice sequences into the user syntax, while keeping

it finitary, which entails that properties such as syntactic equality

and α-equality remain decidable. One of our long-term goals for

the implementation is to allow the derivation of the key Bar Induc-

tion and Continuity principles, which have been widely studied in

the literature (e.g., [26; 30; 45; 48; 7; 42; 25; 22]) but only recen-

tely in the context of a mechanized proof assistant [38; 39]. This

1The term “intuitionistic type theory” had already been used by Per Martin-Löf [33;
36]. However, those type theories do not include Brouwer’s fundamental idea of non-

lawlike computation.
2In the literature free choice sequences are sometimes called “lawless sequences” [35].
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presents an implementation challenge, as the two principles corre-

spond to different properties of choice sequences. Bar Induction

requires the existence of some form of non-recursive functions, i.e.

free choice sequences. Continuity, on the other hand, entails a re-

striction on the behavior of all non-recursive functions, i.e. it puts

a constraint on the topological space they induce.3 Accordingly,

our work is to carefully craft the design constraints of the theory

of free choice sequences, balancing these two properties.

Implementing choice sequences entails incorporating certain non-

deterministic features into BITT, as well as developing ways to

handle them. One way to think about non-determinism is as a

process that even for the same input, can exhibit different behav-

iors. The form of non-determinism required for reasoning in the

presence of choice sequences is slightly different. While the pro-

cess of picking the values of a choice sequence is non-deterministic,

once certain values were chosen, they must remain unchanged. To

capture that we rely on the digital library of facts and definitions

underlying Nuprl to act as state, and store in it our already cho-

sen values of the choice sequence. This required BITT to extend

Nuprl’s computation system, as is presented in Sec. 3.

To support this evolving nature of choice sequences, and thus li-

braries, the semantics of BITT also extends that of Nuprl. In BITT

we invoke a Beth-style semantics [49; 21; 20, Sec.5.4], in which the

possible worlds correspond to extensions of the library. Under this

Beth model, types are interpreted as partial equivalence relations

(PERs) on closed terms that need only exist in bars of the current

library, i.e, collections of libraries covering all possible extensions

of the current library (see Sec. 4). A Beth model is especially well-

suited to model choice sequences because there expressions only

need to “eventually” compute to values, which is compatible with

the “eventual” nature of choice sequences that are only partially

given at a given time, with the promise that they can always be

extended in the future. We show that the resulting type system

satisfies the standard properties of a type systems (such as tran-

sitivity and symmetry), as well as properties which are unique to

possible-world semantics, such as monotonicity and locality.

After establishing the well-formedness of the resulting type sys-

tem, we demonstrate its adequacy for the theory of choice sequences.

We do so by validating inference rules governing choice sequences

(see Sec. 6). The entire development and results presented in this

paper have been fully formalized in Coq, and in the sequel we pro-

vide pointers to the Coq formalization in the appropriate places.

Exploring Brouwer’s wider notion of computability in a formal

setting has, in our opinion, the potential to provide a broader and

deeper foundational theory for computer science. Nevertheless,

the integration of choice sequences into a mechanized proof as-

sistants is not only important from a foundational standpoint, but

also seem to offer interesting consequences and possible practical

applications. For instance , we believe that this formalization can

be used tomodel complex systems. Computable functions could be

used to model the processes of a distributed system, while the free

choice sequences could be used to model sensors (or uncontrolled,

unpredictable inputs from the environment).

Outline. The rest of the paper is organized as follows: Sec. 2 pro-

vides essential background on key features of Nuprl’s type the-

ory. Sec. 3 describes the integration of choice sequences into BITT,

3Note that full Bar Induction (i.e., where the bar is not constrained to be decidable or

monotone) contradicts the Continuity Principle [26, Sec.7.14,Lem.∗27.23].

mainly the use of the underlying library. Sec. 4 provides a de-

tailed account of how the semantics of Nuprl has been modified

into a Beth-like one in BITT. This includes the formal treatment of

bars, proving preservation of salient properties of the type system,

as well as new properties that are distinctive to the new seman-

tics. Sec. 5 describes the extension of the function type N → N,

which previously contained only computable functions, by choice

sequences of numbers. Sec. 6 discusses the axioms of choice se-

quences in BITT. Finally, Sec. 7 concludes.

2 Background

Nuprl implements a dependent type theory called Constructive

Type Theory (CTT). This section presents some key aspects of CTT.

Computation system. Nuprl’s programming language is an un-

typed (à la Curry), lazy λ-calculus with pairs, injections, a fixpoint

operator, etc. For efficiency, integers are primitive and Nuprl pro-

vides operations on integers as well as comparison operators.

Fig. 1 presents a subset of Nuprl’s syntax and small-step oper-

ational semantics. We only show in it the part that is either men-

tioned or used in this paper. A term is either (1) a variable; (2) a

canonical form, i.e., a value or an exception (see [38]); or (3) a non-

canonical term. A non-canonical term t has one or two principal

arguments—marked using boxes in Fig. 1—which are terms that

have to be evaluated to canonical forms before t can be reduced

further. For example, the application f a, often written as f (a), di-

verges if f diverges. In Fig. 1 we omit rules that reduce principal

arguments such as: if t1 7→ t2 then t1 u 7→ t2 u.

We use the following abstractions in the sequel: ⊥ = fix(λx .x),

tt = inl(⋆), and ff = inr(⋆). Also, we write a =T b for the type

a = b ∈ T , λx1, . . . ,xn .t for λx1. . . . λxn .t , and t1 → t2 for the

non-dependent product type (i.e. the function type).4

Type system. Nuprl’s types are interpreted as partial equivalence

relations (PERs) on closed terms [2; 3; 18]. The PER semantics can

be seen as an inductive-recursive definition of: (1) an inductive re-

lation T1≡T2 that expresses type equality; (2) a recursive function

a≡b∈T that expresses equality in a type. For example, one case in

the definition of T1≡T2 states that (i) T1 computes to ∀x1 : A1. B1;

(ii) T2 computes to ∀x2 : A2. B2; (iii) A1≡A2; and (iv) for all closed

terms t1, t2 such that t1≡t2∈A1, B1[x1\t1]≡B2[x2\t2]. We say that

a term t inhabits or realizes a type T if t is equal to itself in the

PER interpretation of T , i.e., t≡t∈T . It follows from the PER inter-

pretation of types that an equality type of the form a = b ∈ T is

true (i.e. inhabited) iff a≡b∈T holds. [5; 37]. Note that an equality

type can only be inhabited by the constant⋆, i.e., they do not have

computational content, unlike in Homotopy type theory [47].

Computational equivalence relation. Nuprl is closed under

Howe’s computational equivalence ∼, which was proven to be a

congruence [24]. In general, computing and reasoning about com-

putation in Nuprl involves reasoning about Howe’s computational

equivalence relation. It is commonly used to reduce expressions

by proving that terms are computationally equivalent and using

the fact that ∼ is a congruence. For that, Nuprl provides the type

t1 ≃ t2, which is the theoretical counterpart of the metatheoretical

relation t1 ∼ t2. To reason about any term in the computation sys-

tem, Nuprl provides the Base type, which is the type of all closed

terms of the computation system with ∼ as its equality.

4Note that BITT and its metatheory share similar connectors. For readability, we

often omit type information in quantifiers for the metatheoretical ones.
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Figure 1 Syntax (top) and operational semantics (bottom) of a subset of Nuprl

v ∈ Value ::= vt (type) | inl(t) (left injection) | ⋆ (axiom) | 〈t1, t2 〉 (pair)

| λx .t (lambda) | inr(t) (right injection) | i (integer)

vt ∈ Type ::= Z (integer type) | ∀x : t1 . t2 (product) | t1 = t2 ∈ t (equality) | {x : t1 | t2 } (set)

| Base (base) | ∃x : t1 . t2 (sum) | t1+t2 (disjoint union) | t1//t2 (quotient)

| Ui (universe) | t1 ≃ t2 (bisimulation)

t ∈ Term ::= x (variable) | let x := t1 in t2 (call-by-value) | case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)

| v (value) | let x, y = t1 in t2 (spread) | iflam( t1 , t2, t3) (lambda test)

| t1 t2 (application) | fix( t ) (fixpoint)

(λx .F) a 7→ F[x\a]

let x := v in t 7→ t[x\v]

let x, y = 〈t1, t2 〉 in F 7→ F[x\t1; y\t2]

fix(v) 7→ v fix(v)

iflam(λx .t, t1, t2) 7→ t1
iflam(v, t1, t2) 7→ t2, if v is not a λ-term

case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ F[x\t] case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ G[y\t]

Squashing. Nuprl has a squashing mechanism, which we use in

Sec. 6. It throws away the evidence that a type is inhabited and

squashes it down to a single inhabitant using set types [15, pp.60]:

↓T = {Unit | T }. The only member of this type is the constant

⋆, which is Unit’s single inhabitant, and which is similar to () in

languages such as OCaml, Haskell or SML. The constant⋆ inhabits

↓T ifT is true/inhabited, but we do not keep the proof that it is true.

See [38] for more details on squashing.

Sequents and rules. Sequents are of the formh1, . . . ,hn ⊢ T ⌊ext t⌋.

The term t is a member of the typeT , which in this context is called

the extract or evidence of T . Extracts are programs that are com-

puted by the system once a proof is complete. We will sometimes

omit proof extracts when they are irrelevant to the discussion. An

hypothesis h is of the form x : A, where the variable x is referred

to as the name of the hypothesis and A its type. Such a sequent

states, among other things, that T is a type and t is a member of

T . A rule is a pair of a conclusion sequent S and a list of premise

sequents, S1, · · · , Sn , which we write as:

S1 · · · Sn
S

Several equivalent definitions for the validity of sequents appear

in the Nuprl literature [15; 18; 27; 5]. Since our results are invariant

to the specific semantics, we do not repeat them here. The sequent

semantics standardly induces the notion of validity of a rule, i.e.,

the validity of the premises entails the validity of the conclusion.

Coq formalization. Recently, CTT has been formalized in Coq [5;

37; 38]. The implementation includes: (1) Nuprl’s computation sys-

tem; (2) Howe’s computational equivalence relation, and a proof

that it is a congruence; (3) a definition of the PER semantics of

CTT; (4) definitions of Nuprl’s derivation rules, and their sound-

ness proofs w.r.t. the PER semantics (5) and a proof of Nuprl’s

consistency. This formalization allows for a safe and mechanical

way to verify the soundness of existing as well as new rules.

3 Library as State

This section discusses the introduction of choice sequences into

BITT’s computation system, in which the library plays a major

role.Basically, the library is used as a state in which we store the

choices of values that have been made for a particular choice se-

quence at a given point in time. In mainstream programming lan-

guages such information can be stored using global variables. How-

ever, since proof assistants do not support global variables, the li-

brary is treated as one to enable stateful computations.

Figure 2 Library structure

Definition Lemma Definition C.S.

C.S.(0)

C.S.(1)

Lemma

3.1 Open-ended Libraries

Until now, a Nuprl library consisted of a list of definitions and lem-

mas. We here introduce a new kind of library entries – that of

choice sequences. A choice sequence entry is again a list, this time

of terms. Thus, a library can be extended in two orthogonal di-

rections: by adding more entries to the library, or by adding more

values to a choice sequence entry (see Fig. 2, where C.S. stands for

a choice sequence entry). This can be seen as an interpretation of

Brouwer’s notion of a choice sequence progressing over time, as

implemented by progressing over library extensions.

In [39] choice sequenceswere treated as infinite sequences. Here,

because we now have a concrete implementation, instead of a pri-

ori assuming an infinite object, we take the infinite nature of choice

sequences as potential. Choice sequences are: (1) essentially al-

ways finite, (2) but ever growing. Accordingly, we capture these

two components in different layers of the implementation. Choice

sequences are finite at any stage of the library since they are im-

plemented simply as lists. However, they are infinitely proceed-

ing because the library is open-ended and can always be extended

(this is accounted for in the interpretation of types as explained in

Sec. 4). The fact that a library is open-ended allows for arbitrary

extensions of any particular choice sequence, but also for the in-

troduction of arbitrarily many choice sequences entries.

3.2 Restrictions and Name Spaces

Choice sequences are implemented such that each choice sequence

entry in the library comes equipped with a restriction. There is a

vast discussion in the literature about the various types of restric-

tions: in [6; 7] there is a distinction between “definitive” restric-

tions and “provisional” restrictions: definitive ones are permanent,

and provisional ones can be lifted at a later stage; [44] discusses

choice sequences which are “hesitant” (start free, but at any stage
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may be restricted to continue by a law); and there is also a clas-

sification of restrictions by their order (a restriction on future re-

striction is a second-order restriction). Restrictions can be made in

advance or imposed at any stage of the construction of a sequence.

We implement a simple notion of restrictions, which are given

in advance and can either be a law given as a Coq function f

from numbers to terms, such that the nth entry of the choice se-

quence has to be f (n); or some binary restriction predicate P on

term/number pairs. In the latter case, P(n, t) expresses whether

t is the nth choice. Also, in the latter case one has to provide a

function of default values d (from numbers—positions in the list of

choices—to choices), and a proof of P(n,d(n)), to ensure that the

sequence can be extended with legal values. This does not mean

that any choice sequence is restricted. One can construct an un-

restricted choice sequence (one in which the choices can be any

term) by employing the empty restriction, i.e. a predicate that

always returns true (formally, λn, t .True). When adding a new

value to a choice sequence one has to prove that it satisfies the

restriction of the sequence. For decidable restrictions, this can

be done automatically by the system. Note that while we only

support restrictions imposed a priori on a sequence, our restric-

tions are parameterized by the position in the sequence of choices.

Therefore, one can define a restriction that only applies to val-

ues starting from a specific location. For example, the restriction

λn, t .if n < 10 then True else 2 ≤ t , enforces that the choices

starting from position 10 must be greater than or equal to 2, but

choices up to position 10 are unconstrained.

Two notable restrictions we shall use are the followings. The

first restriction predicate enforces that the choices have to be natu-

ral numbers, i.e., the restriction predicate is λn, t .∃i ∈ N. t = i . For

this we supply the default value function λn.0. The second restric-

tion enforces that the choices have to be natural numbers, with the

constraint that the first few values have to agree with a given list

of numbers. Formally, given a list of natural numbers l , the restric-

tion predicate is λn, t .if n ≤ |l | then t = l[n] else ∃i ∈ N. t = i .5

The default value function is λn.if n ≤ |l | then l[n] else 0.

To capture key properties of choice sequences, our formaliza-

tion further provides a mechanism for enforcing certain restric-

tions through choice sequence name spaces. A choice sequence

name is a pair consisting of a string and a constraint, where a con-

straint can either be a number or a list of numbers. Constraints

are used to enforce some restrictions as follows. The constraint 0

enforces the choice sequence to be a choice sequence of natural

numbers; any other number n > 0 does not constrain the type of

values in the sequence (which leaves room for incorporating more

specific constraints in future extensions). Finally, a list of numbers

l is used to enforce that the choice sequence is a free choice se-

quence of numbers such that the |l | first elements in it coincide

with those given by the list l . For example, 〈”a”, 0〉 states that a

must be a free choice sequence of numbers; 〈”a”, 1〉 states that a is

a free choice sequence that can be filled with any values—not just

numbers; and 〈”a”, [3, 2, 5]〉 forces a to be a free choice sequence

of numbers that starts with the choices 3, 2, and 5.

Definition 3.1. BITT’s term syntax and operational semantics ex-

tends those of Nuprl (presented in Sec. 2) with choice sequences.

The formal extensions are given in Fig. 3, where we use C.S. as an

5As usual, |l | is the length of the list l , and l [n] is the (n + 1)th element of the list.

Figure 3 Extended syntax and operational semantics

csn ∈ CSName ::= 〈s, space〉 (C.S. name)

s ∈ RawCSName

space ∈ Space ::= n | [n1; . . . ;nk ] (C.S. name space)

v ∈ Value ::= · · · | seq(csn) (C.S.)

vt ∈ Type ::= · · · | Free(n) (C.S. type)

t ∈ Term ::= · · · | if t1 = t2 then t3 else t4 (C.S. equality)

if seq(csn1)=seq(csn2) then t1 else t2 7→lib t1 , if csn1 = csn2
if seq(csn1)=seq(csn2) then t1 else t2 7→lib t2 , if csn1 , csn2
seq(csn)(i) 7→lib cs[i] , if cs[i] is defined in lib

abbreviation for choice sequence, and n,n1, . . . ,nk for variables

ranging over natural numbers.6

Name spaces are introduced for choice sequences which can ei-

ther be a number or a finite list of numbers. A choice sequence

name is a pairwhich consists of a rawname (i.e. the name identifier

for the entry in the library—simply a string in our formalization)

and a space name. The type of choice sequences is Free(n), where,

as for choice sequences, n is a name space. We use 0 for the type of

free choice sequences of natural numbers, and any other number

n > 0 does not constrain the inhabitants of Free(n) (this, again,

allows for the addition of other constraints in the future). The

choice sequences are incorporated as values of the form seq(csn),

where csn is a choice sequence name; and a new term of the form

if t1=t2 then t3 else t4 is introduced for their equality judgment.

Since choice sequences are identifiedwith their names, it computes

by simply comparing the corresponding names. Bottom of fig. 3

shows formally how it computes. Also, in addition to being able

to apply λ-abstractions, we allow applying choice sequences of the

form seq(csn) to numbers. The application seq(csn)(i) reduces to

cs[i] if 0 ≤ i and if the i’s choice for the choice sequence named

cs is available in the current library, in which case cs[i] returns

that choice—otherwise, it is left undefined. Note that, unlike in the

computation system described in Fig. 1, the extended computation

rules explicitly depend on the current library.

Definition 3.2.

• A library is called safe if the values of its choice sequences satisfy

the corresponding restrictions, and those restrictions respect

the names of the sequences (as mentioned above).

• A library lib2 extends a library lib1, denoted by extends(lib2, lib1),

if each entry accessible in lib1 is also accessible in lib2. For a def-

inition or lemma, the two entries have to be the same, and for a

choice sequence entry, the list of choices made so far in lib1 has

to be a sublist of the corresponding list in lib2.

When defining an extension lib ′ of a library lib one must pro-

duce a proof that lib ′ is safe assuming that lib is safe. For simplicity,

we assume all libraries are safe in the remainder of the paper.

3.3 Unbounded Objects

Since choice sequences are open-ended objects, it might be that to

prove a theorem or carry on a computation one needs to know the

value of a choice sequence at a certain point, say the 8th element

in the sequence, but at that given stage it is yet undefined. How do

we want our formal system to behave in such a situation? In the

6See https://github.com/vrahli/NuprlInCoq/tree/beth/computation/library.v for a de-

tailed account of the extension of Nuprl’s computation system.

https://github.com/vrahli/NuprlInCoq/tree/beth/computation/library.v
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intuitionistic theory of free choice sequences, a reasonable answer

will be ‘wait until the creative subject picks enough values in the

sequence’. This suggest one possible implementation: the system

can print out a message to the user asking for more values until

there is sufficient data. Another possibility is to have the system

automatically fill in values up to the desired place in the sequence.

This can be done by some random numbers generator that is being

called in such situations. We can even use a computable function

to complete the particular segment of the sequence. The free na-

ture of the sequence is kept because the generator (random or not)

is only applied to create the values, and then only the values are

stored in the library, thus the intensional information concerning

the generation process can not be accessed.

In our current implementation, when attempting to prove a state-

ment that mentions a value in a choice sequence that is not yet reg-

istered in the library, applications of the basic computation rules

for that object will fail. The user then has to fill in enough of the

sequence into the library in order to be able to complete the proof.

As discussed above, it is possible to build a way to generate such

values automatically on top of the current implementation.

4 Beth-Style System

The BHK/realizability/Curry-Howard Isomorphism semantics are

interpretations of intuitionistic logic that make explicit its com-

putational power and its connection to programming languages.

While intuitionistic logic clearly holds computational content, this

is not as evident in other well-known interpretations of it, such as

the possible-world semantics, either Kripke semantics [31] or Beth

semantics [21]. These two types of semantics are mainly used for

the theoretical foundational exploration of intuitionistic logic, but

their relationship to programming concepts is not clear. We next

combine these interpretations in a way that fleshes out the compu-

tational interpretation of the latter as well.

Since choice sequences evolve dynamically as more and more

values are recorded in the library, supporting reasoning about them

compels modifications to the semantics of Nuprl. Accordingly, this

section describes the modified semantics of BITT, and its resulting

type system. As choice sequences are implemented as entries in

the library, the notion of a truth of a sequent must now also de-

pend on the current state of the library, allowing our libraries to

expend (under certain restrictions). Thus, the libraries essentially

behave as theworlds in the possible-world semantics, where in any

particular state of the library the semantic is induced by the real-

izability semantics. This provides a computational interpretation

for the possible-world semantics in terms of libraries.

4.1 Modifying the Semantics

To support the evolving nature of the library, in [40] the seman-

tics of sequents in Nuprl was modified into a Kripke-like seman-

tics. There, the semantics of types and sequents was parametrized

by a library, and then constrained so that a sequent is true in a li-

brary only if it is true in all possible extensions of the current library.

Nevertheless, such generalization of the semantics is insufficient to

support choice sequences. To demonstrate the problem, consider

the claim “there is some value in a given place of a choice sequence”

(e.g., formally, ∃x .a(100) = x ). This should be a valid statement in

the theory of choice sequences, based on their “infinitely proceed-

ing” nature. However, if in the current stage of the library the

choice sequence a has only three values, this will be false under

the Kripke-like semantics, since there are extensions of the library

in which the 100th value is yet to be filled in. Settling this requires

further generalization of Nuprl’s semantics, into a Beth-like one.

In both Kripke and Beth semantics, if a sentence is true on the

basis of a given state of knowledge it will also be asserted to be

true in later states of knowledge. The difference appears on how

it is asserted to be true. For example, intuitively, in Kripke mod-

els an object is said to exist in a given state if it exists in all later

states of knowledge, whereas in Beth models it exists if in any path

through the states of knowledge starting from the given one there

exists a point from which on the object exists. Normally in a con-

structive setting something exists only if it has been constructed.

In contrast, using the Beth semantics, roughly speaking, one gets

to assert the existence of objects by forcing them to “eventually”

exist, without really constructing them. (The Beth semantics bears

some resemblance to the notion of forcing [14].)

In [19] Beth models were used to validate the axioms of the the-

ory of lawless sequences (and the axioms of the theory of the cre-

ative subject, Bar Induction and the Continuity Principle). Inspired

by this work in BITT we have turned Nuprl’s PER semantics into

a Beth-like model. The fundamental component in Beth semantics

is that of a bar. Roughly speaking, a bar b for a worldw is a subset

of the collection of worlds such that each path through w inter-

sects it (see Def. 4.1 for a precise definition). The key difference

from the more well-known concept of Kripke models lays in the

definitions of the disjunction and the existential quantifier, which

now depend on bars. Those are defined as follows:

• φ ∨ψ holds in a world w if there is a bar b for w , such that for

eachw ′ ∈ b, φ holds inw ′ orψ holds inw ′.

• ∃x .φ holds in a world w if there is a bar b for w , such that for

each w ′ ∈ b, there exists an element d in the domain for which

φ(d) holds inw ′.

Under this semantics the statement ∃x .a(100) = x is valid be-

cause there is a bar b of the current library such that in every li-

brary in b, the 100th element of the sequence a is filled in, and from

that point on it remains fixed (see Sec. 5 for more details regarding

the validity of this statement). This demonstrates the imperative-

ness of the Beth semantics, and in particular of the notion of bars.

4.2 Bar Hopping

To define the key concept of a bar we first introduce the notion

of infinite libraries. They are concretely implemented as functions

from numbers to infinite library entries, where choice sequences

have all their slots filled in. We also require that every infinite

library has to have en entry for every named choice sequence.

Definition 4.1 (Bars). A bar of a library lib is a collection of li-

braries b such that for each infinite library ilib that extends lib,

there exists a finite library lib′ in b such that extends(lib′, lib) and

ilib extends lib′. We use b∈Bar(lib) to denote that b is a bar of lib,

in which case we also say that b bars lib.

Intuitively, being a bar of a library lib means that any way in

which lib can be extended always hits the bar, i.e. there is always

an intermediate extension of lib that is in the bar. For any library

lib there exists a trivial bar containing only lib, i.e., {lib} bars lib.

Also, it follows from the definition that bars are non-empty.
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We use the following abstractions below to interpret types:

allExt(lib, f ) = ∀lib′. extends(lib′, lib) ⇒ f (lib′)

allBar(b, f ) = ∀lib′∈b . allExt(lib′, f )

exBar(lib, f ) = ∃b∈Bar(lib). allBar(b, f )

allExt(lib, f ) states that all extensions of lib satisfy f ; allBar(b, f )

states that all extensions of all libraries in b satisfy f ; and finally

exBar(lib, f ) states that there exists a bar of lib such that all exten-

sions of libraries in it satisfy f , i.e. that f holds from that bar on.

We next introduce some useful operations on bars.

Lemma 4.2 (Intersection of bars). Let b1 and b2 be two bars of a

library lib. Then, the following collection is also a bar of lib:

b1 ∩ b2 =

{lib′ | ∃lib1 ∈ b1, lib2 ∈ b2.extends(lib
′
, lib1) ∧ extends(lib′, lib2)}

Note that the intersection b1 ∩ b2 builds a monotone bar, in the

sense that if a library is in the bar, then all its finite extensions are

also in the bar. Because types and PERs are interpreted in terms

of existence of bars, we constantly need to intersect bars to prove

properties about those. For example, to prove transitivity of the

BAR operator defined in Sec. 4.3, because given two different bars

we had to compute a third one that covers both of them.

Lemma 4.3 (Raising bars). Let b be a bar of a library lib, and lib0
be another library. Then, the following collection is a bar of both lib0
and b (in the sense that it bars every library in b):

b ↑lib0 =
{

lib′ | ∃lib′′ ∈ b.extends(lib′, lib′′) ∧ extends(lib′, lib0)
}

b ↑lib0 is essentially a simple intersection, where one bar is b

and the other one is the trivial bar {lib0}. A prototypical example

of the use of the bar raising operator arises in the proof of Thm.

4.14 below, where from a bar of a library lib and an extension lib′

of that library, we need to construct a bar of lib′.

Lemma 4.4 (Families of bars). Let f be a family of bars of lib, i.e., a

function from extensions of a library lib to corresponding bars. Then,

the following collection is a bar of lib:
⋃

f =
{

lib′ | ∃lib′′.extends(lib′′, lib) ∧ lib′∈Bar(f (lib′′))
}

⋃

f is an infinite intersection. It is useful, among other things,

to collapse/expand bars.

Lemma 4.5 (Collapsing/expanding bars). For a given library lib,

exBar(lib, λlib′.exBar(lib′, f )) is equivalent to exBar(lib, f ).

The above lemma allows us to: (1) collapse two layers of bars, i.e.

a bar b1 and a bar b2 that bars every library in b1, into one (the⇒

direction); and (2) expand a bar to two layers of bars (the⇐ direc-

tion). Collapsing bars is used to simplify definitions that accumu-

late bars, while expanding bars gives us some leeway in proving

the existence of bars in the context of several barred propositions.

4.3 Type Semantics

Let us now describe our Beth model, where types are interpreted

as PERs on closed terms. This section culminate in the definition

of the BITT type system, which in turn is used to formally define

type equality ,T≡libT
′, and equality in a type ,a≡libb∈T . Those are

here parameterized by a library unlike the ones discussed in Sec. 2.

A type system τ is a 4-ary relation between a library lib, two

closed terms T and T ′, and a binary relation ϕ on closed terms,

which expresses when T and T ′ are equal types, and defines ϕ as

the PER of those types in lib.7 As is standard practice, to define

BITT belowwe first define operators that interpret the various type

constructor of the type theory. We then recursively define an hi-

erarchy of universes by closing lower universes under the type

constructors of the theory. Finally, BITT is the collection of all uni-

verses closed under the type constructors of the theory.

The PER model described in [2; 3; 18; 5] is modified so that

expressions need only be defined in a bar of the current library.8

For example, until now the integer type was interpreted as follows:

INT(τ )(lib,T ,T ′
,ϕ) = T ⇓lib Z ∧T

′ ⇓lib Z ∧ (ϕ ⇐⇒ INTper(lib))

where τ is a type system; ϕ is a binary relation on closed terms;

ϕ1 ⇐⇒ ϕ2 stands for ∀t , t
′
. t ϕ1 t

′ ⇐⇒ t ϕ2 t
′; a ⇓lib b denotes

that a computes to b in the library lib; and

INTper(lib) = λt , t ′.∃i . t ⇓lib i ∧ t
′ ⇓lib i

This states thatT andT ′ are equal types of the type system τ if they

both compute to the integer type Z, and ϕ is Z’s PER, i.e., t and t ′

are equal members of Z if they both compute to some integer i .

In our Beth model, INT is defined similarely, using INTperb in-

stead INTper, which incorporates bars into the definition:

Definition 4.6 (Integer type).

INT(τ )(lib,T ,T ′
,ϕ) = T ⇓lib Z∧T

′ ⇓lib Z∧(ϕ ⇐⇒ INTperb(lib))

where INTperb(lib) = λt , t ′.exBar(lib, λlib′.t INTper(lib′) t ′) .

We applied similar changes to the other type constructors. For

example, union types are now interpreted as follows:

Definition 4.7 (Union type).

UNION(τ )(lib, T , T ′
, ϕ) = ∃ψa, ψb, A, A

′
, B, B′

.

T ⇓lib A+B ∧T ′ ⇓lib A
′
+B′

∧ allExt(lib, λlib′.τ (lib′, A, A′
, ψa (lib

′)))

∧ allExt(lib, λlib′.τ (lib′, B, B′
, ψb (lib

′)))

∧ (ϕ ⇐⇒ UNIONperb(lib, ψa, ψb ))

where:

UNIONperb(lib, ψa, ψb ) =

λt, t ′.exBar(lib, λlib′.INLper(t, t ′, lib′, ψa ) ∨ INRper(t, t ′, lib′, ψb ))

INLper(t, t ′, lib, ψ ) = ∃x, y . t ⇓lib inl(x ) ∧ t
′ ⇓lib inl(y) ∧ x ψ (lib) y

INRper(t, t ′, lib, ψ ) = ∃x, y . t ⇓lib inr(x ) ∧ t
′ ⇓lib inr(y) ∧ x ψ (lib) y

andψ denotes a function that associates binary relations on closed

terms with libraries.

Note that UNION requiresA,A′, B, B′ to be types in all extensions

lib′ of lib such that ψa (lib
′) is the PER of A and A′, and ψb (lib

′) is

the PER of B and B′. This is so thatψa andψb can be used to define

the PER interpretation of union types in terms of a bar of the cur-

rent library. They provide the PERs of A and B in all extensions of

lib, so that we can define the PER of the union typeA+B in terms of

the existence of objects in the PERs ofA and B in a bar of lib, i.e., in

extensions of lib, by applyingψa andψb to those extensions. Know-

ing the PER ofA and B only in the current library is insufficient for

such a construction. In Sec. 4.4 we show that type interpretations

are monotonic, therefore that if lib′ extends lib then ψa (lib) and

ψb (lib) are subsets ofψa (lib
′) andψb (lib

′), respectively.

We also add a new constructor, BAR, that assigns meaning to

types at a given library lib, provided they are defined in a bar of lib.

7Instead of using induction-recursion (not yet fully supported by Coq) to define
T ≡libT

′ and a≡libb∈T , we use Allen’s method [3], and define a 4-ary relation, BITT,

between a library, two types and a PER, fromwhich we deriveT ≡libT
′ and a≡libb∈T .

8See https://github.com/vrahli/NuprlInCoq/tree/beth/per/per.v.

https://github.com/vrahli/NuprlInCoq/tree/beth/per/per.v
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This is critical to obtain the locality property of the type system,

discussed in Sec. 4.4, which is a salient feature of Beth models.

Definition 4.8. The BAR constructor is defined as follows:

BAR(τ )(lib,T ,T ′
,ϕ)

= ∃b∈Bar(lib). ∃ψ . allBar(b, λlib′.τ lib′ T T ′ (ψ (lib′)))

∧ ϕ ⇐⇒ BARperb(b,ψ )

where:

BARperb(b,ψ ) = λt , t ′.allBar(b, λlib.exBar(lib, λlib′.t ψ (lib′) t ′))

We also add a new constructor FREE that assigns meaning to the

new Free(n) types:

Definition 4.9. The FREE constructor is defined as follows:

FREE(τ )(lib,T ,T ′
,ϕ) = ∃n. T ⇓lib Free(n) ∧T ′ ⇓lib Free(n)

∧ (ϕ ⇐⇒ FREEperb(lib,n))

where:

FREEperb(lib,n) = λt , t ′.exBar(lib, λlib′.FREEper(lib′,n))

FREEper(lib′,n) = ∃csn. t ⇓lib seq(csn) ∧ t ′ ⇓lib seq(csn) ∧ n#csn

and where n#csn states that n is compatible with csn, i.e., n = 0

implies that csn’s space part is either 0 or a list of numbers (in both

cases, constraining the choice sequence to consist of numbers).

As in [2; 3; 18; 5], and as explained by Crary [18], we then de-

fine a closure operator CLOSE that, given a type system τ , builds

a larger type system from the types in τ (e.g., INT and BAR) using

any type constructors except universes.9 Intuitively, if τ contains

all universes up to some universe Ui , then CLOSE(τ ) contains all

types built from those universes, i.e., all members of Ui+1.

Definition 4.10. CLOSE is the smallest type system such that:

CLOSE(τ )(lib,T ,T ′
,ϕ) ⇐⇒

(

τ (lib,T ,T ′
,ϕ) ∨ INT(τ )(lib,T ,T ′

,ϕ) ∨ UNION(τ )(lib,T ,T ′
,ϕ)

∨ FREE(τ )(lib,T ,T ′
,ϕ) ∨ BAR(τ )(lib,T ,T ′

,ϕ) ∨ · · ·

)

where τ (lib,T ,T ′
,ϕ) states thatT andT ′ are equal types in the type

system τ , with PER ϕ in the library lib; and the rest of the disjunc-

tion contains the other type constructors, excluding universes.

Next, we define for every natural number i the type system

UNIVi(i) containing all universes up to some level i by induction

on i , and then use those to define the type system UNIV containing

all universes as follows:

Definition 4.11.

UNIVex(lib,T ,T ′
,ϕ) = ∃i . UNIVi(i)(lib,T ,T ′

,ϕ)

UNIV(lib,T ,T ′
,ϕ) = BAR(UNIVex)(lib,T ,T ′

,ϕ)

Finally, we define the BITT type system, from which we derive

the T≡libT
′ and a≡libb∈T relations:

Definition 4.12 (BITT type system).

BITT = CLOSE(UNIV)

T≡libT
′
= ∃ϕ . BITT(lib,T ,T ′

,ϕ)

a≡libb∈T = ∃ϕ . BITT(lib,T ,T ,ϕ) ∧ a ϕ b

The definitions presented in this section differ from the ones

in [2; 3; 18; 5] in two ways: (1) they depend on a library; and

(2) universes are closed using the BAR in order to guarantee that

the type system satisfies the locality property discussed in Sec. 4.4.

9Our formalization currently includes sum types, pi types, equality types, choice
sequence types, integer types, approximation and computational equivalence types,

base types, name types, set types, image types, union types.

4.4 Type System Properties

We start by showing that BITT satisfies the key properties of a type

system [2; 3; 18; 5].

Theorem 4.13 (Type system properties). BITT satisfies the follow-

ing properties (free variables are universally quantified):

Uniqueness: BITT(lib, T , T ′
, ϕ) ⇒ BITT(lib, T , T ′

, ϕ′) ⇒ (ϕ ⇐⇒ ϕ′)

Extensionality: BITT(lib, T , T ′
, ϕ) ⇒ (ϕ ⇐⇒ ϕ′) ⇒ BITT(lib, T , T ′

, ϕ′)

Type transitivity:

BITT(lib, T1, T2, ϕ) ⇒ BITT(lib, T2, T3, ϕ) ⇒ BITT(lib, T1, T3, ϕ)

Type symmetry: BITT(lib, T , T ′
, ϕ) ⇒ BITT(lib, T ′

, T , ϕ)

Type computation:

BITT(lib, T , T , ϕ) ⇒ allExt(lib, λlib′.T ∼lib′ T
′) ⇒ BITT(lib, T , T ′

, ϕ)

Term transitivity: BITT(lib, T , T ′
, ϕ) ⇒ t1 ϕ t2 ⇒ t2 ϕ t3 ⇒ t1 ϕ t3

Term symmetry: BITT(lib, T , T ′
, ϕ) ⇒ t ϕ t ′ ⇒ t ′ ϕ t

Term computation:

BITT(lib, T , T ′
, ϕ) ⇒ t ϕ t ⇒ allExt(lib, λlib′.t ∼lib′ t

′) ⇒ t ϕ t ′

Uniqueness ensures that BITT uniquely defines PERs (up to ex-

tensional equality—see Extensionality). All four transitivity and

symmetry properties ensure that the relationsT≡libT
′ anda≡libb∈T

derived from BITT are partial equivalence relations. Finally, the

two computation properties ensure that T≡libT
′ and a≡libb∈T re-

spect Howe’s computational equivalence relation.

The above properties are similar to those presented in [2; 3;

18; 5], except here we use allExt(lib, λlib′.t ∼lib′ t
′) instead of

t ∼lib t ′ in the properties about computation. This is to enforce

that the semantics is monotonic as discussed below. To see why

this is necessary, consider a library lib that contains a choice se-

quence entry a whose 5th element has not yet been chosen. Then,

a(5) is computationally equivalent to ⊥w.r.t. lib (since both do not

compute to values), but it is not computationally equivalent to ⊥

w.r.t. some extension of lib that defines a(5) to be, say, 0.

Proof outline. The main challenge in proving those properties is to

show that the CLOSE operator preserves them, which we prove by

induction on CLOSE. Since CLOSE is closed under bars using the BAR

operator, it is helpful to use the locality property discussed below,

and therefore we prove those properties by mutual induction.10

�

The two unique properties of possible-world semantics, and thus

of our new type system, are monotonicity and locality. While the

former is a general feature of possible-world semantics, the sec-

ond is a distinctive feature of Beth models. Monotonicity ensures

that true facts remain true in the future, and locality allows one to

deduce a fact about the current library if it is true in a bar of that li-

brary. Given the aforementioned interpretation of types, it is then

straightforward to prove BITT’s monotonicity w.r.t. libraries. As

opposed to locality which is proven by mutual induction, mono-

tonicity can be proved independently.11

Theorem 4.14 (Monotinicity).

BITT(lib,T ,T ′
,ϕ) ⇒ ∃ψ . ∀lib′. extends(lib′, lib)

⇒ BITT(lib′,T ,T ′
,ψ (lib′))

∧ ϕ ⊑ ψ (lib) ∧ monPer(lib′,ψ )

whereϕ1 ⊑ ϕ2 stands for∀t , t
′
. t ϕ1 t

′ ⇒ t ϕ2 t
′, and monPer(lib′,ψ )

stands for ∀lib′. extends(lib′, lib) ⇒ ψ (lib) ⊑ ψ (lib′).

10See https://github.com/vrahli/NuprlInCoq/tree/beth/per/nuprl_type_sys.v.
11See https://github.com/vrahli/NuprlInCoq/tree/beth/per/nuprl_mon_func2.v.

https://github.com/vrahli/NuprlInCoq/tree/beth/per/nuprl_type_sys.v
https://github.com/vrahli/NuprlInCoq/tree/beth/per/nuprl_mon_func2.v
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Thanks to the BAR constructor, it is also straightforward to prove

BITT’s locality:12

Theorem 4.15 (Locality).

allBar(b, λlib′.BITT(lib′,T ,T ′
,ψ (lib′)))

⇒ BITT(lib,T ,T ′
, BARperb(b,ψ ))

4.5 Characterization Lemmas and Inference Rules

Once we have proved that BITT satisfies the above desired prop-

erties, we can provide characterization lemmas for each type con-

structor which describe when two given types are equal, and when

two values are equal in a that type. We then use those characteri-

zation lemmas to validate BITT’s inference rules. We here provide,

as an example, the characterization lemmas for the union types.

Lemma 4.16. The following two equivalences are provable:

A+B≡libA
′
+B′ ⇐⇒ (A≡libA

′ ∧ B≡libB
′)

a≡libb∈A+B ⇐⇒
(

A≡libA ∧ B≡libB

∧ exBar(lib, λlib′.INLeq(a, b, lib′, A) ∨ INReq(a, b, lib′, B))

)

where

INLeq(t, t ′, lib, T ) = ∃x, y . a ⇓lib inl(x ) ∧ b ⇓lib inl(y) ∧ x≡liby∈T

INReq(t, t ′, lib, T ) = ∃x, y . a ⇓lib inr(x ) ∧ b ⇓lib inr(y) ∧ x≡liby∈T

Proof outline. For the⇒ direction of the first equivalence, we have

to show, among other things, that if A+B≡libA
′
+B′ then A≡libA

′.

Because theT≡libT
′ relation is defined in terms of BITTwhich is, in

turn, defined in terms of CLOSE, and because the CLOSE operator is

closed under bars using BAR (which is necessary to obtain locality),

from A+B≡libA
′
+B′ we obtain that A+B and A′

+B′ are equal in a

bar of lib. This entails that A and A′ are equal in a bar of lib, from

which, using BITT’s locality, we obtain A≡libA
′.

To prove the⇐ direction of the first equivalence, we show that

A+B≡libA
′
+B′ follows fromA≡libA

′ and B≡libB
′. To prove this, we

have to prove that A, A′, B, and B′ are types in all extensions lib,

as required by UNION (defined in Sec. 4.3). We derive that from

A≡libA
′ and B≡libB

′, and from the monotonicity of BITT.13 �

We use these characterization lemmas to validate introduction

and elimination rules for BITT’s types, such as the following intro-

duction rule for union types, which states that if a is a member of

A (and B is a type) then inl(a) is a member of A+B:14

H ⊢ A ⌊ext a⌋ H ⊢ B ∈ Ui

H ⊢ A+B ⌊ext inl(a)⌋

In addition to proving the validity of such rules, we have also

proved that BITT is weakly consistent w.r.t. Coq’s consistency, in

the sense that the proposition False is not derivable.15

5 Non-Computable Functions Type

Now that choice sequences are integrated into the system, in this

section and the next one we demonstrate the adequacy of the im-

plementation for the theory of choice sequences. Accordingly, we

prove the validity of inference rules and axioms concerning choice

sequences. We do so using the Coq formalization of BITT. Thus,

a rule or an axiom is said to ‘hold in BITT’ if it was formally vali-

dated using the metatheory developed in this paper.

12See https://github.com/vrahli/NuprlInCoq/tree/beth/per/nuprl_props.v.
13See https://github.com/vrahli/NuprlInCoq/tree/beth/per/per_props_union.v.
14See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_union.v.
15See https://github.com/vrahli/NuprlInCoq/tree/beth/per/weak_consistency.v.

This section shows howBITT’s function type (i.e. non-dependent

product type) extends Nuprl’s. To extend the notion of computabil-

ity, the choice sequences of numbers are incorporated into the

function type N→ N (also called the Baire space, B). This is pos-

sible since the Nuprl system (on which BITT is based) was never

limited to assume that function types contain only computable (re-

cursive) functions. We have validated the following rule in BITT,

which asserts that all choice sequences are in the Baire space.

Proposition 5.1. The following holds in BITT:

H ⊢ f ∈ Free(0)

H ⊢ f ∈ B

Proof outline. Let lib be the current library, f a free choice sequence

of numbers (because of the use of 0 in Free(0)) with name csn, and

n a natural number. We have to prove that f (n) is in N. To prove

that, it is enough to pick a bar b of lib such that f (n) computes to

a number in b. This bar is simply the library lib extended so as to

contain at least n values for the choice sequence named csn.16 �

Considering choice sequences as functionsmight seem odd. Nev-

ertheless, recalling the standard mathematical definition of a func-

tion as a single-valued relation demonstrates that there is no a pri-

ori assumption of a governing law. So the “free choice" principe is

not in any contradiction to the abstract notion of a function. As

for the “infinitely proceeding” property, a choice sequence might

be thought of as a partial function with an undefined tail. This

is also compatible with Nuprl which allows for partial functions,

albeit in a somewhat different notion. The partialness of a choice

sequence is a consequence of the fact that at any given stage of the

library there is a tail of the sequence that is not yet defined. How-

ever, as opposed to the standard concept of partial functions, the

partialness of a choice sequence is local. That is, a choice sequence

has the guarantee that all of its values will get filled “eventually”.

Proposition 5.1, in turn, allows us to prove simple facts about

choice sequences of numbers. For example, we can prove a gener-

alized version of the example given in Sec. 4.1:17

∀α : Free(0). ∀n : N. ∃x : N. a(n) =N x

Both choice sequences and recursive computable functions in-

habit the B type because the meaning of a type is determined

by its operations, and the only operation on a function type is

apply. As mentioned in Sec. 3, we already modified the behav-

ior of apply by changing the computation system to allow apply-

ing choice sequences to numbers to access already made choices.

Because the computation system is “externalized” through infer-

ence rules which we use to reason about computation, such as

[ApplyCases] presented below, those also need to be adjusted.

In [39] the inference rule [ApplyCases] already had to be modi-

fied to include the metatheoretical possibility that f (a)might com-

pute to a value also in case f is a choice sequence, not only if it

computes to a λ-term. The modification of the rule was as follows:

H ⊢ halts(f (a)) H ⊢ f ∈ Base

H ⊢ f ≃ λx . f (x) ∨ isChoiceSeq(x , z, f ) ⌊ext iflam(f , tt, ff)⌋

where isChoiceSeq(x , z, f ) only stated that f diverges on non-

integer inputs. This modification was required so to not exclude

choice sequences, even though in the theoretical syntax of Nuprl

16See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_choice.v.
17See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_choice3.v.
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f ≃ λx . f (x) would always hold. This is not the case anymore.

Because we include choice sequences in BITT’s syntax, the right-

disjunct of the conclusion is now plausible. Therefore we refine

the predicate isChoiceSeq in a way that captures the computation

of choice sequences in a more precise way. We do so by replac-

ing isChoiceSeq(x , z, f ) with: isChoiceSeq(f ) = f ∈ Free(1),

where 1 is used here to express that there are no restrictions on

the choice sequence f —its choices do not have to be numbers.18

6 Validating the Axioms for Choice Sequences

In this sectionwe validate in BITT key properties governing choice

sequences that have been suggested in the literature. We focus

on choice sequences of natural numbers, i.e. members of Free(0).

We adopt van Dalen’s formalization of the three axioms for choice

sequences given in [19], which are due to Kreisel [28]. We have

found that these are essentially at the intersection of the various

choice sequence theories.

6.1 Extending Initial Segments

The axiom named LS1 in [19], states that for any finite list of val-

ues l , there is a choice sequence that extends it, i.e. one that agrees

with l on its first |l | values. LS1 is a statement about the universe

of choice sequences. Intuitively, it promises that there are enough

choice sequences. This is the only existential axiom for choice se-

quences. We have validated a simple squashed (see Sec. 2) version

of LS1 in BITT, which we present in Prop. 6.1. In addition, as dis-

cussed in [41, Appx.C], we have validated a more involved non-

squashed version of LS1, which we do not discuss here for space

reasons, and which required extending BITT with computations

to generate a choice sequence name a ∈ Free(0) given a finite se-

quence of numbers, provided as a pair of a number n ∈ N and a

function f ∈ Bn (see Prop. 6.1). Using the ↓ operator, however,

allows us to compute this choice sequence in the metatheory.

Proposition 6.1 (Extending initial segments). The following holds

in BITT (where Bn = Nn → N for Nn = {k : N | k < n}):

∀n : N. ∀f : Bn . ↓∃a : Free(0). f =Bn a

Because this proposition is squashed, its extract is simply λn, f .⋆,

i.e., it does not have any computational content.

Proof outline. Let n be a Nuprl term that inhabits N, and f be a

Nuprl term that inhabitsBn . In the metatheory we can build a Coq

list l of Coq numbers such that for allm < n, f (m) computes to the

mth number in l . Using this list we build a choice sequence cs that

includes l in its name so as to enforce that its n first values have to

match the values in l (as explained in Sec. 3.2). Then, cs is added

to the current library lib0, and its n first values are filled. This

forms a bar of lib0 due to the restriction on libraries that enforces

that an initial segment provided in a choice sequence name has

to be respected in extensions. Finally, we use this bar to prove

↓∃a : Free(0). f =Bn a. Note that we need to fill the n first values

of the cs choice sequence to ensure that we can prove f =Bn cs.

We can start using this bar either when proving the existential, or

later when proving the equality.19 �

Note the use of name spaces in the above proof. Those were

introduced to Nuprl for exactly this purpose, i.e. in order to be able

18See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_apply.v.
19See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_choice.v.

to guarantee the existence of a specific choice sequence in principle,

without having to actually add it to the library.

6.2 Decidability of Equality

The axiom named LS2 in [19] states that intensional equality over

choice sequences is decidable. As for LS1, this is an axiom about

the universe of choice sequences. In general, since choice sequences

are identified with their names in the library, any two different

entries of choice sequences are computationally distinct. Accord-

ingly, we have validated the following versions of LS2 in BITT

(see [41, Appx.D] for more details):

Proposition 6.2 (Decidability of equality). The following inten-

sional20 and extensional21 versions of LS2 hold in BITT:22

∀a,b : Free(0). a≃b ∨ ¬a≃b

∀a,b : Free(0). a =B b ∨ ¬a =B b

and are both inhabited by the term: λa,b .if a=b then tt else ff.

6.3 The Axiom of Open Data

As opposed to LS1 and LS2, which characterize the universe of

choice sequences, the axiom named LS3(1) in [19] (also known as

the “Axiom of Open Data” [45]) is concerned with ways in which

they are to be reasoned about. It states that if a property φ (with

certain side-conditions) holds for a choice sequence a, then there

exists a finite initial segment of a such that φ holds for all choice

sequences that agree with a on this initial segment. In other words,

the validity of φ(a) depends only on a finite initial segment of a.

LS3(1) is a generalized form of the Continuity Principle. Fol-

lowing [29, p.154; 46, Thm.IIA; 22], we have already shown that

the non-squashed Continuity Principle is incompatible with Nuprl.

(However, we have proved in [38] that squashed versions of the

Continuity Principle are consistent with Nuprl.) Therefore, wewill

only be able to validate a squashed version of LS3(1). Using the ↓

squashing operator, this can be formulated as follows (where a is

the only choice sequence in φ(a)):

∀a : Free(0). φ(a) ⇒ ↓∃n : N. ∀b : Free(0). (a =Nn b ⇒ φ(b))

The informal justification for this claim in our implementation

of choice sequences seems straightforward. In any concrete stage

of the library, it only contains a finite initial segment of a. Thus, if

at a certain state of the library we managed to deduce that a satis-

fies a certain property, the same conclusion should be inferred for

any other choice sequence that shares that same finite information.

Formally validating it in BITT entails first internalizing the con-

straint on φ. This could be done using a nominal mechanism (such

as in [1]) which checks for names appearing in φ. Assuming that,

validating the axiom in our implementation of choice sequences

turns out to amount to some key properties about the behavior of

libraries, namely, monotonicity and name-invariance. Those were

shown to hold for Nuprl in [40], however, proving they hold in

BITT, and therefore also validating LS3(1), is left for future work.

20See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_choice2.v.
21See https://github.com/vrahli/NuprlInCoq/tree/beth/rules/rules_choice5.v.
22Recall that ≃ denotes the theoretical counterpart of the metatheoretical relation ∼.

Here, a ≃b means that a and b compute to the same choice sequence.
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7 Conclusions

We have developed an extension of Nuprl’s type theory, called

BITT, which incorporates choice sequences. Next, we plan to up-

date Nuprl accordingly, thereby turning it into a truly intuitionis-

tic proof assistant. More so, it will be the only one, as far as we

know, which supports any form of non-determinism. As such, we

strongly believe this new version of Nuprl could be used to model

large distributed systems. Investigating this application, as well as

the exploration of others, is left for future work.

Another future research task is to investigate the foundational

intuitionistic implications of this new type theory, namely : spreads,

Bar Induction, and the Continuity Principle (CP). For example, CP

was proven in Nuprl using exceptions [39]. In [13] the authors

formalized choice sequences as monadic streams and internally

proved CP for natural monadic stream functions. It has also been

shown that one can use references to obtain CP [32]. We conjec-

ture that our implementation of choice sequences can be used in-

stead of the methods above to realize CP.

It is also interesting to determine the status of other well known

principles in the new type theory, such as Markov’s principle (MP)

and Kripke’s Scheme (KS). MP has recently been studied in the con-

text of type theory [17; 16]. In particular, [16] established the inde-

pendence of MP with Martin-Löf’s type theory. MP was shown to

be consistent with Nuprl (using a squashed form of excluded mid-

dle), however it was also shown in Nuprl, following [9, p.116; 45,

Ch.4,Sec.9.5], that MP is inconsistent with KS [39, Appx.H]. Now,

in [19] van Dalen used Beth models to validate KS. Given that we

now invoke a Beth semantics, the status of these principles and

their connection has to be settled. As discussed in [41, Appx.B],

we have so far proved that MP is false in BITT.

Another direction for future work is to determinewhether BITT

exhibits versions of the Axiom of Choice (AC). Berardi et al. [8] pro-

posed an interpretation of classical analysis with AC, where the

negative translation of AC is realized by a bar recursion-like oper-

ator. They achieve this by adding infinite sequences to their term

language, which can be seen as lawlike choice sequences. Herbe-

lin showed in [23] how to realize the Axiom of Countable Choice,

the Axiom of Dependent Choice, and Bar Induction in a classical

logic with strong (computational) existential called dPAω . Herbe-

lin used steams, which can also be seen as some form of lawlike

choice sequences, to compute the witnesses of the existential for-

mulas in these axioms. Miquey [34] refined this work and proved

the strong normalization (therefore also soundness) of a variant

of dPAω presented as a sequent calculus. Using the current im-

plementation, we aim to improve on previous results and derive

squashed versions of the Axiom of Countable Choice directly in

Nuprl, without using classical logic.
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