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Abstract
Assigning a satisfactory truly concurrent semantics to Petri nets

with confusion and distributed decisions is a long standing prob-

lem, especially if one wants to resolve decisions by drawing from

some probability distribution. Here we propose a general solution

based on a recursive, static decomposition of (occurrence) nets in

loci of decision, called structural branching cells (s-cells). Each s-

cell exposes a set of alternatives, called transactions. Our solution
transforms a given Petri net into another net whose transitions are

the transactions of the s-cells and whose places are those of the

original net, with some auxiliary structure for bookkeeping. The

resulting net is confusion-free, and thus conflicting alternatives can

be equipped with probabilistic choices, while nonintersecting al-

ternatives are purely concurrent and their probability distributions

are independent. The validity of the construction is witnessed by a

tight correspondence with the recursively stopped configurations

of Abbes and Benveniste. Some advantages of our approach are

that: i) s-cells are defined statically and locally in a compositional

way; ii) our resulting nets faithfully account for concurrency.

CCS Concepts • Theory of computation→ Parallel comput-
ing models; Probabilistic computation;

Keywords Petri nets, confusion, dynamic nets, persistent places,

OR causality
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1 Introduction
Concurrency theory and practice provide a useful abstraction for

the design and use of a variety of systems. Concurrent computa-

tions (also processes), as defined in many models, are equivalence

classes of execution sequences, called traces, where the order of
concurrent (i.e., independent) events is inessential. A key notion in

concurrent models is conflict (also known as choices or decisions).

Basically, two events are in conflict when they cannot occur in the
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Figure 1. Some nets (top) and their event structures (bottom)

same execution. The interplay between concurrency and conflicts

introduces a phenomenon in which the execution of an event can

be influenced by the occurrence of another concurrent (and hence

independent) event. Such situation, known as confusion, naturally
arises in concurrent and distributed systems and is intrinsic to

problems involving mutual exclusion [Smith 1996]. When inter-

leaving semantics is considered, the problem is less compelling,

however it has been recognised and studied from the beginning of

net research [Rozenberg and Engelfriet 1998], and to address it in a

general and acceptable way can be considered as a long-standing

open problem for concurrency theory.

To illustrate confusion, we rely on Petri nets [Petri 1962; Reisig

2013], which are a basic, well understoodmodel of concurrency. The

simplest example of (asymmetric) confusion is the net in Fig. 1a. The

net has two traces involving the concurrent events a and b, namely

σ1 = a;b and σ2 = b;a. Both traces define the same concurrent

execution. Contrastingly, σ1 and σ2 are associated with completely

different behaviours of the system as far as the resolution of choices

is concerned. In fact, the system makes two choices while executing

σ1: firstly, it choosesa overd , which enables c ; secondly,b is selected
over c . Differently, the system makes just one choice in σ2: since c is
not enabled, b is executed without any choice; after that, the system

chooses a over d . As illustrated by this example, the choices made

by two different traces of the same concurrent computation may

differ depending on the order in which concurrent events occur.

The fundamental problem behind confusion relates to the de-

scription of distributed, global choices. Such problem becomes es-

sential when choices are driven by probabilistic distributions and

one wants to assign probabilities to executions, as it is the case with

probabilistic, concurrent models. Consider again Fig. 1a and assume

that a is chosen over d with probability pa while b is chosen over

c with probability pb When treated as independent choices, the
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Figure 2. AB’s dynamic branching cells for the example in Fig. 1a

trace σ1 has probability pa ·pb , while σ2 has probability 1 ·pa = pa .
Hence, two traces of the same concurrent computation, which are

deemed equivalent, would be assigned different probabilities.

Different solutions have been proposed in the literature for

adding probabilities to Petri nets [Bouillard et al. 2009; Dugan

et al. 1984; Eisentraut et al. 2013; Haar 2002; Katoen et al. 1993;

Kudlek 2005; Marsan et al. 1984; Molloy 1985]. To avoid confu-

sion, most of them replace nondeterminism with probability only

in part, or disregard concurrency, or introduce time dependent

stochastic distributions, thus giving up the time and speed indepen-

dence features typical of truly concurrent models. Confusion-free

probabilistic models have been studied in [Varacca et al. 2006], but

this class, which subsumes free-choice nets, is usually considered

quite restrictive. More generally, the distributability of decisions

has been studied, e.g., in [Katoen and Peled 2013; van Glabbeek et al.

2013], but while the results in [van Glabbeek et al. 2013] apply to

some restricted classes of nets, the approach in [Katoen and Peled

2013] requires nets to be decorated with agents and produces dis-

tributed models with both nondeterminism and probability, where

concurrency depends on the scheduling of agents.

A substantial advance has been contributed by Abbes and Ben-

veniste (AB) [Abbes and Benveniste 2005, 2006, 2008]. They consider

prime event structures and provide a branching cell decomposition
that establishes the order in which choices are resolved (see Sec-

tion 4.2). Intuitively, the event structure in Fig. 1a has the three

branching cells outlined in Fig. 2. First a decision between a and d
must be taken (Fig. 2a): if a is executed, then a subsequent branch-

ing cell {b, c} is enabled (Fig. 2b); otherwise (i.e., if d is chosen)

the branching cell {b} is enabled (Fig. 2c). In this approach, the

trace σ2 = b;a is not admissible, because the branching cell {b}
does not exist in the original decomposition (Fig. 2a): it appears

after the choice of d over a. Branching cells are equipped with in-

dependent probability distributions and the probability assigned

to a concurrent execution is given by the product of the proba-

bilities assigned by its branching cells. Notably, the sum of the

probabilities of maximal configurations is 1. Every decomposition

of a configuration yields an execution sequence compatible with

that configuration. Unfortunately, certain sequences of events, legal

w.r.t. the configuration, are not executable according to AB.

Problem statement The question addressed in this paper is a

foundational one: can concurrency and general probabilistic distri-
butions coexist in Petri nets? If so, under which circumstances? By

coexistence we mean that all the following issues must be addressed:

1. Speed independence: Truly concurrent semantics usually re-

quires computation to be time-independent and also inde-

pendent from the relative speed of processes. In this sense,

while attaching rates of stochastic distributions to transi-

tions is perfectly fine with interleaving semantics, they are

not suited when truly concurrent semantics is considered.

2. Schedule independence: Concurrent events must be driven by

independent probability distributions.

3. Probabilistic computation: Nondeterministic choices must be

replaceable by probabilistic choices. This means that when-

ever two transitions are enabled, the choice to fire one in-

stead of the other is either inessential (because they are

concurrent) or is driven by a probability distribution.

4. Complete concurrency: It must be possible to establish a bijec-

tive correspondence between equivalence classes of firing

sequences and a suitable set of concurrent processes.

5. Sanity check #1: All firing sequences of the same process carry

the same probability, i.e., the probability of a concurrent

computation is independent from the order of execution.

6. Sanity check #2: The sum of the probabilities assigned to all

possible processes must be 1.

In this paper we provide a positive answer for finite occurrence

nets: given any such net we show how to define loci of decisions,

called structural branching cells (s-cells), and construct another net

where independent probability distributions can be assigned to

concurrent events. This means that each s-cell can be assigned to a

distributed random agent and that any concurrent computation is

independent from the scheduling of agents.

Overview of the approach Following the rationale behind AB’s

approach, a net is transformed into another one that postpones

the execution of choices that can be affected by pending decisions.

According to this intuition, the net in Fig. 1a is transformed into

another one that delays the execution of b until all its potential

alternatives (i.e., c) are enabled or definitively excluded. In this

sense, b should never be executed before the decision between a
and d is taken, because c could still be enabled (if a is chosen). As

a practical situation, imagine that a and d are the choices of your

partner to either come to town (a) or go to the sea (d) and that you

can go to the theatre alone (b), which is always an option, or go

together with him/her (c), which is possible only when he/she is

in town and accepts the invitation. Of course you better postpone

the decision until you know if your partner is in town or not. This

behaviour is faithfully represented, e.g., by the confusion-free net in

Fig. 1b, where two variants of b are made explicit: b1 (your partner
is in town) and b2 (your partner is not in town). The new place

¬c represents the fact that c will never be enabled. Now, from the

concurrency point of view, there is a single process that comprises

both a and b1 (with a a cause of b1), whose overall probability is the
product of the probability of choosing a over d by the probability of

choosing b1 over c . The other two processes comprise, respectively,

d and b2 (with d a cause of b2) and a and c (with a a cause of c). As
the net is confusion-free all criteria in the desiderata are met.

The general situation is more involved because: i) there can be

several ways to disable the same transition; ii) resolving a choice

may require to execute several transitions at once. Consider the

net in Fig. 3a: i) c is discarded as soon as d or f fires; and ii) when

both a and e are fired we can choose to execute c alone or both b
and д. Likewise the previous example, we may expect to transform

the net as in Fig. 3b. Again, the place ¬c represents the permanent

disabling of c . This way a probability distribution can drive the

choice between c and (the joint execution of) bд, whereas b and д
(if enabled) can fire concurrently when ¬c is marked.

A few things are worth remarking: i) a token in ¬c can be needed
several times (e.g., to fire b and д), hence tokens should be read but
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Figure 3. Running example

not consumed from ¬c (whence the double headed arcs from ¬c to
b and д, called self-loops); ii) several tokens can appear in the place

¬c (by firing both d and f ). These facts have severe repercussions
on the concurrent semantics of the net. Suppose the trace d ; f ;b is

observed. Does b causally depend on the token generated from d
or from f (or from both)? Moreover, consider the trace d ; e;b;д, in
which b takes and releases a token in ¬c . Does д causally depend

on b (due to such self-loop)? This last question can be solved by

replacing self-loops with read arcs [Montanari and Rossi 1995], so

that the firing of b does not alter the content of ¬c and thus no

causal dependency arises between b and д. Nevertheless, if process
semantics or event semantics is considered, then we should explode

all possible combinations of causal dependencies, thus introducing

a new, undesired kind of nondeterminism. In reality, we should not

expect any causal dependency between b and д, while both have

OR dependencies on d and f .
To account for OR dependencies, we exploit the notion of per-

sistence: tokens in a persistent place have infinite weight and are

collective. Namely, once a token reaches a persistent place, it cannot

be removed and if two tokens reach the same persistent place they

are indistinguishable. Such networks are a variant of ordinary P/T

nets and have been studied in [Crazzolara and Winskel 2005]. In

the example, we can declare ¬c to be a persistent place and replace

self-loops/read arcs on ¬c with ordinary outgoing arcs (see Fig. 3c).

Nicely we are able to introduce a process semantics for nets with

persistent places that satisfies complete concurrency.

The place ¬c in the examples above is just used to sketch the

general idea: our transformation introduces persistent places like 3
to express that a token will never appear in the regular place 3.

Contribution. In this paper we show how to systematically derive

confusion-free nets (with persistency) from any (finite, occurrence)

Petri net and equip them with probabilistic distributions and con-

current semantics in the vein of AB’s construction.

Technically, our approach is based on a structurally recursive

decomposition of the original net in s-cells. A simple kind of Asperti-

Busi’s dynamic nets is used as an intermediate model to structure

the coding. While not strictly necessary, the intermediate step em-

phasises the hierarchical nature of the construction. The second

part is a general flattening step independent of our special case.

Our definition is purely local (to s-cells), static and compositional,

whereas AB’s is dynamic and global (i.e., it requires the entire PES).

Using nets with persistency, we compile the execution strategy

of nets with confusion in a statically defined, confusion-free, op-

erational model. The advantage is that the concurrency within a

process of the obtained p-net is consistent with execution, i.e., all

linearizations of a persistent process are executable.

Structure of the paper After fixing notation in Section 2, our

solution to the confusion problem consists of the following steps:

(i) we define s-cells in a compositional way (Section 3.1); (ii) from

s-cells decomposition and the use of dynamic nets, we derive a

confusion-free net with persistency (Section 3.2); (iii) we prove the

correspondence with AB’s approach (Section 4); (iv) we define a

new notion of process that accounts for OR causal dependencies

and satisfies complete concurrency (Section 5); and (v) we show

how to assign probabilistic distributions to s-cells (Section 6).

2 Preliminaries
2.1 Notation
We letN be the set of natural numbers,N∞ = N∪{∞} and 2 = {0, 1}.
We writeU S

for the set of functions from S toU : hence a subset of

S is an element of 2S , a multisetm over S is an element of NS
, and

a bag b over S is an element of NS
∞. By overloading the notation,

union, difference and inclusion of sets, multisets and bags are all

denoted by the same symbols:∪, \ and ⊆, respectively. In the case of

bags, the difference b \m is defined only when the second argument

is a multiset, with the convention that (b \m) (s ) = ∞ if b (s ) = ∞.
Similarly, (b ∪ b ′) (s ) = ∞ if b (s ) = ∞ or b ′(s ) = ∞. A set can be

seen as a multiset or a bag whose elements have unary multiplicity.

Membership is denoted by ∈: for a multisetm (or a bag b), we write
s ∈ m form(s ) , 0 (b (s ) , 0). Given a relation R ⊆ S × S , we let
R+ be its transitive closure and R∗ be its reflexive and transitive

closure. We say that R is acyclic if ∀s ∈ S . (s, s ) < R+.

2.2 Petri Nets, confusion and free-choiceness
A net structure N (also Petri net) [Petri 1962; Reisig 2013] is a tuple

(P ,T , F ) where: P is the set of places, T is the set of transitions,

and F ⊆ (P ×T ) ∪ (T × P ) is the flow relation. For x ∈ P ∪T , we
denote by

•x = {y | (y,x ) ∈ F } and x• = {z | (x , z) ∈ F } its pre-set
and post-set, respectively. We assume that P and T are disjoint and

non-empty and that
•t and t• are non empty for every t ∈ T . We

write t : X → Y for t ∈ T with X = •t and Y = t•.

3
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A marking is a multisetm ∈ NP
. We say that p is marked atm if

p ∈ m. We write (N ,m) for the net N marked bym. We writem0

for the initial marking of the net, if any.

Graphically, a Petri net is a directed graph whose nodes are the

places and transitions and whose set of arcs is F . Places are drawn as
circles and transitions as rectangles. The markingm is represented

by insertingm(p) tokens in each place p ∈m (see Fig. 1).

A transition t is enabled at the marking m, written m
t
−→, if

•t ⊆ m. The execution of a transition t enabled atm, called firing,

is writtenm
t
−→m′ withm′ = (m \ •t ) ∪ t•. A firing sequence from

m tom′ is a finite sequence of firingsm =m0

t1
−−→ · · ·

tn
−−→mn =m

′
,

abbreviated to m
t1 · · ·tn
−−−−−→ m′ or just m →∗ m′. Moreover, it is

maximal if no transition is enabled atm′. We writem
t1 · · ·tn
−−−−−→ if

there ism′ such thatm
t1 · · ·tn
−−−−−→m′. We say thatm′ is reachable from

m ifm →∗ m′. The set of markings reachable fromm is written

[m⟩. A marked net (N ,m) is safe if eachm′ ∈ [m⟩ is a set.
Two transition t ,u are in direct conflict if •t ∩ •u , ∅. A net is

called free-choice if for all transitions t ,u we have either
•t = •u or

•t ∩ •u = ∅, i.e., if a transition t is enabled then all its conflicting

alternatives are also enabled. Note that free-choiceness is purely

structural. Confusion-freeness considers instead the dynamics of

the net. A safe marked net (N ,m0) has confusion iff there exists a

reachable markingm and transitions t ,u,v such that:

1. (i) t ,u,v are enabled atm, (ii)
•t ∩ •u , ∅ , •u ∩ •v , (iii) •t ∩

•v = ∅ (symmetric case); or
2. (i) t and v are enabled atm, (ii) u is not enabled atm but it

becomes enabled after the firing of t , and (iii)
•t ∩ •v = ∅

and
•v ∩ •u , ∅ (asymmetric case).

In case 1, t and v are concurrently enabled but the firing of one

disables an alternative (u) to the other. In case 2, the firing of t
enables an alternative to u. An example of symmetric confusion

is given bym = {2, 3, 8}, t = b, u = c and v = д in Fig. 3a, while

for the asymmetric case takem = {1, 2}, t = a, v = b and u = c in
Fig. 1a. A net is confusion-free when it has no confusion.

2.3 Deterministic Nonsequential Processes
A deterministic nonsequential process (or just process) [Goltz and
Reisig 1983] represents the equivalence class of all firing sequences

of a net that only differ in the order in which concurrent firings are

executed. It is given as a mapping π : D → N from a deterministic
occurrence net D to N (preserving pre- and post-sets), where a

deterministic occurrence net is such that: (1) the flow relation is

acyclic, (2) there are no backward conflicts (∀p ∈ P . |•p | ≤ 1),

and (3) there are no forward conflicts (∀p ∈ P . |p• | ≤ 1). We let

◦D = {p | •p = ∅} andD◦ = {p | p• = ∅} be the sets of initial and
final places of D, respectively (with π (◦D) be the initial marking

of N ). When N is an acyclic safe net, the mapping π : D → N is

just an injective graph homomorphism: without loss of generality,

we name the nodes in D as their images in N and let π be the

identity. The firing sequences of a processes D are its maximal

firing sequences starting from the marking
◦D. A process of N is

maximal if its firing sequences are maximal in N .

For example, take the net in Fig. 1a. The equivalence class of the

firing sequencesm0

a b
−−−→ andm0

b a
−−−→ is the maximal process D

with places {1, 2, 3, 4} and transitions {a : 1→ 3,b : 2→ 4}, where
◦D = {1, 2} and D◦ = {3, 4}.

Given an acyclic net we let ⪯= F ∗ be the (reflexive) causality
relation and say that two transitions t1 and t2 are in immediate
conflict, written t1#0t2 if t1 , t2 ∧

•t1 ∩
•t2 , ∅. The conflict

relation # is defined by letting x#y if there are t1, t2 ∈ T such that

(t1,x ), (t2,y) ∈ F
+
and t1#0t2. Then, a nondeterministic occurrence

net (or just occurrence net) is a net O = (P ,T , F ) such that: (1) the

flow relation is acyclic, (2) there are no backward conflicts (∀p ∈
P . |•p | ≤ 1), and (3) there are no self-conflicts (∀t ∈ T . ¬(t#t )).
The unfolding U (N ) of a safe Petri net N is an occurrence net that

accounts for all (finite and infinite) runs of N : its transitions model

all the possible instances of transitions in N and its places model all

the tokens that can be created in any run. Our construction takes a

finite occurrence net as input, which can be, e.g., the (truncated)

unfolding of any safe net.

2.4 Nets With Persistency
Nets with persistency (p-nets) [Crazzolara and Winskel 2005] par-

tition the set of places into regular places P (ranged by p,q, ...)
and persistent places P (ranged by p, q, ...). We use s to range over

S = P∪P andwrite a p-net as a tuple (S,T , F ). Intuitively, persistent
places guarantee some sort of monotonicity about the knowledge

of the system. Technically, this is realised by letting states be bags

of places b ∈ NS
∞ instead of multisets, with the constraint that

b (p) ∈ N for any regular place p ∈ P and b (p) ∈ {0,∞} for any
persistent place p ∈ P. To guarantee that this property is preserved

by firing sequences, we assume that the post-set t• of a transition t
is the bag such that: (t•) (p) = 1 if (t ,p) ∈ F (as usual); (t•) (p) = ∞
if (t , p) ∈ F ; and (t•) (s ) = 0 if (t , s ) < F . We say that a transition t is
persistent if it is attached to persistent places only (i.e. if •t∪t• ⊆ P).

The notions of enabling, firing, firing sequence and reachability

extend in the obvious way to p-nets (when markings are replaced

by bags). For example, a transition t is enabled at the bag b, written

b
t
−→, if

•t ⊆ b, and the firing of an enabled transitions is written

b
t
−→ b ′ with b ′ = (b \ •t ) ∪ t•.
A firing sequence is stuttering if it has multiple occurrences of a

persistent transition. Since firing a persistent transition t multiple

times is inessential, we consider non-stuttering firing sequences.

(Alternatively, we can add a marked regular place pt to the preset

of each persistent transition t , so t fires at most once.)

A marked p-net (N ,b0) is 1-∞-safe if each reachable bag b ∈ [b0⟩
is such that b (p) ∈ 2 for all p ∈ P and b (p) ∈ {0,∞} for all p ∈ P.
Note that in 1-∞-safe nets the amount of information conveyed

by any reachable bag is finite, as each place is associated with one

bit of information (marked or unmarked). Graphically, persistent

places are represented by circles with double border (and they are

either empty or contain a single token). See Fig. 3c for an example.

The notion of confusion extends to p-nets, by checking direct

conflicts w.r.t. regular places only.

2.5 Dynamic Nets
Dynamic nets [Asperti and Busi 2009] are Petri nets whose sets of

places and transitions may increase dynamically. We focus on a

subclass of persistent dynamic nets that only allows for changes in

the set of transitions, which is defined as follows.

Definition 2.1 (Dynamic p-nets). The set dn(S) is the least set
satisfying the recursive equation:

dn(S) = {(T ,b) | T ⊆ 2
S × dn(S) ∧ T finite ∧ b ∈ NS

∞}

4
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The definition above is a domain equation for the set of dynamic

p-nets over the set of places S: the set dn(S) is the least fixed point
of the equation. The simplest elements in dn(S) are pairs (∅,b)
with bagb ∈ NS

∞ (withb (p) ∈ N for anyp ∈ P andb (p) ∈ {0,∞} for
any p ∈ P). Nets (T ,b) are defined recursively; indeed any element

t = (S,N ) ∈ T stands for a transition with preset S and postset N ,

which is another element of dn(S). An ordinary transition fromb to
b ′ has thus the form (b, (∅,b ′)). We write S → N for the transition

t = (S,N ), •t = S for its preset, and t• = N ∈ dn(S) for its postset.
For N = (T ,b) we say that T is the set of top transitions of N . All

the other transitions are called dynamic.

The firing rule rewrites a dynamic p-net (T ,b) to another one.

The firing of a transition t = S → (T ′,b ′) ∈ T consumes the preset S
and releases both the transitionsT ′ and the tokens inb ′. Formally, if

t = S → (T ′,b ′) ∈ T with S ⊆ b then (T ,b)
t
−−→ (T ∪T ′, (b \S )∪b ′).

The notion of 1-∞-safe dynamic p-net is defined analogously to

p-nets by considering the bags b of reachable states (T ,b).
A sample of a dynamic net is shown in Fig. 4a, whose only dy-

namic transition, which is activated by t3, is depicted with dashed

border. The arrow between t3 and b denotes the fact that b is acti-

vated dynamically by the firing of t3 : 3→ ({b : 2→ 4}, {5}).
We show that any dynamic p-net can be encoded as a (flat) p-net.

Our encoding resembles the one in [Asperti and Busi 2009], but it is

simpler because we do not need to handle place creation. Intuitively,

we release any transition t immediately but we add a persistent

place pt to its preset, to enable t dynamically (pt is initially empty

iff t is not a top transition). Given a set T of transitions, bT is the

bag such that bT (pt ) = ∞ if t ∈ T and bT (s ) = 0 otherwise.

For N = (T ,b) ∈ dn(S), we let T(N ) = T ∪
⋃
t ∈T T(t•) be

the set of all (possibly nested) transitions appearing in N . From

Definition 2.1 it follows that T(N ) is finite and well-defined.

Definition 2.2 (From dynamic to static). Given N = (T ,b) ∈
dn(S), the corresponding p-net LN M is defined as LN M = (S ∪
PT(N ) ,T(N ), F ,b ∪ bT ), where

• PT(N ) = {pt | t ∈ T(N )}; and
• F is such that for any t = S → (T ′,b ′) ∈ T(N ) then t :

•t ∪ {pt } → b ′ ∪ bT ′ .

The transitions of LN M are those from N (set T(N )). Any place of
N is also a place of LN M (set S). In addition, there is one persistent

place pt for each t ∈ T(N ) (set PT(N ) ). The initial marking of

LN M is that of N (i.e., b) together with the persistent tokens that

enable the top transitions of N (i.e., bT ). Adding bT is convenient

for the statement in Proposition 2.4, but we could safely remove

PT ⊆ PT(N ) (and bT ) from the flat p-net without any consequence.

Example 2.3. The dynamic p-net N in Fig. 4a is encoded as the

p-net LN M in Fig. 4b, which has as many transitions as N , but the

preset of every transition contains an additional persistent place

(depicted in grey) to indicate transition’s availability. All the new

places but pb are marked because the corresponding transitions

are initially available. Contrastingly, pb is unmarked because the

corresponding transition becomes available after the firing of t3.

The following result shows that all computations of a dynamic

p-net can be mimicked by the corresponding p-net and vice versa.

Hence, the encoding preserves also 1-safety over regular places.

Proposition 2.4. Let N = (T ,b) ∈ dn(S). Then,

1. N
t
−−→ N ′ implies LN M

t
−−→ LN ′M;

2. Moreover, LN M
t
−−→ N ′ implies there exists N ′′ such that N

t
−−→

N ′′ and N ′ = LN ′′M.

Corollary 2.5. LN M is 1-∞-safe iff N is 1-safe.

3 From Petri Nets to Dynamic P-Nets
In this section we show that any (finite, acyclic) net N can be

associated with a confusion-free, dynamic p-net JN K by suitably

encoding loci of decision. The mapping builds on the structural cell

decomposition introduced below.

3.1 Structural Branching Cells
A structural branching cell represents a statically determined locus

of choice, where the firing of some transitions is considered against

all the possible conflicting alternatives. To each transition t we
assign an s-cell [t]. This is achieved by taking the equivalence

class of t w.r.t. the equivalence relation ↔ induced by the least

preorder ⊑ that includes immediate conflict #0 and causality ⪯.

For convenience, each s-cell [t] also includes the places in the pre-

sets of the transitions in [t], i.e., we let the relation Pre−1 be also
included in ⊑, with Pre = F ∩ (P ×T ). This way, if (p, t ) ∈ F then

p ⊑ t because p ⪯ t and t ⊑ p because (t ,p) ∈ Pre−1. Formally, we

let ⊑ be the transitive closure of the relation #0 ∪ ⪯ ∪ Pre−1. Since
#0 is subsumed by the transitive closure of the relation ⪯ ∪ Pre−1,
we equivalently set ⊑ = (⪯ ∪ Pre−1)∗. Then, we let↔ = {(x ,y) |
x ⊑ y ∧y ⊑ x }. Intuitively, the choices available in the equivalence

class [t] |↔ of a transition t must be resolved atomically.

Definition 3.1 (S-cells). Let N = (P ,T , F ) be a finite, nondetermin-

istic occurrence net. The set bc(N ) of s-cells is the set of equivalence
classes of↔, i.e., bc(N ) = {[t] |↔ | t ∈ T }.

We let C range over s-cells. By definition it follows that for all

C,C′ ∈ bc(N ), if C ∩ C′ , ∅ then C = C′. For any s-cell C, we
denote by NC the subnet of N whose elements are in C ∪

⋃
t ∈C t•.

Abusing the notation, we denote by
◦C the set of all the initial

places in NC and by C◦ the set of all the final places in NC.

Definition 3.2 (Transactions). Let C ∈ bc(N ). Then, a transaction
θ of C, written θ : C, is a maximal (deterministic) process of NC.

Since the set of transitions in a transaction θ uniquely determines

the corresponding process in NC, we write a transaction θ simply

as the set of its transitions.

Example 3.3. The net N in Fig. 3a has the three s-cells shown in

Fig. 5a, whose transactions are listed in Fig. 5b. For C1 and C2, each

transition defines a transaction; C3 has one transaction associated

with c and one with (the concurrent firing of) b and д.

The following operation ⊖ is instrumental for the definition of

our encoding and stands for the removal of a minimal place of

a net and all the elements that causally depend on it. Formally,

N ⊖ p is the least set that satisfies the rules (where
◦ (_) has higher

precedence over set difference):

q ∈ ◦N \ {p}

q ∈ N ⊖ p

t ∈ N •t ⊆ N ⊖ p

t ∈ N ⊖ p

t ∈ N ⊖ p q ∈ t•

q ∈ N ⊖ p

Example 3.4. Consider the s-cells in Fig. 5a. The net NC1
⊖ 1 is

empty because every node in NC1
causally depends on 1. Similarly,

NC2
⊖ 7 is empty. The cases for C3 are in Figs. 5c–5e.
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Figure 4. A dynamic p-net encoded as a p-net

•

�� $$
1 C1

•

�� $$
7 C2

a

��

d

��
e

��

f

��
6 9

•

�� $$
2

��
3

C3

uu ��
8

b

��
c

��
д

��
4 5 10

(a) Structural branching cells

C1 :

θa ={a}
θd ={d }

C2 :

θe ={e}
θf ={ f }

C3 :

θc ={c}
θbд={b,д}

(b) Transactions

3

��
8

д

��
10

(c) NC3
⊖ 2

��
2

��
8

b

��

Cb

д

��

Cд

4 10

(d) NC3
⊖ 3

��
2 3

b

��
4

(e) NC3
⊖ 8

Figure 5. Structural branching cells (running example)

3.2 Encoding s-cells as confusion-free dynamic nets
Intuitively, the proposed encoding works by explicitly representing

the fact that a place will not be marked in a computation. We denote

with p the place that models such “negative” information about the

regular place p and let P = {p | p ∈ P }.1 The encoding uses negative
information to recursively decompose s-cells under the assumption

that some of their minimal places will stay empty.

Definition 3.5 (From s-cells to dynamic p-nets). LetN = (P ,T , F ,m)

be a marked occurrence net. Its dynamic p-net JN K ∈ dn(P ∪ P) is
defined as JN K = (Tpos ∪Tneg,m), where:

Tpos = {
◦C→ (∅,θ◦ ∪ C◦ \ θ◦) | C ∈ bc(N ) and θ : C }

Tneg = { p→ (T ′,C◦ \ (NC ⊖ p)◦) | C ∈ bc(N ) and p ∈ ◦C
and (T ′,b) = JNC ⊖ pK }

For any s-cell C of N and transaction θ : C, the encoding gener-

ates a transition tθ,C = (◦C → (∅,θ◦ ∪ C◦ \ θ◦)) ∈ Tpos to mimic

the atomic execution of θ . Despite ◦θ may be strictly included in

◦C, we set ◦C as the preset of tθ,C to ensure that the execution of

θ only starts when the whole s-cell C is enabled. Each transition

tθ,C ∈ Tpos is a transition of an ordinary Petri net because its post-

set consists of (i) the final places of θ and (ii) the negative versions

of the places in C◦ \ θ◦. A token in p ∈ C◦ \ θ◦ represents the fact

1
The notation P denotes just a set of places whose names are decorated with a bar; it

should not be confused with usual set complement.

ta : 1→ (∅, {3, 6}) for θa
td : 1→ (∅, {6, 3}) for θd

t1 : 1→ (∅, {3, 6})
te : 7→ (∅, {8, 9}) for θe
tf : 7→ (∅, {9, 8}) for θf

t7 : 7→ (∅, {8, 9})
tbд : 2, 3, 8→ (∅, {4, 10, 5}) for θbд
tc : 2, 3, 8→ (∅, {5, 4, 10}) for θc

t2 : 2→ ({tд , t
′
8
}, {4, 5})

t3 : 3→ ({tb , t
′
2
, tд , t

′
8
}, {5})

t8 : 8→ ({tb , t
′
2
}{5, 10})

where
tb : 2→ (∅, {4})
t ′
2
: 2→ (∅, {4})

tд : 8→ (∅, {10})
t ′
8
: 8→ (∅, {10})

Figure 6. Encoding of branching cells (running example)

that the corresponding ordinary place p ∈ C◦ will not be marked

because it depends on discarded transitions (not in θ ).
Negative information is propagated by the transitions inTneg. For

each cell C and place p ∈ ◦C, there exists one dynamic transition

tp,C = p→ (T ′,C◦ \ (NC ⊖ p)◦) whose preset is just p and whose

postset is defined in terms of the subnet NC ⊖p. The postset of tp,C
accounts for two effects of propagation: (i) the generation of the

negative tokens for all maximal places of C that causally depend

on p, i.e., for the negative places associated with the ones in C◦

that are not in (NC ⊖p)
◦
; and (ii) the activation of all transitionsT ′

obtained by encoding NC ⊖ p, i.e., the behaviour of the branching
cell C after the token in the minimal place p is excluded. We remark

that the bag b in (T ′,b) = JNC ⊖ pK is always empty, because i) NC
is unmarked and, consequently, NC ⊖ p is unmarked, and ii) the

initial marking of JN K corresponds to the initial marking of N .

Example 3.6. Consider the net N and its s-cells in Fig. 5a. Then,

JN K = (T ,b) is defined such that b is the initial marking of N , i.e.,

b = {1, 2, 7}, and T has the transitions shown in Fig. 6.

First consider the s-cell C1.Tpos contains one transition for each

transaction in C1, namely ta (for θa : C1) and td (for θd : C1).

Both ta and td have
◦C1 = {1} as preset. By definition ofTpos, both

transitions have empty sets of transitions in their postsets. Addi-

tionally, t•a produces tokens in θ◦a = {3} (positive) and C◦
1
\ θ◦a =

{3, 6} \ {3} = {6} (negative), while t•d produces tokens in θ◦d = {6}

and C◦
1
\ θ◦d = {3}. Finally, t1 ∈ Tneg propagates negative tokens

for the unique place in
◦C1 = {1}. Since NC1

⊖ 1 is the empty

net, JNC1
⊖ 1K = (∅, ∅). Hence, t1 produces negative tokens for all

maximal places of C1, i.e., {3, 6}. For the s-cell C2 we analogously

obtain the transitions te , tf and t7.

The s-cell C3 has two transactions θbд and θc . Hence, JN K has
two transitions tbд , tc ∈ Tpos. Despite θbд mimics the firing of b
and д, which are disconnected from the place 3, it is included in

the preset of tbд to postpone the firing of tbд until C1 is executed.

Transitions t2, t3, t8 ∈ Tneg propagate the negative information for

6
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Figure 7. Dynamic net JN K (running example)

the places in
◦C3 = {2, 3, 8}. The transition t3 has

•t3 = {3} as its
preset and its postset is obtained from NC3

⊖ 3, which has two (sub)

s-cells Cb and Cд (see Fig. 5d). The transitions tb and t ′
2
arise from

Cb , and tд and t ′
8
from Cд . Hence, t

•
3
= ({tb , t

′
2
, tд , t

′
8
}, {5}) because

JNC3
⊖ 3K = ({tb , t

′
2
, tд , t

′
8
}, ∅) and C◦

3
\ (NC3

⊖ 3)◦ = {5}. Similarly,

we derive t2 from NC3
⊖ 2 and t8 from NC3

⊖ 8.

We now highlight some features of the encoded net. First, the set

of top transitions is free-choice: positive and negative transitions

have disjoint presets and the presets of any two positive transitions

either coincide (if they arise from the same s-cell) or are disjoint.

Recursively, this property holds at any level of nesting. Hence, the

only source of potential confusion is due to the combination of top

transitions and those activated dynamically, e.g., tb and either tbд
or tc . However, tb is activated only when either 3 or 8 are marked,

while
•tbд =

•tc = {2, 3, 8}. Then, confusion is avoided if p and p
can never be marked in the same execution (Lemma 3.7).

The net JN K is shown in Fig. 7, where the places {1, 2, 7} and
the transitions {t1, t7, t2, t

′
2
} are omitted because superseded by the

initial marking {1, 2, 7}.

We remark that the same dynamic transition can be released

by the firing of different transitions (e.g., tb by t3 and t8) and pos-

sibly several times in the same computation. Similarly, the same

negative information can be generated multiple times. However

this duplication has no effect, since we handle persistent tokens.

For instance, the firing sequence td ; tf ; t3; t8 releases two copies of

tb and marks 5 twice. This is inessential for reachability, but has
interesting consequences w.r.t. causal dependencies (see Section 5).

We now show that the encoding generates confusion-free nets.

We start by stating a useful property of the encoding that ensures

that an execution cannot generate tokens in both p and p.

Lemma 3.7 (Negative and positive tokens are in exclusion). If
JN K→∗ (T ,b) and p ∈ b then (T ,b) →∗ (T ′,b ′) implies that p < b ′.

We now observe from Def. 3.5 that for any transition t ∈ JN K ∈
dn(P ∪ P) it holds that either •t ⊆ P or

•t ⊆ P. The next result
says that whenever there exist two transitions t and t ′ that have
different but overlapping presets, at least one of them is disabled

by the presence of a negative token in the marking b.

Lemma 3.8 (Nested rules do not collide). Let JN K ∈ dn(P ∪ P). If
JN K→∗ (T ,b) then for all t , t ′ ∈ T s.t. •t , •t ′ and •t ∩ •t ′ ∩ P , ∅
it holds that there is p ∈ P ∩ (•t ∪ •t ′) such that p ∈ b.

The main result states that J·K generates confusion-free nets.

Theorem 3.9. Let JN K ∈ dn(P ∪ P). If JN K →∗ (T ,b)
t
−−→ and

(T ,b)
t ′
−−→ then either •t = •t ′ or •t ∩ •t ′ = ∅.

Corollary 3.10. Any net JN K ∈ dn(P ∪ P) is confusion-free.

Finally, we can combine the encoding J·K with L·M (from Sec-

tion 2.5) to obtain a (flat) 1-∞-safe, confusion-free, p-net LJN KM,
that we call the uniformed net of N . By Proposition 2.4 we get that

the uniformed net LJN KM is also confusion-free by construction.

Corollary 3.11. Any p-net LJN KM is confusion-free.

4 Static vs Dynamic cell decomposition
As mentioned in the Introduction, Abbes and Benveniste proposed

a way to remove confusion by dynamically decomposing prime

event structures. In Sections 4.1 and 4.2 we recall the basics of the

AB’s approach as introduced in Abbes and Benveniste [2005, 2006,

2008]. Then, we show that there is an operational correspondence

between AB decomposition and s-cells introduced in Section 3.1.

4.1 Prime Event Structures
A prime event structure (also PES) [Nielsen et al. 1981; Winskel 1987]

is a triple E = (E, ⪯, #) where: E is the set of events; the causality
relation ⪯ is a partial order on events; the conflict relation # is a

symmetric, irreflexive relation on events such that conflicts are

inherited by causality, i.e., ∀e1, e2, e3 ∈ E. e1#e2 ⪯ e3 ⇒ e1#e3.
The PES EN associated with a net N can be formalised using

category theory as a chain of universal constructions, called core-

flections. Hence, for each PES E, there is a standard, unique (up to

isomorphism) nondeterministic occurrence net NE that yields E

and thus we can freely move from one setting to the other.

Consider the nets in Figs. 1a and 3a. The corresponding PESs are

shown below each net. Events are in bijective correspondence with

the transitions of the nets. Strict causality is depicted by arrows

and immediate conflict by curly lines.

Given an event e , its downward closure ⌊e⌋ = {e ′ ∈ E | e ′ ⪯ e}
is the set of causes of e . As usual, we assume that ⌊e⌋ is finite for
any e . Given B ⊆ E, we say that B is downward closed if ∀e ∈
B. ⌊e⌋ ⊆ B and that B is conflict-free if ∀e, e ′ ∈ B. ¬(e#e ′). We let

the immediate conflict relation #0 be defined on events by letting

e#0e
′
iff (⌊e⌋ × ⌊e ′⌋)∩# = {(e, e ′)}, i.e., two events are in immediate

conflict if they are in conflict but their causes are compatible.

4.2 Abbes and Benveniste’s Branching Cells
In the following we assume that a (finite) PES E = (E, ⪯, #) is given.
A prefix B ⊆ E is any downward-closed set of events (possibly with

conflicts). Any prefix B induces an event structure EB = (B, ⪯B , #B )
where ⪯B and #B are the restrictions of ⪯ and # to the events in

B. A stopping prefix is a prefix B that is closed under immediate

conflicts, i.e., ∀e ∈ B, e ′ ∈ E. e#0e
′ ⇒ e ′ ∈ B. Intuitively, a stopping

prefix is a prefix whose (immediate) choices are all available. It is

initial if the only stopping prefix strictly included in B is ∅. We

assume that any e ∈ E is contained in a finite stopping prefix.

A configuration v ⊆ E is any set of events that is downward

closed and conflict-free. Intuitively, a configuration represents (the

state reached after executing) a concurrent but deterministic com-

putation of E. Configurations are ordered by inclusion and we

denote by VE the poset of finite configurations of E and by ΩE
the poset of maximal configurations of E.

7
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The future of a configuration v , written Ev , is the set of events
that can be executed afterv , i.e., Ev = {e ∈ E\v | ∀e ′ ∈ v .¬(e#e ′)}.
We write Ev for the event structure induced by Ev . We assume

that any finite configuration enables only finitely many events, i.e.,

the set of minimal elements in Ev w.r.t. ⪯ is finite for any v ∈ VE .
A configuration v is stopped if there is a stopping prefix B with

v ∈ ΩB . and v is recursively stopped if there is a finite sequence of

configurations ∅ = v0 ⊂ . . . ⊂ vn = v such that for any i ∈ [0,n)
the set vi+1 \vi is a finite stopped configuration of Evi for vi in E.

A branching cell is any initial stopping prefix of the future Ev of

a finite recursively stopped configurationv . Intuitively, a branching
cell is a minimal subset of events closed under immediate conflict.

We remark that branching cells are determined by considering the

whole (future of the) event structure E and they are recursively

computed as E is executed. Remarkably, every maximal configura-

tion has a branching cell decomposition.

Example 4.1. Consider the PES EN in Fig. 3a and its maximal

configurationv = {a, e,b,д}. We show thatv is recursively stopped

by exhibiting a branching cell decomposition. The initial stopping

prefixes of EN = E
∅
N are shown in Fig. 8a. There are two possibili-

ties for choosingv1 ⊆ v andv1 recursively stopped: eitherv1 = {a}
or v1 = {e}. When v1 = {a}, the choices for v2 are determined by

the stopping prefixes of E
{a }
N (see Fig. 8b) and the only possibility

is v2 = {a, e}. From E
{a,e }
N in Fig. 8c, we take v3 = v . Note that

{a, e,b} is not recursively stopped because {b} is not maximal in the

stopping prefix of E
{a,e }
N (see Fig. 8c). Finally, note that the branch-

ing cells E
{a }
N (Fig. 8b) and E

{d }
N (Fig. 8d) correspond to different

choices in E∅N and thus have different stopping prefixes.

4.3 Relating s-cells and AB’s decomposition
The recursively stopped configurations of a net N characterise all

the allowed executions of N . Hence, we formally link the recur-

sively stopped configurations of EN with the computations of the

uniformed net LJN KM. For technical convenience, we first show that

the recursively stopped configurations of EN are in one-to-one cor-

respondence with the computations of the dynamic net JN K. Then,
the desired correspondence is obtained by using Proposition 2.4 to

relate the computations of a dynamic net and its associated p-net.

We rely on the auxiliary map ∥−∥ that links transitions in JN K
with events in EN . Specifically, ∥−∥ associates each transition t of
JN K with the set ∥t ∥ of transitions of N (also events in EN ) that

are encoded by t . Formally,

∥t ∥ =



ev (θ ) if t = tθ,C ∈ Tpos

∅ if t ∈ Tneg

where ev (θ ) is the set of transitions in θ .

Example 4.2. Consider the net N in Fig. 5a which is encoded as

the dynamic p-net in Fig. 6. The auxiliary mapping ∥_∥ is as follows

∥ta ∥ = {a} ∥td ∥ = {d } ∥te ∥ = {e} ∥tf ∥ = { f }

∥tbд ∥ = {b,д} ∥tc ∥ = {c} ∥tb ∥ = {b} ∥tд ∥ = {д}

∥t ∥ = ∅ if t ∈ {t1, t7, t2, t3, t8, t
′
2
, t ′
8
}

A transition tθ,C of LN M associated with a transaction θ : C of N
is mapped to the transitions of θ . For instance, ta is mapped to

{a}, which is the only transition in θa . Differently, transitions that
propagate negative information, i.e., t ∈ {t1, t7, t2, t3, t8, t

′
2
, t ′
8
}, are

mapped to ∅ because they do not encode any transition of N .

In what follows we writeM ==⇒ M ′ for a possibly empty firing

sequence M
t1 · · ·tn
−−−−−−→ M ′ such that ∥ti ∥ = ∅ for all i ∈ [1,n]. If

∥t ∥ , ∅, we write M
t
==⇒ M ′ if M ==⇒ M0

t
==⇒ M1 ==⇒ M ′ for some

M0,M1. Moreover, we write M
t1 · · ·tn
======⇒ if there exist M1, ...,Mn

such thatM
t1
==⇒ M1

t2
==⇒ · · ·

tn
==⇒ Mn .

The following result states that the computations of any dynamic

p-net produced by J_K are in one-to-one correspondence with the

recursively stopped configurations of Abbes and Benveniste.

Lemma 4.3. Let N be an occurrence net.

1. If JN K
t1 · · ·tn
======⇒, then v =

⋃
1≤i≤n ∥ti ∥ is recursively stopped

in EN and (∥ti ∥)1≤i≤n is a valid decomposition of v .
2. If v is recursively stopped in EN , then for any valid decompo-

sition (vi )1≤i≤n there exists JN K
t1 · · ·tn
======⇒ such that ∥ti ∥ = vi .

Example 4.4. Consider the branching cell decomposition for v =
{a, e,b,д} ∈ Ev discussed in Ex. 4.1. Then, the net JN K in Ex. 3.6

can mimic that decomposition with the following computation

(T , {1, 2, 7})
ta
−−→ (T , {2, 3, 7, 6})

te
−−→ (T , {2, 3, 8, 6, 9})

tbд
−−−→ (T , {4, 10, 5, 6, 9})

with v1 = ∥ta ∥ = {a}, v2 = ∥te ∥ = {e}, and v3 = ∥tbд ∥ = {b,д}.

From Lemma 4.3 and Proposition 2.4 we obtain the next result.

Theorem 4.5 (Correspondence). Let N be an occurrence net.

1. If LJN KM
t1 · · ·tn
======⇒, thenv =

⋃
1≤i≤n ∥ti ∥ is recursively stopped

in EN and (∥ti ∥)1≤i≤n is a valid decomposition of v .
2. Ifv is recursively stopped in EN , then for any valid decomposi-

tion (vi )1≤i≤n there exists LJN KM
t1 · · ·tn
======⇒ such that ∥ti ∥ = vi .

By (1) above, any computation of LJN KM corresponds to a (re-

cursively stopped) configuration of EN , i.e., a process of N . By (2),

every execution of N that can be decomposed in terms of AB’s

branching cells is preserved by LJN KM, because any recursively

stopped configuration of EN is mimicked by LJN KM.

5 Concurrency of the Uniformed Net
In this section we study the amount of concurrency still present in

the uniformed net LJN KM. Here, we extend the notion of a process

to the case of 1-∞-safe p-nets and we show that all the legal firing
sequences of a process of the uniformed net LJN KM are executable.

The notion of deterministic occurrence net is extended to p-

nets by slightly changing the definitions of conflict and causal

dependency: (i) two transitions are not in conflict when all shared

places are persistent, (ii) a persistent place can have more than one

immediate cause in its preset, which introduces OR-dependencies.

Definition 5.1 (Persistent process). An occurrence p-net O = (P ∪
P,T , F ) is an acyclic p-net such that |p• | ≤ 1 and |•p | ≤ 1 for any

p ∈ P (but not necessarily for those in P).
A persistent process for N is an occurrence p-netO together with

a net morphism π : O → N that preserves presets and postsets and

the distinction between regular and persistent places. Without loss

of generality, when N is acyclic, we assume thatO is a subnet of N
(with the same initial marking) and π is the identity.

In an ordinary occurrence net, the causes of an item x are all its

predecessors. In p-nets, the alternative sets of causes of an item x

8
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Figure 8. AB’s branching cell decomposition (running example)

are given by a formula Φ(x ) of the propositional calculus without
negation, where the basic propositions are the transitions of the

occurrence net. If we represent such a formula as a sum of products,

it corresponds to a set of collections, i.e. a set of sets of transitions.
Different collections correspond to alternative causal dependencies,

while transitions within a collection are all the causes of that al-

ternative and true represents the empty collection. Such a formula

Φ(x ) represents a monotone boolean function, which expresses, as

a function of the occurrences of past transitions, if x has enough

causes. It is known that such formulas, based on positive literals

only, have a unique DNF (sum of products) form, given by the set

of prime implicants. In fact, every prime implicant is also essen-

tial [Wegener 1987]. We define Φ(x ) by well-founded recursion:

Φ(x ) =



true if x ∈ P ∪ P ∧ •x = ∅∨
t ∈•x (t ∧ Φ(t )) if x ∈ P ∪ P ∧ •x , ∅∧
s ∈•x Φ(s ) if x ∈ T

Ordinary deterministic processes satisfy complete concurrency:
each process determines a partial ordering of its transitions, such

that the executable sequences of transitions are exactly the lin-

earizations of the partial order. More formally, after executing any

firing sequence σ of the process, a transition t is enabled if and

only if all its predecessors in the partial order (namely its causes)

already appear in σ . In the present setting a similar property holds.

Definition 5.2 (Legal firing sequence). A sequence of transitions

t1; · · · ; tn of a persistent process is legal if for all k ∈ [1,n] we have
that

∧k−1
i=1 ti implies Φ(tk ).

It is immediate to notice that if the set of persistent places is

empty (P = ∅) then the notion of persistent process is the ordinary

one, Φ(x ) is just the conjunction of the causes of x and a sequence

is legal iff it is a linearization of the process.

Theorem 5.3 (Complete Concurrency). Let σ = t1; · · · ; tn with
n ≥ 0 be a, possibly empty, firing sequence of a persistent process, and
t a transition not in σ . The following conditions are all equivalent:
(i) t is enabled after σ ; (ii) there is a collection of causes of t which
appears in σ ; (iii)

∧n
i=1 ti implies Φ(t ).

Corollary 5.4. Given a persistent process, a sequence is legal iff it is
a firing sequence.

Example 5.5. Fig. 9 shows a process for the net LJN KM of our

running example (see N in Fig. 3a and JN K in Fig. 7). The process

accounts for the firing of the transitions d , f , b in N . Despite they

look as concurrent events in N , the persistent place ptb introduces
some causal dependencies. In fact, we have: Φ(td ) = Φ(tf ) = true,
Φ(t3) = td , Φ(t8) = tf and Φ(tb ) = (t3 ∧ td ) ∨ (t8 ∧ tf ), thus tb can

be fired only after either td or tf (or both).

6 Probabilistic Nets
We can now outline our methodology to assign probabilities to the

concurrent runs of a Petri net, also in the presence of confusion.

•
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||
1 •

""
7 •

��
ptf

td

�� ""

tf

||   6

��

3

��

��

8 9
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��

����
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��
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8

��
5 4 10

Figure 9. A process for LJN KM (running example)

Given a net N , we apply s-cell decomposition from Section 3.1,

and then we assign probability distributions to the transactions

available in each cell C (and recursively to the s-cell decomposition

of NC). Let PC : {θ | θ : C} → [0, 1] denote the probability

distribution function of the s-cell C (such that

∑
θ :C PC (θ ) = 1).

Such probability distributions are defined locally and transferred

automatically to the transitions in Tpos of the dynamic p-net JN K
defined in Section 3, in such a way that P (tθ,C) = PC (θ ). Each
negative transitions in Tneg has probability 1 because no choice

is associated with it. Since the uniformed net LJN KM has the same

transitions of JN K, the probability distribution can be carried over

LJN KM (thanks to Proposition 2.4).

A simple way to define PC is by assigning probability distribu-

tions to the arcs leaving the same place of the original net, Then,

given a transaction θ : C, we can set QC (θ ) be the product of the
probability associated with the arcs of N entering the transitions

in θ . Of course, in general it can happen that

∑
θ :C QC (θ ) < 1,

as not all combinations are feasible. However, it is always possi-

ble to normalise the quantities of feasible assignments by setting

PC (θ ) =
QC (θ )∑

θ ′:C QC (θ ′) for any transaction θ : C.

Example 6.1. Suppose that in our running example we assign

uniform distributions to all arcs leaving a place. From simple calcu-

lation we have PC1
(θa ) = PC1

(θd ) =
1

2
for the first cell, PC2

(θe ) =

PC2
(θf ) =

1

2
for the second cell, PC3

(θc ) = PC3
(θbд ) =

1

2
for the

third cell. The transactions of nested cells are uniquely defined and

thus have all probability 1.

Given a firing sequence t1; · · · ; tn we can set P (t1; · · · ; tn ) =∏n
i=1 P (ti ). Hence firing sequences that differ in the order in which

transitions are fired are assigned the same probability. Thanks to

Theorem 5.3, we can consider maximal persistent processes and

set P (O ) =
∏

t ∈O P (t ). In fact any maximal firing sequence in O
includes all transitions of O . It follows from Theorem 4.3 that any

maximal configuration has a corresponding maximal process (and

viceversa) and since Abbes and Benveniste proved that the sum of

9
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the probabilities assigned to maximal configurations is 1, the same

holds for maximal persistent processes.

Example 6.2. Suppose the distributions assigned in Example 6.1.

Then, the persistent process in Fig. 9 has probability:P (O ) = P (td )·
P (tf ) · P (t3) · P (t8) · P (tb ) · P (t

′
8
) = 1

2
· 1
2
· 1 · 1 · 1 · 1 = 1

4
.

7 Conclusion and Future Work
AB’s branching cells are a sort of interpreter (or scheduler) for

executing PESs in the presence of confusion. Our main results

develop along two orthogonal axis. Firstly, our approach is an

innovative construction with the following advantages:

1. Compositionality: s-cells are defined statically and locally,

while AB’s branching cells are defined dynamically and glob-

ally (by executing the whole event structure).

2. Compilation vs interpretation: AB’s construction gives an in-

terpreter that rules out some executions of an event structure.

We instead compile a net into another one (with persistency)

whose execution is driven by ordinary firing rules.

3. Complete concurrency: AB’s recursively stopped configu-

rations may include traces that cannot be executed by the

interpreter. Differently, our notion of process captures all and

only those executable traces of a concurrent computation.

4. Simplicity: s-cells definition in terms of a closure relation

takes a couple of lines (see Definition 3.1), while AB’s branch-

ing cell definition is more involved.

5. Full matching: we define a behavioural correspondence that

relates AB’s maximal configurations with our maximal deter-

ministic processes, preserving their probability assignment.

Secondly, we provide the following fully original perspectives:

1. Confusion removal: our target model is confusion-free.

2. Locally executable model: probabilistic choices are confined

to transitions with the same pre-set, and hence can be re-

solved locally and concurrently. Besides, our target model

relies on ordinary firing rules (with persistent places).

3. Processes: We define a novel notion of process for nets with

persistency that conservatively extends the ordinary notion

of process and captures the right amount of concurrency.

4. Goal satisfaction: our construction meets all requirements

in the list of desiderata.

Our construction is potentially complex: given a s-cell C we

recursively consider the nested s-cells in NC ⊖ p, for any initial

place p ∈ NC. In the worst case, the number of nested s-cells can be

exponential on the number of their initial places. However s-cells

are typically much smaller than the whole net and it can be the case

that the size of all s-cells is bound by some fixed k . In this case, the

number of s-cells in our construction can still become exponential

on the constant k , but linear w.r.t. the number of places of the net.

A limitation of our approach is that it applies to finite occurrence

nets only (or, equivalently, to finite PESs). As a future work, we plan

to deal with cycles and unfolding semantics. This requires some ef-

forts and we conjecture it is feasible only if the net is safe and its be-

haviour has some regularity: the same s-cell can be executed several

times in a computation but every instance is restarted without to-

kens left from previous rounds. The causal AND/OR-dependencies

share some similarities also with the work on connectors and Petri

nets with boundaries [Bruni et al. 2013] that we would like to for-

malize. We also want to investigate the connection between our

s-cell structure and Bayesian networks, so to make forward and

backward reasoning techniques available in our setting.
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