SWAC Experiments on the Use of Orthogonal Polynomials for Data Fitting*

Marcia Ascher
Douglas Aircraft Company, Santa Monica, California
AND
George E. Forsythe
Stanford University, Stanford, California

1. Introduction and Summary

Let $\xi=\left(x_{1}, \cdots, x_{m}\right)$ be a set of real numbers, and let $f\left(x_{1}\right), \cdots, f\left(x_{m}\right)$ be the observed or computed values of some function of x at the points of ξ. Let $f_{n}^{(\xi)}(x)$ be the unique polynomial of degree n which best fits the data values $f\left(x_{i}\right)$ in the least-squares sense. I.e., the sum

$$
S\left(q_{n}\right)=\sum_{i=1}^{m}\left\{f\left(x_{i}\right)-q_{n}\left(x_{i}\right)\right\}^{2}
$$

where q_{n} is a polynomial of degree n, is minimized by $q_{n}(x)=f_{n}^{(\xi)}(x)$.
In [3] one of us discussed the problem of finding $f_{n}^{(\xi)}(x)$ on a digital computer and outlined certain advantages of determining $f_{n}^{(\xi)}(x)$ in terms of polynomials $p_{k}(x)$ orthogonal over ξ. It was further proposed that the $p_{k}(x)$ be computed from their 3 -term recurrence. The procedure will be outlined again here, mainly to formulate our notation.

Let $p_{0}(x)=1$, and let $\beta_{r}=0$. Then the polynomials $p_{k}(x)$ are defined and computed by the recurrence

$$
\begin{equation*}
p_{k+1}(x)=\left(x-\alpha_{k+1}\right) p_{k}(x)+\beta_{k} p_{k-1}(x) \tag{1}
\end{equation*}
$$

Here

$$
\begin{equation*}
\alpha_{k+1}=\sum_{i=1}^{m} x_{i}\left\{p_{k}\left(x_{i}\right)\right\}^{2} / \sum_{i=1}^{m}\left\{p_{k}\left(x_{i}\right)\right\}^{2}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{k}=\sum_{i=1}^{m}\left\{p_{k}\left(x_{i}\right)\right\}^{2} / \sum_{i=1}^{m}\left\{p_{k-1}\left(x_{i}\right)\right\}^{2} . \tag{3}
\end{equation*}
$$

(Our numbering of the subscripts of the α_{k} and β_{k} agrees with that in [3], but various other numberings are in use elsewhere.)

The fundamental property of the $p_{k}(x)$ is the orthogonality relation

[^0]$$
\sum_{i=1}^{m} p_{h}\left(x_{i}\right) p_{k}\left(x_{i}\right)=0
$$

The Fourier coefficients t_{k} of $f\left(x_{i}\right)$ are defined by

$$
\begin{equation*}
t_{k}=\sum_{i=1}^{m} f\left(x_{i}\right) p_{k}\left(x_{i}\right) / \sum_{i=1}^{m}\left\{p_{k}\left(x_{i}\right)\right\}^{2} . \tag{4}
\end{equation*}
$$

In terms of the t_{k} we can write the desired least-squares polynomial as

$$
\begin{equation*}
f_{n}^{(\xi)}(x)=\sum_{k=0}^{n} t_{k} p_{k}(x) . \tag{5}
\end{equation*}
$$

Finally, the statistic (estimate of unexplained variance)

$$
\begin{equation*}
\sigma_{n}^{2}=(m-n-1)^{-1} \sum_{i=1}^{m}\left\{f\left(x_{i}\right)-f_{n}^{(\xi)}\left(x_{i}\right)\right\}^{2} \tag{6}
\end{equation*}
$$

has an expected value which is independent of n (for $n>h$), if the $f\left(x_{i}\right)$ are independently normally distributed about some polynomial trend of degree h. Hence $\sigma_{n}{ }^{2}$ is often a useful measure of the goodness with which $f_{n}^{(k)}(x)$ fits $f(x)$ over the set ξ.

When one is asked to use a computer to find the polynomial $f_{n}^{(\xi)}$, one can well ask in return what it means to "find a polynomial." Too often one automatically considers that a polynomial p is synonymous with its representation in powers

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}
$$

or, at any rate, with the coefficients

$$
c_{0}, c_{1}, \cdots, c_{n}
$$

It is our point of view that one may equally well have "found a polynomial p " when one has a table of its values $p(x)$ for a sufficiently wide class of arguments x. Or, alternatively, that one may have "found p " when one knows the constants of a machine algorithm for computing $p(x)$ for any desired x. It is in the latter sense that we claim we have "found $f_{n}^{(6)}$ " as soon as we have the values of

$$
\begin{equation*}
\alpha_{1}, \cdots, \alpha_{n}, \quad \beta_{1}, \cdots, \quad \beta_{n-1}, \quad \text { and } t_{0}, \cdots, \quad t_{n} \tag{7}
\end{equation*}
$$

For with these numbers we can produce $f_{n}^{(\xi)}(x)$ for any desired x by formulas (1) and (5).

It is a deeper question as to which representation of $f_{n}^{(\xi)}$ is the better-that of the coefficients (6^{\prime}) or that of (7). Such a question can only be answered in terms of computing time, precision, round-off error, machine storage, and especially any desired further use of $f_{n}^{(\mathrm{E})}$. Ordinarily, choices between computing methods depend critically on special factors characteristic of a given particular application.

Without claiming the method to be better, the authors have experimented with the consistent use of the recurrence (1) for the data-fitting problem on the automatic digital computer available to them, Swac. We have prepared this summary of typical results as a record of our experiment.

A related code has been reported by Rudin [5].
A similar code, but in fixed point, has been constructed at The Ramo-Wooldridge Corporation under the guidance of David Morrison,

In section 2 we describe the Swac codes, which use "floating vectors." In section 3 we give formulas for the Chebyshev polynomials which are orthogonal with respect to summation over certain equally spaced x_{i}, and use them to check the Swac-generated values of α_{k} and β_{k}. In section 4 we test the code for generating $f_{n}^{(\xi)}(x)$ for the function $f(x)=|x|$ over the same x_{i}.

In section 5 we prove an apparently new theorem that, if f is an entire function, $f_{n}^{(\xi)}(z) \rightarrow f(z)$ for all complex z, as $n, m \rightarrow \infty$. In section 6 we compare a bound given by our theorem with the observed error of $f_{n}^{(\xi)}(x)-f(x)$, for various real values of x, where $f(x)=e^{x}$. Table 3 and graphs 1 and 2 illustrate the quantitative and qualitative behavior of both the interpolation and extrapolation of e^{x} by use of $f_{n}^{(\xi)}(x)$.

We conclude that for e^{x} our method of data fitting will determine interpolated function values $f_{n}^{(\xi)}(x)$ with a precision of something like 10^{-8} for n up to 16 , and with nearly as much precision up to $n=31$. This is in contrast with reports we have heard of the failure of routines which have attempted (using comparable precision) to solve the classical normal equations for the power coefficients c_{0}, \cdots, c_{n}, and then to evaluate $f_{n}^{(\xi)}(x)$ in the form $c_{0}+c_{1} x+\cdots+c_{n} x^{n}$.

2. SW AC Codes

The coding of the procedure was divided into two parts. In the first routine the input is the set of abscissas $\xi=\left\{x_{1}, \cdots, x_{m}\right\}$ ($m \leqq 1023$) and the corresponding functional values $f\left(x_{i}\right)(i=1, \cdots, m)$, with no restriction on the interval or spacing. The routine generates: (i) the parameters α_{k}, β_{k} of $(2,3)$ defining the orthogonal polynomials $p_{k}(x)$ of each successive degree k up to 32 (if $m>32$), or up to $m-1$ (if $m \leqq 32$); (ii) the Fourier coefficients t_{k} of (4) for the values $f\left(x_{i}\right)$ with respect to these polynomials; and (iii) the error measures $\sigma_{k}{ }^{2}$ of (6). In the second routine, the results of the first routine ($\alpha_{k}, \beta_{k}, t_{k}$) and the abscissas d_{1}, \cdots, d_{r} are the input. This routine evaluates

$$
f_{n}^{(\xi)}\left(d_{i}\right)=\sum_{k=0}^{n} t_{k} p_{k}\left(d_{i}\right) \quad(\text { for } 1 \leqq i \leqq r, \quad 0 \leqq n \leqq 32)
$$

The d_{i} need not be the same as the x_{i} nor in the same interval. The number of abscissas has the arbitrary limit $r \leqq 1023$.

The routines use numbers in a (binary) floating vector form. Each vector (z_{1}, \cdots, z_{m}) is stored in $m+1$ cells as ($q_{1}, \cdots, q_{m}, q_{m+1}$), which is interpreted as

$$
z_{i}=q_{i} \cdot 2^{q_{m+1}}
$$

Here q_{m+1} is an integer such that $\left|q_{m+1}\right| \leqq 2^{36}-1$; we have $\left|q_{i}\right|<1$ $(i=1, \cdots, m)$, and $\frac{1}{2} \leqq \max _{1 \leqq i \leqq m}\left|q_{i}\right|<1$. Each scalar is regarded as a floating
vector with one component, and so is stored in two cells. This floating vector form has been used previously on Swac by Professor M. R. Hestenes in several matrix codes.

It was found that a normalization process to keep $\frac{1}{2} \leqq \max _{1 \leqq i \leqq m}\left|q_{i}\right|<1$ is extremely important for the accuracy of the results. This normalization is needed after each arithmetic step involving either vectors or scalars.

Because of the number of times the operations are performed, the use of subroutines for subtraction of vectors, division of scalars, and finding the inner product of two vectors is found to be very useful.

Although the numbers are input and are available for output in binary floating vector form, it, was thought advisable also to have the output in a more easily identifiable form. The routines therefore contain a subroutine to convert the data into floating decimal form, and the numbers contained in this paper are a result of this conversion. The error introduced into the numbers by this conversion is believed to be not more than approximately one unit in the last digit tabulated. This belief is substantiated by test conversions of several numbers over the range of numbers tabulated.

The routines and further details about them are available in the Numerical Analysis Research library of the University of California, Los Angeles (codes 00474.1 and 00474.2).

In evaluating our results the reader should know that the Swac word length is 36 binary digits (equivalent to about 10.8 decimals) plus a sign digit.

3. Equally Spaced x_{i}

As a first test for the routines we took an odd number m of equally spaced points over the interval $[-1,1]$:

$$
x_{i}=-1+2 \frac{i-1}{m-1} \quad(i=1,2, \cdots, m)
$$

The corresponding orthogonal polynomials

$$
P_{k}^{(m)}(x)=x^{k}+\cdots \quad(k=0,1, \cdots, m-1)
$$

were introduced by Chebyshev [2], and the following formulas are adapted from Barker [1]:

$$
\begin{equation*}
P_{k+1}^{(m)}(x)=x P_{k}^{(m)}(x)-\beta_{k}^{(m)} P_{k-1}^{(m)}(x) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{k}^{(m)}=\frac{k^{2}}{(m-1)^{2}} \frac{m^{2}-k^{2}}{4 k^{2}-1} \tag{9}
\end{equation*}
$$

Comparison of (8) with (1) shows that all

$$
\begin{equation*}
\alpha_{k}^{(m)}=0 \tag{10}
\end{equation*}
$$

TABLE 1

k	$m=33$				$m=513$			
	$\begin{gathered} \text { True } \\ \beta_{k-1}^{i(3 x)} \end{gathered}$	$\left\lvert\, \begin{gathered}\text { Swac computed } \\ \beta_{k-1}^{333}\end{gathered}\right.$	Swac	computed $\boldsymbol{\alpha}_{k}^{(133)}$	$\left.\begin{aligned} & \text { Truc } \\ & \beta_{k-1}^{(513)} \end{aligned} \right\rvert\, \mathrm{s}$	$\left\|\begin{array}{c}\text { Swac computed } \\ \beta_{k-1}^{(513)} \\ \hline\end{array}\right\|$		omputed
1	0	0	10^{-22}	2566766	0	0	10^{-23}	. 1651136
2	. 354166667	.354166666	10^{-22}	. 7247340	. 334635416	.334635416	10^{-23}	.4934135
3	. 282552083	. 282552083	10^{-22}	. 6412393	. 267705281	. 267705281	10^{-23}	. 4607805
4	. 271205357	. $27120 \quad 5357$	10^{-22}	. 5911013	. 258139474	. 258139474	10^{-23}	.4462515
5	. 266121031	.266121031	10^{-22}	. 5552936	. 254945785	254945785	10^{-23}	.4375945
6	. 262389520	. 262389520	10^{-22}	. 5290738	253488560	. 253488559	10^{-23}	. 4315722
7	. 258877841	. 258877840	10^{-22}	. 5109299	252698031	. 252698031	10^{-22}	. 1707857
8	. 255208333	. 255208333	10^{-22}	. 5005028	252217610	.252217610	10^{-22}	. 1692841
9	. 251225490	. 251225490	10^{-22}	. 4980613	. 251900467	. 251900467	10^{-22}	. 1680069
10	. 246855650	$.24685 \quad 5650$	10^{-32}	. 5044054	. 251677049	251677049	10^{-22}	. 1668874
11	. 242060229	. 242060228	10^{-22}	5209503	. 251510926	. 251510926	10^{-22}	. 1658848
12	. 236817417	23681 7417	10^{-22}	. 5499493	. 251381505	. 251381504	10^{-22}	. 1649732
13	. 231114130	231114130	10^{-22}	. 5948894	. 251276431	251276430	10^{-22}	. 1641352
14	. 224942129	. 224942129	10^{-22}	. 6611582	. 251187925	. 251187925	10^{-22}	. 1633589
15	. 218296016	.218296016	10^{-22}	. 7571808	. 251110891	251110890	10^{-23}	. 1626363
16	. 211172135	211172135	10^{-32}	. 4482012	. 251041875	. 251041874	10^{-52}	. 1619613
17	. 203567937	.203567937	10^{-22}	2752159	. 250978472	250978471	10^{-22}	. 1613299
18	. 195481602	.195481601	10^{-22}	. 3519717	. 250918962	. 250918962	10^{-22}	. 1607390
19	. 186911800	.186911800	10^{-22}	. 4707724	. 250862092	. 250862092	10^{-22}	1601866
20	.177857545	.177857545	10^{-22}	. 3308634	250806929	. 250806928	10^{-22}	. 1596712
21	. 168318089	. 168318089	10^{-22}	. 2457129	. 250752766	. 250752766	10^{-22}	.1591919
22	. 158292860	. 158292860	10^{-22}	. 3880669	250699065	. 250699065	10^{-22}	. 1587480
23	. 147781411	. 147781411	10^{-22}	. 3282440	250645403	. 250645403	10^{-22}	. 1583392
24	. 136783392	. 136783392	10^{-22}	2999670	250591449	. 250591449	10^{-22}	1579655
25	. 125298524	.125208523	10^{-22}	. 2992523	.250536939	. 250536939	10^{-22}	1576270
26	. 113326581	. 113326580	10^{-22}	1650387	. 250481662	. 250481662	10^{-22}	. 1573239
27	. 100867381	. 100867381	10^{-22}	. 4090487	250425445	. 250425445	10^{-22}	.1570566
28	. 087920776	. 087920776	10^{-22}	. 2907793	250368147	. 250368147	10^{-22}	1568256
29	. 074486643	. 074486643	10^{-22}	. 2439861	. 250309653	. 250309653	10^{-22}	. 1566316
30	. 060564879	. 060564883	10^{-22}	. 2517818	. 250249866	. 250249866	10^{-22}	$.15647 \quad 33$
31	. 046155399	.046155463	10^{-22}	. 1704712	250188706	. 250188706	10^{-22}	. 1563572

* The true $\alpha_{k}{ }^{(m)}=0$ for all k and any odd m.

Incidentally, as $m \rightarrow \infty$, the above polynomials approach the Legendre polynomials $P_{k}(x)$ except for normalization:

$$
\lim _{m \rightarrow \infty} P_{k}^{(m)}(x)=\frac{2^{k}(k!)^{2}}{(2 k)!} P_{k}(x) .
$$

Moreover,

$$
\lim _{m \rightarrow \infty} \beta_{k}^{(m)}=\frac{k^{2}}{4 k^{2}-1} .
$$

The exact formulas (9) and (10) give a control on the round-off error of any machine calculations of the α 's and β 's.

For the Swac experiments we selected $m=33$ and $m=513$, to avoid rounding the x_{i}. The corresponding computed values of the $\alpha_{k}^{(m)}$ and $\beta_{k}^{(m)}$ are shown in table 1. For each m and k the first column gives $\beta_{k}^{(m)}$, computed by hand from (9). The second and third columns show the values of $\beta_{k}^{(m)}$ and $\alpha_{k}^{(m)}$ computed and converted by Swac. It will be observed that there is practically no round-off error in any of the α 's or β 's. The errors in the α 's are larger for $m=33$ than for $m=513$. The errors in $\beta_{29}^{(33)}$ and $\beta_{30}^{(33)}$ are relatively large, suggesting a considerable growth in the round-off error of $\beta_{k}^{(m)}$ as k becomes practically equal to m.

4. Fitting the Function $|x|$

Besides generating the coefficients of the orthogonal polynomials, the Swac routines will fit given functional values $f\left(x_{i}\right)$ by computing $f_{n}^{(\xi)}(x)$ for selected values of x according to (1) and (5).

With the equally spaced abscissas of section 3 , the function $f(x)=|x|$ was
TABLE 2

$n \cdot$	$m=513$		$m=33$
	$f_{n}^{(\xi)}(0)$ and $f_{n}^{(\xi)}(0)$	$f_{n}^{(\xi)}(\pm 1)$ and $f_{n+1}^{(\xi)}(\pm 1)$	$f_{n}^{(\xi)}(\pm 1)$ and $f_{n+1}^{(\xi)}(\pm 1)$
0	. 500974658	. 500974658	.515151515
2	. 18786192	1.12354510	1.10389610
4	. 117409689	. 939302789	. 960687960
6	. 08560700	1.03698553	1.01638001
8	. 067411158	.974954899	. 993288187
10	. 05560976	1.01802959	1.00257546
12	. 047330003	. 986508461	. 999100631
14	.04119791	1.01035865	1.00027 985
16	. 036472742	. 991906275	. 999923845
18	. 03271954	1.00640028	1.00001776
20	. 029666051	. 994897666	. 999996524
22	. 02713304	1.00408900	1.00000054
24	. 024997740	. 996712848	. 999999930
26	. 02317317	1.00264634	. 999999947
28	. 021596012	. 997869208	1.00000 055
30	. 02021906	1.00171408	.999992041

selected. Table 2 shows the output for $n=0(1) 31$ and for $x=0$ and ± 1. (In each case the computed values $f_{n}^{(\xi)}(+1)$ and $f_{n}^{(\xi)}(-1)$ were identical.)

The routine found, whilc fitting points on this curve, that no odd degree could improve upon the preceding even degree. Therefore $f_{n}^{(\xi)}(x)=f_{n+1}^{(\xi)}(x)$ for each even n.

We have not computed correct values with which to deduce the round-off errors in the values of table 2. The values look plausible, and we conclude that a least-squares fit is perfectly possible up to degree 31 by our methods. This is decidedly in contrast with the failure of ordinary least-squares routines to compute even the coefficients c_{0}, \cdots, c_{n} of (6^{\prime}) without use of multiple-precision arithmetic, for n larger than, say, 10.

The slowness of the observed convergence of $f_{n}^{(\xi)}(0)$ to $f(0)=0$ is due to the discontinuity of $f^{\prime}(x)$ at $x=0$. It is conjectured that, as $n \rightarrow \infty$ (with $m>n$), $\left|f_{n}^{(\xi)}(0)-f(0)\right|=O(1 / n)$, independently of m.

5. A Theorem on Extrapolation

We were interested in using the curve-fitting routine to extrapolate some functions computed for a few points x in an interval $[-1,1]$ to abscissas like $x=2$. To test such a general process of extrapolation we were unable to use the computations of section 4 with the function $f(x)=|x|$. The discontinuity of $f^{\prime}(x)$ at $x=0$ apparently prevents $f_{n}^{(\xi)}(x)$ from approximating $f(x)=|x|$ at any point x outside the interval $[-1,1]$.

On the other hand, if $f(z)$ is an entire function of the complex variable z, the following apparently new theorem shows that extrapolation should be easily possible. The theorem can be stated under weaker hypotheses, but it suffices for our purposes.

Theorem. Let $\xi=\left\{x_{1}, \cdots, x_{m}\right\}$ be an arbitrary set of m distinct points of the closed interval $[-1,1]$. For $n<m$ let $f_{n}^{(\xi)}(x)$ be the polynomial of degree n which most closely approximates the entire function $f(x)$ on ξ in the least-squares sense. I.e., $f_{n}^{(\xi)}(x)$ minimizes

$$
S\left(q_{n}\right)=\sum_{i=1}^{m}\left\{f\left(x_{i}\right)-q_{n}\left(x_{i}\right)\right\}^{2}
$$

over the class of polynomials q_{n} of degree n.
Then, as $m \rightarrow \infty, n \rightarrow \infty$ independently $(n<m), f_{n}^{(\xi)}(z) \rightarrow f(z)$ for all complex z.
Moreover, we have the following bound, depending on the interval, z, n and f, but not on m or ξ :

$$
\begin{equation*}
\left|f_{n}^{(\xi)}(z)-f(z)\right| \leqq \frac{M_{n+1}}{(n+1)!} \rho^{n+1} \tag{11}
\end{equation*}
$$

where M_{n+1} is the maximum of $\left|f^{(n+1)}(\zeta)\right|$ for ζ in the closed triangle T with base zeros! $\mathrm{n}[-1,1]$ and vertex z, and where $\rho=\max \{|z+1|,|z-1|\}$.

Proof. We first show that $f(x)-f_{n}^{(\xi)}(x)=R_{n}(x)$ has at least $n+1$ distinct zeros in $[-1,1]$. If not, then choose u_{0}, \cdots, u_{q+1} and $\epsilon= \pm 1$ such that:

$$
\begin{equation*}
-1=u_{0}<u_{1}<\cdots<u_{q}<u_{q+1}=1 \quad(q \leq n) \tag{i}
\end{equation*}
$$

(iii) $\quad(-1)^{r} \in R_{n}\left(x_{i}\right) \geq 0$ for all x_{i} in $\left(u_{r}, u_{r+1}\right), \quad r=0, \cdots, q$;
(iv) $\quad(-1)^{r} \in R_{n}\left(x_{i}\right)>0$ for at least one x_{i} in $\left(u_{r}, u_{r+1}\right), \quad r=0, \cdots, q$.

Now define $r(x)=\prod_{j=1}^{q}\left(x-u_{j}\right)$. (If $q=0$, let $r(x)=1$.) Then $r\left(x_{i}\right) R_{n}\left(x_{i}\right) \geq 0$ or $r\left(x_{i}\right) R_{n}\left(x_{i}\right) \leq 0$ for all $i=1, \cdots, m$, while, by (iv), $r\left(x_{i}\right) R_{n}\left(x_{i}\right)$ is non-zero for certain x_{i}. Consider the polynomials $g_{\eta}(x)=\int_{n}{ }^{(\xi)}(x)+\eta r(x)$, of degree n, for real values of η near 0 .

For $\eta=0$, a short calculation shows that

$$
\frac{d}{d \eta} \sum_{i=1}^{n}\left\{f\left(x_{i}\right)-g_{n}\left(x_{i}\right)\right\}^{2}=-2 \sum_{i=1}^{n} R_{n}\left(x_{i}\right) r\left(x_{i}\right)
$$

which is non-zero by the choice of $r(x)$. Hence, for some η small enough in absolute value,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\{f\left(x_{i}\right)-g_{\eta}\left(x_{i}\right)\right\}^{\varepsilon}<\sum_{i=1}^{n}\left\{f\left(x_{i}\right)-f_{n}^{(\xi)}\left(x_{i}\right)\right\}^{2} \tag{12}
\end{equation*}
$$

contradicting the definition of $f_{n}^{(\xi)}$. (Incidentally, only the continuity of f has been used so far.)

By the above, $f_{n}^{(\xi)}(x)$ interpolates $f(x)$ at some $n+1$ distinct points $y_{0}, y_{1}, \cdots, y_{n}$ of $[-1,1]$. We may therefore use Jensen's formula for the remainder in polynomial interpolation; see Nörlund [4, p. 9]. This states that

$$
\begin{equation*}
R_{n}(z)=\frac{\left(z-y_{0}\right) \cdots\left(z-y_{n}\right)}{(n+1)!} \lambda f^{(n+1)}(\zeta) \tag{13}
\end{equation*}
$$

where λ is a complex number with $|\lambda| \leqq 1$, and where ζ is a point in the interior of T.

Since all $\left|z-y_{i}\right| \leqq \max \{|z+1|, \mid z-1\}=\rho$, the expression (11) is an upper bound for $\mid R_{n}(z)$ in (13), and is thereby proved.

To prove that $f_{n}^{(\xi)}(z) \rightarrow f(z)$ we have to prove that $R_{n}(z) \rightarrow 0$. Since $f(z)$ is entire, we know that, for all ζ in T,

$$
f^{(n+1)}(\zeta)=\frac{(n+1)!}{2 \pi i} \int_{c_{n}^{(\zeta)}} \frac{f(t) d t}{(t-\zeta)^{n+2}}
$$

where $C_{R}^{(\zeta)}$ is a circle with radius R and center ζ. Hence

$$
\begin{equation*}
\frac{\left|f^{(n+1)}(\zeta)\right|}{(n+1)!} \leqq \frac{2 \pi R}{2 \pi} m_{R}^{(\zeta)} R^{n+2}=\frac{m_{R}^{(\zeta)}}{R^{n+1}} \tag{14}
\end{equation*}
$$

where $m_{R}^{(\zeta)}=\max |J(t)|$ for t on $C_{R}^{(\zeta)}$. It follows from (14) that

$$
\begin{equation*}
\frac{M_{n+1}}{(n+1)!} \leqq \frac{m_{R}}{R^{n+1}} \tag{15}
\end{equation*}
$$

where $m_{R}=\max m_{R}^{(\zeta)}$ for all ζ in T.
Substituting (15) in (11) shows that

$$
\begin{equation*}
\left|f_{n}^{(\xi)}(z)-f(z)\right| \leqq \frac{m_{R} \rho^{n+1}}{R^{n+1}} \tag{16}
\end{equation*}
$$

Since $f(z)$ is entire, R can be picked with $\rho<R$, and hence (16) shows that $f_{n}^{(\xi)}(z)-f(z) \rightarrow 0$, as $n \rightarrow \infty$, completing the proof of the theorem.

6. Fitting the Smooth Function e^{x}

As a suitable entire function we chose $f(x)=e^{x}$ as being well tabulated and easy to work with. We confined our extrapolations mainly to real values of x in the interval [-2.5, 2.5]. From (11) we have the following upper bounds for the truncation error in extrapolation:

$$
\begin{array}{rr}
\left|f_{n}^{(\xi)}(x)-e^{x}\right| \leqq \frac{e}{(n+1)!}(1-x)^{n+1} & (x \leqq 0) ; \\
\left|f_{n}^{(\xi)}(x)-e^{x}\right| \leqq \frac{e}{(n+1)!}(x+1)^{n+1} & (0 \leqq x \leqq 1) ; \\
\left|f_{n}^{(\xi)}(x)-e^{x}\right| \leqq \frac{e^{x}}{(n+1)!}(x+1)^{n+1} & (1 \leqq x) . \tag{19}
\end{array}
$$

Formulas $(17,18,19)$ bound the errors in extrapolation, except for round-off error. In numerical experiments any errors exceeding the above bounds must be due to round-off.

Experiments were run for $m=9,17,33$, and 66 . The x_{i} were uniformly spaced except near $x=0$. The following abscissas were used:

$$
\begin{array}{rlrl}
m=9: & x_{i}=-.97(.24)-.01 & \text { and } & .22(.24) .94 ; \\
m & =17: & x_{i}=-.97(.12)-.01 & \text { and } \\
m=33: & & x_{i}=-.97(.06)-.01 & \text { and } \\
m & .04(.06) .94 ; \\
m & =66: & x_{i}=-.97(.03)-.01 & \text { and } \\
.01(.03) .97
\end{array}
$$

Define $f_{n}^{(\xi)}(x)$, where $\xi=\left\{x_{1}, \cdots, x_{m}\right\}$, as in section 1. Swac computed $f_{n}^{(\xi)}(x)$ for the following values of m, n, and x :

$$
\begin{aligned}
m=9: \quad n=0(1) 8: \quad x= & 10, \pm 2.5, \pm 2, \pm 1.5, \pm 1.25, \pm 1,-.97,+.94 \\
& \pm .75, \pm .5,0 \\
m=17: n=0(1) 16: x= & 10, \pm 2.5, \pm 2, \pm 1.5, \pm 1.25, \pm 1,-.97,+.94 \\
& \pm .75, \pm .5,0 ;
\end{aligned}
$$

TABLE 3

Interpolation				Extrapolation		
n	$f_{n}{ }^{(t)}(x)$ for x inside the interval used for fitting the curve			$f_{n}{ }^{(6)}(x)$ for x outside the interval used for fitting the curve		
	$f_{n}{ }^{(k)}(0), m=9$	$f_{n}{ }^{(\xi),(0)}, m=66$	$f_{n}{ }^{(5)(-.75), m}=33$	$f_{n}{ }^{(k)}(-1), m=06$	$j_{n}\left(\frac{E}{}(2.5), m=17\right.$	$j_{n}{ }^{(5)(2.5), m}=60$
0	1.18292820	1.16883126	1.1514516138	1.16883126	1.16191801	1.16883126
1	1.19881398	1.16883126	. 3547261294	. 06844300	3.90129464	3.91980192
2	. 99734400	. 99656284	. 4700491874	. 43166859	7.06948229	7.09437110
3	. 99573659	. 99656284	. 4752244480	. 35813780	9.5618391	9.5860393
4	. 99999959	1.00002751	. 4719787451	. 36903682	11.0481909	11.0643652
5	1.00002800	1.00002751	. 4723909500	. 36776506	11.7591272	11.7683178
6	1.00000009	. 99999988	. 4723662030	. 36788905	12.0442828	12.0483826
7	. 99999994	. 99999988	. 4723664838	. 36787872	12.1423354	12.1439805
8	. 99999999	1.00000000	. 4723665595	. 36787948	12.1720289	12.1725783
9		1.00000000	. 4723665522	. 36787943	12.1800653	12.1801343
10		1.00000000	. 4723665537	. 36787944	12.1807534	12.1816711
11		1.00000000	. 4723665537	. 36787944	12.1682532	12.1820431
12		1.00000000	. 4723665537	. 36787943	11.9923869	12.1744177
13		1.00000000	. 4723665522	. 36787944	9.2737537	12.1159171
14		1.00000000	. 4723665527	. 36787943	-47.61471 69	11.7766824
15		1.00000000	. 4723665522	. 36787943	-2256.17967	10.9226768
16		1.00000000	. 4723665537	. 36787944	-188735.581	7.90958077
17		1.00000000	. 4723665537	. 36787943		-32.5545873
18		1.00000000	. 4723665522	. 36787945		-392.38801 3
19		1.00000000	. 4723665566	. 36787939		-3192.78756
20		1.00000000	. 4723665406	. 36787960		-366581.036
21		1.00000000	. 4723665711	. 36787938		-162225.069
22		1.00000000	. 4723664809	. 36787990		-11 98469.73
23		1.00000000	. 4723666774	. 36787908		-70 11899.96
24		. 99999999	. 4723659309	. 3678815		-68501561.

25		. 99999999	. 4723682504	. 3678776		-408766999.
26		1.00000000	. 4723545818	. 367889		-38756 43230.
27		1.00000000	. 4724214217	. 367870		-2 3167404900.
28		. 29999999	. 4717778167	. 36793		-2262200 21000 .
29		.99999 999	. 4770585408	. 3678		
30		1.00000000	. 3801921455	. 368		
${ }^{31}$		1.00000000	. 5103395480	. 367		
32		. 99999997		. 36		
	$e^{0}=1.00000000$	$e^{0}=1.00000000$	$e^{-.75}=.4723665527$	$e^{-1}=.367879441$	$e^{2.6}=12.1824939607$	$e^{2.5}=12.1824939607$

$$
\begin{aligned}
m=33: n & =0(1) 32: & x=10,-1.5,-1, \pm .5,0 ; \\
n & =0(1) 31: & x=-.97,+.94, \pm .75 ; \\
n & =0(1) 29: & x=1.5,1.25,1 ; \\
n & =0(1) 23: & x= \pm 2.5, \pm 2,-1.25 ; \\
m=66: n & =0(1) 32: & x=10,-1.5,-1,-.97,+.94, \pm .75, \pm .5,0 ; \\
n & =0(1) 28: & x=1.5,1.25,1 ; \\
n & =0(1) 27: & x=2.5,2 ; \\
n & =0(1) 26: & x=-2.5,-2,-1.25 .
\end{aligned}
$$

The authors have machine listings of all these computed values.
In table 3 is shown a sample of the values of $f_{n}^{(\xi)}(x)$, for selected x which never coincide with an x_{i}. The difference in the round-off error between interpolation and extrapolation is evident. Almost every computation shows indications that, as n grows, ultimately $f_{n}^{(\xi)}(x)$ diverges from e^{x}. This instability appears to start at n near 15. When x is inside $[-.97, .94]$, the divergence is oscillatory at first, and the error grows only slowly, so that even $f_{31}^{(\xi)}(x)$ is good to almost one decimal.

For x outside the interval $[-.97, .94]$, the divergence again begins for n near 15, but is one-sided and grows approximately exponentially and much more rapidly.

Our assertion that the errors in table 3 are due to round-off has been substantiated by comparing the errors with their bounds obtained from the above theorem. Examples of this comparison are shown in the two accompanying graphs. The base 10 logarithms of $\left|f_{n}^{(\xi)}(x)-e^{x}\right|(n=0,1, \cdots, 21)$ are in-

Graph 1. $x=0, m=66$. The dashed line is the observed value of $\varphi(n)=\log _{10}\left|e^{0}-f_{n}^{(66)}(0)\right|$. The solid line is the bound for the same quantity from (17).

$\mathrm{G}_{\text {raph }}$ 2. $x=-1, m=66$. The dashed line is the observed value of $\varphi(n)=\cdot \log _{10} \mid e^{-1}$. $f_{n}^{(66)}(-1) \mid$. The solid line is the bound for the same quantity from (17).
dicated by dashed lines, while the solid lines show the base 10 logarithms of the error bounds (17).

On graph 1 it can be seen that the error in $f_{n}^{(\xi)}(0)$ is below the error bound (17) for $n \leqq 11$. However, the machine's full accuracy has apparently been reached, and no further improvement is obtained for larger n. Starting with $n=15$ the error even begins to increase.

Graph 2 shows that the error in $f_{n}^{(\xi)}(-1)$ begins to increase at $n=12$ and finally exceeds the error bound (17) for $n \geqq 17$.

Graphs 1 and 2 both exhibit for n near 12 or 13 what is commonly known as a round-off error "noise level"-here apparently about 10^{-9} or 10^{-8}. It should be noted that this noise level is about the same near an endpoint ($x=-1$) as near the midpoint $(x=0)$ of the interval of fit. For n larger than 20 , however, the noise level seems to grow with n.

REFERENCES

1. J. E. Barker, Orthonormal polynomials, report, U. S. Naval Proving Ground, Dahlgren, Virginia, c. 1953.
2. P. L. Сненyshev, Ob interpolirovanii, pp. 357-374 of Polnoe sobranie sochinenit, vol. 2, Akademiía Nauk SSSR, 1947.
3. George E. Forspthe, Generation and use of orthogonal polynomials for data fitting with a digital computer, J. Soc. Indust. Appl. Math. vol. 5 (1957), pp. 74-88.
4. N.-E. Nörlund, Legons sur les séries d'interpolation, Gauthier-Villars, Paris, 1926.
5. B. D. Rudin, On routines for least squares curve fitting with orthogonal polynomials, paper presented to IBM 650 Computation Seminar, Endicott, New York, April 1957 (multilithed by Lockheed Missile Systems Division, Sunnyvale, Calif.)
6. G. Szecö, Uber die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems, Math. Ann. vol. 82 (1921), pp. 188-212.

[^0]: * Received August, 1957. This paper was prepared at the University of California, Los Angeles, sponsored by the Office of Naval Research, U.S. Navy. Reproduction in whole or in part is permitted for any purpose of the United States Government.

