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1. Introduction and Summary 

Let ~ = (xl ,  . . .  , x~) be a set of real numbers, and l e t f (x l ) ,  . . .  ,f(x,,,) be the 
observed or computed values of some function of x at  the points of ~. Letf(~ ~) (x) 
be the unique polynomial of degree n which best fits the data  values f(x~) in the 
least-squares sense. I.e., the sum 

S(q~) = ~ {/(x,) - qo(x,)} ~, 
i~l  

where q, is a polynomial of degree n, is minimized by  q,~(x) = f~)(x) .  
In  [3] one of us discussed the problem of finding f~ ) (x )  oh a digital computer  

and outlined certain advantages  of determining f~ ) (x )  in terms of polynomials 
pk(x) orthogonal over ~. I t  was further proposed tha t  the pk(x) be computed from 
their 3-term recurrence. The procedure will be outlined again here, mainly to 
formulate our notation. 

Let  po(x) = 1, and let/~0 = 0. Then the polynomials pk(x) are defined and 
computed by  the recurrence 

(1) 

H e r e  

(2) 

and 

(3) 

pk+l(X) = (x -- ak+l)pk(x) +B*pk--J(X). 

ak+l = X,{ p,(x~) } 2 {pk(xl) } 2, 
i ~ l  " ~  

= 

(Our numbering of the subscripts of the a~ and flk agrees with tha t  in [3], but  
various other numberings are in use elSewhere.) 

The fundamental  proper ty  of the pk(x) is the orthogonality relation 
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25 ph(x,)p~(x,) = o (h ~ k). 

The Fourier coefficients t~ of f(x~) are defined by  

~f( (4) tk = x , )pk(z ,  {pk(x,  . 
i m l  im l  

I n  terms of the tk we can write the desired least-squareg polynomial  as 

(5) /~ ) (x )  = ~ t~ p~(x). 
k--0 

Finally, the statistic (:estimate of unexplained variance) 

(6) , .~ = (m - ~ - 1)71 ~ l](x,) - / (2 ) (x , )  }2 
: i~ l  

has an expected value which is independent of n (for n > h), if the f(x~) are 
independently normally distributed about  some polynomial t rend of degree h. 
Hence a ,  2 is often a useful measure of the goodness with which f ~ ) ( x )  fits f ( x )  
over the set ~. 

When one is asked to use a computer  to find the polynomial f~,~), one can well 
ask in return what  it means to "find a polynomial ."  Too often one automatical ly  
considers tha t  a polynomial p is synonymous with its representation in powers 

p(x )  = co Jr c~x -t- " '"  -I- CnX" 

or, a t  any  rate, with the coefficients 

(6') Co, cl ,  - - -  , c , .  

I t  is our point of view tha t  one m a y  equally well have "found a polynomial p "  
when one has a table of its values p ( x )  for a sufficiently wide class of arguments  
x. Or, al ternatively,  tha t  one m a y  have "found p "  when one knows the constants  
of a machine algorithm for computing p ( x )  for any  desired x. I t  is in the la t ter  
sense tha t  we claim we have "found f ~ ) "  as soon as we have the values of 

(7) a l ,  " ' "  , a n ,  ~ 1 ,  " ' "  , ~n--1, and to, --" , t~. 

For with these numbers  we can produce f(~)(x) for any desired x by  formulas (1) 
and (5). 

I t  is a deeper question as to which representat ion of f~)  is the b e t t e r - - t h a t  of 
the coefficients (6') or tha t  of (7). Such a question can only be answered in te rms 
of computing time, precision, round-off error, machine storage, and especially any  
desired further  use of f(~). Ordinarily, choices between computing methods de- 
pend critically on special factors characteristic of a given part icular  application. 

Without  claiming the method to be better,  the authors  have experimented 
with the consistent use of the recurrence (1) for the data-fi t t ing problem on the 
automat ic  digital computer  available to them, SwAc. We have prepared this 
summary  of typical  results as a record of our experiment.  



SWAC E X P E R I M E N T S  11 

A related code has been reported by  Rud in  [5]. 
A. similar code, bu t  in fixed point,  has been const ructed  a t  The  Ramo-Woold -  

ridge Corpora t ion  under  the guidance of Dav id  Morrison,  
I n  section 2 we describe the SwAc codes, which use "floating vectors ."  In  

section 3 we give formulas  for the Chebyshev  polynomials  which are or thogonal  
with respect to summat ion  over certain equally spaced x~, and use t h e m  to check 
the SwAc-generated values of ak and flk • I n  section 4 we test  the code for gener- 
at ing f(~)(x) for the funct ion f ( x )  = I x l  over the same x~. 

I n  section 5 we prove an  apparen t ly  new theorem that ,  i f f  is an entire funct ion,  
f ~ )  (z) ~ f ( z )  for all complex z, as n, m --+ ~ .  I n  section 6 we compare  a bound  
given by  our theorem with the observed error of f ~ ) ( x )  - f ( x ) ,  for var ious real 
values of x, where f ( x )  = e ~. Table  3 and graphs  1 and 2 il lustrate the quan t i t a -  
tive and qual i ta t ive  behavior  of bo th  the interpolat ion and ext rapola t ion  of 
e ~ by  use of f~)(x) .  

We conclude tha t  for e ~ our  method  of da ta  fitting will determine interpolated 
function" values f~) (x)  with a precision of something like 10 -s for n up to 16, and 
with nearly as much  precision up to n = 31. This is in contras t  with reports  we 
have heard of the failure of routines which have a t t emp ted  (using comparable  
precision) to solve the classical normal  equat ions for the power coefficients 
co, . . .  , c~, and then to evaluate  f ~ ) ( x )  in the form co + clx + . . .  -P c~x ~. 

2. S W A C  Codes 

The coding of the procedure was divided into two parts.  I n  the first rout ine the 
input  is the set of abscissas ~ = {x~, • •. , xm} (m -< 1023) and the corresponding 
funct ional  values f ( x i )  (i = 1, . . .  , m) ,  with no restriction on the interval  or 
spacing. The  rout ine generates:  (i) the parameters  ak ,  ~k of (2, 3) defining the 
or thogonal  polynomials  pk(x) of each successive degree k up to 32 (if m > 32), 
or up to m - 1 (if m ~ 32); (ii) the Fourier  coefficients tk of (4) for the values 
f(xi) with respect to these polynomials ;  and (iii) the error measures ak 2 of (6). 
Ill the second routine, the results of the first routine (ak,  ~3k, tk) and the abscissas 
d~, • •. , dr are the input .  This routine evaluates  

f~)(d~) = ~ t k p ~ ( d i )  ( f o r l  =< i=< r, 0 =< n=< 32). 
k~0 

The  dl need not  be the same as the xl nor  in the s a m e  interval.  The  number  of 
abscissas has the a rb i t r a ry  limit r _-< 1023. 

The  routines use  numbers  ill a ( b inary ) f l oa t i ng  vector form. E a c h  vec tor  
(zt ,  • • • , zm) is stored in m + 1 cells as (ql, • • • , qm, qm+a), which is in terpre ted  
a s  

2qm+1 z i  q i "  • 

Here  qm+~ is an integer such tha t  l qm+tl N 236 -- 1; we have [q~l < 1 
(i = 1, • • • , m), and ½ N maxl__<i=<m I ql I < 1. Each  scalar is regarded a s a  floating 
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vector with one component, and so is stored in two cells. This floating vector 
form has been used previously on SwAc by Professor M. R. Hestenes in several 
matrix codes. 

I t  was found that  a normalization process to keep ½ =< max~<~m ! q~l < 1 
is extremely important  for the accuracy of the results. This normalization is 
needed after each arithmetic step involving either vectors or scalars. 

Because of the number of times the operations are performed, the use of sub- 
routines for subtraction of vectors, division of scalars, and finding the inner 
product of two vectors is found to be very useful. 

Although the numbers are input and are available for output  in binary floating 
vector form, it was thought advisable als0 to have the output  in a more easily 
identifiable form. The routines therefore contain a subroutine to convert the data  
into floating decimal form, and the numbers contained in this paper are u result 
of this conversion. The error introduced into the numbers by this conversion is 
believed to be not more than approximately one  unit in the last digit tabulated. 
This belief is substantiated by test conversions of several numbers over the range 
of numbers tabulated. 

The routines and further details about  t hem are available in the Numerical 
Alialysis Research library of the University of California, Los Angeles (codes 
00474.1 and 00474.2). 

In evaluating our results the reader should know that  the SWAC word length is 
36 binary digits (equivalent to about  10.8 decimals) plus a sign digit. 

3.  E q u a l l y  S p a c e d  x~ 

As a first test for the routines we took an odd number m of equally spaced 
points over the interval [--1, 1]: 

x i  = - - 1  - 1 - 2 -  

T h e  corresponding orthogonal polynomials 

i - - l  

m - - 1  

(s) 

where 

(i = 1 , 2 , - . .  , m ) .  

(9 )  o~m) __ k 2 m ~ - -  k 2 
( m - -  1) 2 @ 2 _  1" 

Comparison of (8) with (1) shows that  all 

(10) a~ ~) = 0. 

P ~ m ) ( x )  = x k + . . .  ( k  = O, 1, . . .  , m - 1) 

were introduced by Chebyshev [2], and the following formulas are adapted from 
Barker [11: 

= - -  ~k l - ' k - - l (X) ,  
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m = 33 m = 513 

k True SWAC computed SWAC* computed True SWAC computed SWAt* computed 

6 

7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 

0 
.35416 6667 
.28255 2083 
.27120 5357 
.26612 1031 

.26238 9520 

.25887 7841 

.25520 8333 

.25122 5490 

.24685 5650 

.242060229 

.23681 7417 

.23111 4130 

.22494 2129 

.21829 6016 

.21117 2135 

.20356 7937 

.19548 1602 

.18691 1800 

.17785 7545 

.16831 8089 

.15829 2860 

.14778 1411 

.13678 3392 

.12529 8524 

.11332 6581 

.10086 7381 

.08792 0776 

.07448 6643 

.06056 4879 

.04615 5399 

0 
.35416 6666 
.28255 2083 
.27120 5357 
.26612 I031 

.26238 9520 

.25887 7840 

.25520 8333 

.25122 5490 

.24685 5650 

.24206 0228 

.23681 7417 

.23111 4130 

.22494 2129 

.21829 6016 

.21117 2135 

.20356 7937 

.19548 1601 

.18691 1800 

.17785 7545 

.16831 8089 

.15829 2860 

.14778 1411 

.13678 3392 

.12529 8523 

.11332 6580 

.10086 7381 

.08792 0776 

.07448 6643 

.06056 4883 

.04615 5463 

10 -22 .25667 66 
10 -22 .72473 40 
10 -22 .64123 93 
10 -22 .59110 13 
10 -22 .55529 36 

10 -22 .52907 38 
10 -22 .51092 99 
10 -22 .50050 28 
10 -22 .49806 13 
10 -22 .50440 54 

10 -22 .52095 03 
10 -22 .54994 93 
10 -22 .59488 94 
10 -~ .66115 82 
10 -22 .75718 08 

10 -~2 .44820 12 
10 -22 .27521 59 
10 -22 .35197 17 
1() -22 .47077 24 
10 -22 33086 34 

10 -22 24571 29 
10 -22 38806 6~ 
10 -22 .32824 4C 
10 -~2 .29996 76 
10 -22 .29925 23 

10 -22 .16503 87 
10 -22 .40904 87 
10 -2~ .29077 93 
10 -22 .24398 61 
l0 -2~ .25178 15 

10 -22 .17047 1~ 

0 
.33463 5416 
.26770 5281 
.25813 9474 
.25494 5785 

.25348 8560 

.25269 8031 

.25221 7610 

.25190 0467 

.25167 7049 

.25151 0926 

.25138 1505 

.25127 6431 

.25118 7925 

.25111 0891 

.25104 1875 

.25097 8472] 

.2,5091 8962 I 

.25086 2092 

.25080 6929 

.25075 2766 

.25069 9065 

.25064 5403 

.25059 1449 I 

.25653 6939' 

.25048 1662 

.25042 5445 

.25036 8147 

.25030 9653 

0 
.33463 5416 
,26770 5281 
.25813 9474 
.25494 5785 

.25348 8559 

.25269 8031 

.25221 7610 

.25190 0467 

.25167 7049 

.25151 0926 

.25138 1504 

.25127 6430 

.25118 7925 

.25111 0890 

.25104 1874 

.25697 8471 

.25091 8962 

.25O86 2092 

.25080 6928 

.25075 2766 ! 

.25069 9065 

.25064 5403 

.25059 1449 I 

.25053 6939 

.25648 1662 

.25042 5445 

.25036 8147 

.25030 9653 
.25024 9866 .25024 9866 

.25018 87061 .25018 8706 

10 -23 .16511 36 
10 -23 .49341 35 
10 -23 .46078 05 
10 -23 .44625 15 
10 -23 .43759 45 

10 -23 .43157 22 
10 -22 .17078 57 
10 -22 .16928 41 
10 -22 .16800 69 
l0 -22 .16688 74 

10 -22 .16588 48 
10 -~ .16497 32 
10 -22 .16413 52 
10 -22 .16335 89 
10 -22 .16263 63 

10 -~2 .16196 13 
10 -'= .16132 99 
10 -22 .16073 90 
10 -22 .16018 66 
10 -22 .15967 12 

10 -22 .15919 19 
10 -22 .15874 80 
10 -22 .15833 92 
10 -22 .15796 55 
10 -22 .)5762 70 

10 -22 .15732 39 
10 -22 .15705 66 
10 -22 .15682 56 
10 -22 .15663 16 
l0 -22 .15647 53 

10 -22 .15635 72 

* The  t rue  a~ (m) = 0 for all k and any  odd m. 

I n c i d e n t a l l y ,  a s  m -~- ~ ,  t h e  a b o v e  p o l y n o m i a l s  a p p r o a c h  t h e  L e g e n d r e  

p o l y n o m i a l s  P k ( x )  e x c e p t  f o r  n o r m a l i z a t i o n :  

(")" 2k(k!)2 P k ( x ) .  
l ira Pk (x) --  (2k ) !  
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Moreove r ,  

l im /~m) _ k ~ 
~ 4k 2 - -  1" 

T h e  exac t  fo rmulas  (9) a n d  (10) give a con t ro l  on the  round-off  e r ror  of a n y  
mach ine  ca lcu la t ions  of the  a ' s  and/~ ' s .  

F o r  the  SwAc expe r imen t s  we se lec ted m = 33 and  m = 513, to  avo id  round ing  
the  x~. T h e  cor respond ing  c o m p u t e d  va lues  of t he  alto) a n d  5~m) are  shown in 
t ab l e  1. F o r  each m a n d  k the  first  co lumn gives  ~m), c o m p u t e d  b y  h a n d  f rom (9). 
The  second a n d  th i rd  co lumns  show the  va lues  of fil m) a n d  ak (m) c o m p u t e d  a n d  
conve r t ed  b y  SWAC. I t  will be obse rved  t h a t  the re  is p r a c t i c a l l y  no round-off  e r ror  
in a n y  of the  a ' s  or  ffs.  T h e  errors  in the  a ' s  a re  la rger  for m = 33 t h a n  for  
m =  513. T h e  errors  in ~¢~) a n d  ~(~) ~,30 are  r e l a t i ve ly  large,  sugges t ing  a consider-  
ab le  g rowth  in the  round-off  e r ror  o f / ~ )  as  k becomes  p r a c t i c a l l y  equa l  to  m. 

4. Fitting the Function I x I 

Besides  gene ra t ing  the  coefficients of the  o r thogona l  po lynomia l s ,  the  SWAC 
rou t ines  will  f i t  g iven  func t iona l  va lues  f(x~.) b y  c o m p u t i n g  f~)(x)  for  se lec ted  
va lues  of x accord ing  to  (1) and  (5). 

W i t h  the  equa l ly  spaced  abscissas  of sec t ion  3, t he  func t ion  f (x)  = Ix  I was 

TABLE 2 

m = 5 1 3  m = 3 3  

f(n})(O) and fn(~l(O) f~})(~l) and fn(~l(=l::l) f(nO(=i=l) and fn%)t(=l=l) 

0 

10 
12 
14 
16 
18 

20 
22 
24 
26 
28 

30 

.50097 4658 

.18786 192 

.11740 9689 

.08560 700 

.06741 1158 

.05560 976 

.04733 0003 

.04119 791 

.03647 2742 

.03271 954 

.02966 6051 

.02713 304 

.02499 7740 

.02317 317 

.02159 6012 

.02021 906 

.50097 4658 
1.12354 510 

.93930 2789 
1.03698 553 

.97495 4899 

1.01802 959 
.98650 8461 

1.01035 865 
.99190 6275 

1.00640 028 

.99489 7666 
1.00408 900 

.99671 2848 
1.00264 634 

.99786 9208 

.51515 1515 
1.10389 610 

.96068 7960 
1.01638 001 

.99328 8187 

1.00257 
.99910 

1.00027 
.99992 

1.00001 

.99999 
1.00000 

.99999 

.99999 
1.00000 

1.00171 408 

546 
0631 
985 
3845 
776 

6524 
054 
9930 
9947 
055 

.99999 2041 
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selected. Table 2 shows the output for n = O(l)31 and for zr = 0 and fl. (In 
each case the computed values fk” (+ 1) and fp’ ( - 1) were identical.) 

The routine found, while fitting points on this curve, that no odd degree could 
improve upon the preceding even degree. Therefore f:“(z) = fiy’:l(zr) for each 
even n. 

We have not computed correct values with which to deduce the round-off 
errors in the values of table 2. The values look plausible, and we conclude that a 
least-squares fit is perfectly possible up to degree 31 by our methods. This is 
decidedly in contrast with the failure of ordinary least-squares routines to 
compute even the coefficients co, . . . , cn of (6’) without use of multiple-precision 
arithmetic, for n larger than, say, 10. 

The slowness of the observed convergence of f?‘(O) to f(0) = 0 is due to the 
discontinuity of f’(r) at II: = 0. It is conjectured that, as n -+ 00 (with m > n), 
/f,?(O) - f(0) 1 = 0(1/n), independently of m. 

5. A Theorem on Extrapolation 

We were interested in using the curve-fitting routine to extrapolate some func- 
tions computed for a few points x in an interval [ - 1, l] to abscissas like x = 2. 
To test such a general process of extrapolation we were unable to use the compu- 
tations of section 4 with the function f(x) = / x 1. The discontinuity of f’(z) at 
5 = 0 apparently prevents~~“(x) from approximatingf(x) = 1 x: 1 at any point x 
outside the interval [ - 1, 11. 

On the other hand, if f(z) is an entire function of the complex variable z, the 
following apparently new theorem shows that extrapolation should be easily 
possible. The theorem can be stated under weaker hypotheses, but it suffices for 
our purposes. 

THEOREM. Let [ = (x1 , . . . , x,) be an arbitrary set of m distinct points of the 
closed interval [- 1, I]. For n < m let f$'(x) be the polynomial of degree n which 
most closely approximates the entire function f(x) on E in the least-squares sense. 
I.e., j?(x) minimizes 

over the class of polynomials qn of degree n. 
Then, as m -+ 00, n --+ ZJ independently (n < m), fit’ (z) -+ j(z) for all complex z. 
Moreover, we have the following bound, depending on the interval, z, n and f, but 

not on m or E: 

whcrc n/1,+1 is the maximum of ) .fCn+” (0 ) for < in the closed triangle T with base 
zeros~n[-l,1]nndvcrt~.cz,nndwherep=mas{~z+l/,/z-l~I). 
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PROOF. We  first show tha t  f (x )  - f~ ) (x )  = R , (x )  has  a t  least  n + 1 dist inct  
zeros in [ - 1 ,  1]. I f  not ,  then  choose u0,  - . .  , Uq+l and  e = ::i=l such tha t :  

(i) - 1  := u0 < ul < . . .  < uq < u~+l = 1 (q < n);  
(ii) R,(u~) = 0 f o r j  = 1, 2, . - .  , q; 
(iii) ( - 1 ) "  e R , ( i i )  > 0 for  all xl in (u r ,  ur+~), r = 0, - . .  , q; 
(iv) ( - 1 ) r e R , ( x l )  > 0 f o r a t l e a s t o n e x i i n ( u r , u r + l ) ,  r = O, . . .  ,q. 
N o w  define r(x) = II~-1 (x - us). (If  q = 0, let r(x) = 1.) T h e n  r(xi)Rn(xi) > 0 

or r(xl)R,(xO < 0 for  all i = l ,  . - .  , m, while, b y  (iv), r(xOR~(x~) is non-zero 
for cer ta in  x~. Consider  the  polynomials  g,(x) = f~(~)(x) + ~lr(x), of degree n, 
for real va lues  of v near  0. 

Fo r  n = 0, a shor t  calculat ion shows t h a t  

d ~ {f(x,) g~(x,) }2 --2 ~ R~(x,)r(xi), 

which is non-zero b y  the  choice of r(x). Hence,  for some 7/small enough in abso-  
lute  value,  

(12) ~ { f ( x i )  - -  g , ( x i ) ]  2 < ~ {f(x~)" f~)(x~)} 2, 

con t r ad i c t i ng  the  definit ion of f(~). ( Incidental ly ,  only  the  cont inu i ty  of f has  
been used so far : )  

B y  the  above,  f~ ) (x )  in te rpola tes  f (x)  a t  some n + 1 dis t inct  points  
Y0, y~, " ' "  , y~ of [ - I ,  1]. We  m a y  therefore  use Jensen ' s  fo rmula  for the  re- 
ma inde r  in po lynomia l  in terpola t ion;  see N6r lund  [4, p. 9]. This  s ta tes  t h a t  

(13) R~(z) (z -- Yo) "'" (z -- y~) ~, (~+,) = f (~), (n + 1)! 

where ~, is a complex n u m b e r  wi th  I h I =< 1, and  where ~- is a poin t  in the  inter ior  
of T. 

Since all [z -- y~ [ =< max  {[ z + 1 [, I z -- 1 I} = P, the  expression (11) is an 
uppe r  bound  for ] R,(z)  i in (13), and is t he reby  proved.  

T o  p rove  t h a t  f~)(z)  --~ f(z)  we have  to p rove  t h a t  R,(z)  --~ O. Since f (z)  is 
entire,  we know tha t ,  for all ~ in T, 

f("+~)(r) - (n + 1)! fc  f(t) dt 
2~-i ~¢) (t --  r) ~+2' 

where  C(s ~) is a circle wi th  radius  R and center  ~'. Hence  

(14) If("+')(¢) [ < 2~-R m(s r) m~ r) 
( n +  1)! = 2 ~ - R  " + ~ = R  "+~' 

where m~ ~ = max  If(t) ] for  t on C (~)R . I t  follows f rom (14) t h a t  

M.+l  < mR 
(15) (n + l ) !  = R "÷L' 



S W A C  E X P E R I M E N T S  17 

where mR = max m(~ ~) for all ~" in T. 
Subs t i tu t ing  (15) in (11) shows tha t  

mR pn+l 
(16) I](~ ~)(z) -- f ( z )  I ----< " Rn+, . 

Since f ( z )  is entire, R can be picked with p < R, and hence (16) shows tha t  
f ~ ) ( z )  - f ( z )  ~ O, as n --~ o¢, complet ing the proof of the theorem. 

6. Fi t t ing  the Smooth  Func t ion  e ~ 

As a suitable entire funct ion we chose f ( x )  = e ~ as being well tabula ted  and 
easy to work with. We confined our extrapolat ions mainly to real values of x in the  
interval  [ - 2 . 5 ,  2.5]. F r o m  (11) we have the following upper  bounds  for the 
t runca t ion  error in extrapolat ion:  

e (1 - x) ~+~ (x =< 0); (17) If('~)(x) - e~l ~- (nn + 1): 

e (x -t- 1) n+l (0 < x < 1); (18). If(J)(x) -- e~l =< (n + 1)--------~ = = 

e ~ 1)~+1 (x + (1 ~ x). (19) I f~ ) ( x )  -- e~l ~ (n + 1)! 

Formulas  (17, 18, 19) bound  the errors in extrapolat ion,  except for round-off 
error. I n  numerical  experiments  any  errors exceeding the above bounds  mus t  be 
due to  round-off. 

Exper iments  were run for m = 9, 17, 33, and 66. The  xi were uni formly spaced 
except near x -- 0. The  following abscissas were used: 

m = 9: xl = - . 9 7 ( . 2 4 ) - . 0 1  and .22(.24).94; 

m = 17: xi = - ~ 9 7 ( . 1 2 ) - . 0 1  and .10(.12).94; 

m = 33: x~ = - . 9 7 ( . 0 6 ) - . 0 1  and .04(.06).94; 

m = 66: x~ = - . 9 7 ( . 0 3 ) - . 0 1  and .01(.03).97. 

Define f(~)(x),  where ~ = {xl , . - - ,  x , } ,  as in section 1. SwAc computed  
f(~)(x) for the following values of m, n, and x: 

m = 9: n = 0(1)8: x = 10, ±2 .5 ,  ± 2 ,  ± 1 . 5 ,  ±1 .25 ,  ± 1 ,  - . 9 7 ,  + . 9 4 ,  

± .75 ,  ± . 5 ,  0; 

m = 17: n - - 0 ( 1 ) 1 6 :  x = 10, ±2 .5 ,  ± 2 ,  ± 1 . 5 ,  ±1 .25 ,  ± 1 ,  - . 9 7 ,  + . 9 4 ,  

± . 7 5 ,  ± . 5 ,  0; 
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m = 33: n = 0(1)32:  

n = 0(1)31:  

n = 0(1)29:  

n = 0(1)23:  

m = 66: n = 0(1)32:  

n = 0(1)28:  

n = 0(1)27:  

n = 0(1)26:  

x = 10, - -1 .5 ,  - -1 ,  ± . 5 ,  0;  

x = - - .97,  4 . 9 4 ,  ± . 7 5 ;  

x = 1.5, 1.25, 1; 

x = ± 2 . 5 ,  ± 2 ,  - -1 .25;  

x = 10, - -1 .5 ,  - -1 ,  - - .97 ,  --t-.94, ~ . 7 5 ,  ± . 5 ,  0;  

x = 1.5, 1.25, 1; 

x = 2.5, 2; 

x = - -2 .5 ,  - -2 ,  - -1 .25.  

The  au tho r s  have  mach ine  l is t ings of all  these  c o m p u t e d  values.  
I n  t ab le  3 is shown a sample  of the  va lues  of f~ ) (x ) ,  for selected x which  never  

coincide wi th  an  x i .  T h e  difference in the  round-off  e r ror  be tween  i n t e rpo l a t i on  
and  ex t r apo l a t i on  is ev iden t .  A l m o s t  eve ry  c o m p u t a t i o n  shows ind ica t ions  t h a t ,  
as  n grows, u l t i m a t e l y  f ~ ) ( x )  d iverges  f rom e ~. Th is  i n s t a b i l i t y  a ppe a r s  to  s t a r t  
a t  n near  15. W h e n  x is inside [ - . 9 7 ,  .94], the  d ivergence  is osc i l l a to ry  a t  first,  
a n d  the  er ror  grows on ly  sh)wly, so t h a t  even f ~ ) ( x )  is good  to a lmos t  one dec imal .  

F o r  x ou t s ide  the  i n t e rva l  [ - . 9 7 ,  .94], the  d ive rgence  aga in  begins  for n nea r  
15, b u t  is one-s ided and  grows a p p r o x i m a t e l y  exponen t i a l l y  and  much  more  
rap id ly .  

Our  asser t ion  t h a t  the  er rors  in t ab l e  3 a re  due  t o  round-off  has  been sub-  
s t a n t i a t e d  b y  compar ing  the  er rors  w i th  the i r  b o u n d s  o b t a i n e d  f rom the  a b o v e  
theorem.  E x a m p l e s  of th is  compar i son  are  shown in the  two  a c c o m p a n y i n g  
graphs .  T h e  base  10 loga r i thms  of I:f(~)(x) - -  eel (n  = 0, l ,  - . .  , 21) a re  in-  

I 2 3 4 5 6 7 8 9 10 I 12 3 4 15 I~ I~ 2~ 0 , ~ , J , - I l . j j , , i j_ t~ la7 

-5 ~ / \ 

-6 ~(n) V \ ~ 

-8 

-9 k _ . _ _ _  . / \ j / '  

-10 

- I I  

-12 

-J3 

Gi~APU 1. x = 0, m = 66. The dashed line is the observed value of ~(e) = log~. I e ° - f~)(0)  
The solid line is the bound for the same quantity from (17). 
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2 5 4 5 6 7 8 9 0 2 5 4 5 6 7 8 9 20  
I I I I I I ! ! I I I I I l l , I I 

0 ~ ~  ~ n ->  " , . . , i  

-1 

-! 

-8. " / /  

-9, \N_ J /  \ ~ /  ~ ~ , y / "  

-I0 

-II 

-12 
GRAPH 2. X = --1, m = 66. The dashed line is the observed value of ~(n) = log~0 ] 6  -1 .  - -  

j~6) (--1) [ . The solid line is the bound for the same quantity from (17). 

d icated by  dashed lines, while the solid lines show the base 10 logar i thms of the  

error bounds  (17). 
On graph 1 it  can be seen t ha t  the error in f~)(0)  is below the error bound  (17) 

for n -<_ I I .  However,  the machine ' s  full accuracy has appa ren t ly  been reached, 
and  no fur ther  improvemen t  is ob ta ined  for larger n. S ta r t ing  with n = 15 the  

error even begins to increase. 
G r a p h  2 shows t h a t  the error in f ~ ) ( - 1 )  begins to increase a t  n = 12 and  

finally exceeds the  error bound  (17) for n ->_ 17. 
Graphs  1 and  2 bo th  exhibi t  for n near  12 or 13 what  is commonly  known  as a 

round-off error "noise l eve l " - -he re  appa ren t l y  abou t  10 -~ or 10 -8. I t  should be 
noted  t ha t  this  noise level is abou t  the same near  an endpo in t  (x = - 1) as near  
the midpo in t  (x = 0) of the in te rva l  of fit. For  n larger t h a n  20, however,  the  
noise level seems to grow with n. 
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