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1. Introduction and Summary

Tett = (21, - -+ , 2.) be a set of real numbers, and let f(z,), -+, f(z.) be the
observed or computed values of some function of z at the points of £ Letf9(x)
be the unique polynomial of degree n which best fits the data values f(x;) in. the
least-squares sense. I.e., the sum

Slgn) 22 (1@ — gulzd ),

where ¢, is a polynomial of degree n, is minimized by g.(z) = 7&(x).

In [3] one of us discussed the problem of finding f¥(x) oh a digital computer
and outlined certain advantages of determining f* () in terms of polynomials
pi(x) orthogonal over & It was further proposed that the py(x) be computed from
their 3-term recurrence. The procedure will be outlined again here, mainly to
formulate our notation. '

Let po{z) = 1, and let 8 = 0. Then the polynomials pi(z) are defined and
computed by the recurrence

(1 Peri(z) = (¥ — owsa)pul®) + Bepr—i (o).
Here

(@ D PP S WA
and

® b= 2 e/ T oo

(Our numbering of the subscripts of the oy and B; agrees with that in [3], but
various other numberings are in use elsewhere.)

The fundamental property of the pi() is the orthogonality relation
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:z; palzdpe(a) = 0 (h = k).

The Fourier coefficients £, of f(x.) are defined by

@ b = L 1w [ 2 ned)”
In terms of the 4 we can write the desired least-squares polynomial as
) 06 = T tpla).
Finally, the statistic (estimate of unexplained variance)
© wt == = D2 (@) ~ SO @)Y

has an expected value which is independent of n (for » > k), if the f(z;) are
independently normally distributed about some polynomial trend of degree k.
Hence o, is often a useful measure of the goodness with which f*(z) fits f(z)
over the set £.

When one is asked to use a computer to find the polynomial 7, one can well
ask in return what it means to “find a polynomial.” Too often one automatically
considers that a polynomial p is synonymous with its representation in powers

p(z) = co + ez + -+ + cuz”
or, at any rate, with the coefficients
(6" C,CL, """ ,Cn.

It is our point of view that one may equally well have “found a polynomial p”’
when one has a table of its values p(z) for a sufficiently wide class of arguments
z. Or, alternatively, that one may have “found p”” when one knows the constants
of a machine algorithm for computing p(x) for any desired . It is in the latter
sense that we claim we have “found f’ as soon as we have the values of

(7) @1, t 7y Oy, Biy -y Baa, and foy -y In.

For with these numbers we can produce f (z) for any desired z by formulas (1)

and (5).

It is a deeper question as to which representation of £ is the better—that of
the coefhicients (6} or that of (7). Such a question can only be answered in terms
of computing time, precision, round-off error, machine storage, and especially any
desired further use of f. Ordinarily, choices between computing methods de-
pend critically on special factors characteristic of a given particular application.

Without claiming the method to be better, the authors have experimented
with the consistent use of the recurrence (1) for the data-fitting problem on the
automatic digital computer available to them, Swac. We have prepared this

summary of typical results as a record of our experiment.
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A related code has been reported by Rudin [5].

A similar code, but in fixed point, has been constructed at The Ramo-Woold-
ridge Corporation under the guidance of David Morrison,

In section 2 we describe the Swac codes, which use “foating vectors.” In
section 3 we give formulas for the Chebyshev polynomials which are orthogonal
with respect to summation over certain equally spaced x; , and use them to check
the Swac-generated values of o, and 8, . In section 4 we test the code for gener-
ating f¥(z) for the function f(z) = | z | over the same z; .

In scetion 5 we prove an apparently new theorem that, if f is an entire function,
¥ (2) = f(2) for all complex z, as n, m — ». In section 6 we compare a bound
given by our theorem with the observed crror of f(z) — f(z), for various real
values of x, where f(z) = ¢”. Table 3 and graphs 1 and 2 illustrate the quantita-
tive and qualitative behavior of both the interpolation and extrapolation of
e” by use of [ (z).

We conclude that for ¢* our method of data fitting will determine interpolated
function values f$¥ (x) with a precision of something like 10~° for n up to 16, and
with nearly as much precision up to n = 31. This is in contrast with reports we
have heard of the failure of routines which have attempted (using comparable
preeision) to solve the classical normal equations for the power coefficients
co, -, ca, and then to evaluate £19(z) in the farm ¢o + ez + <+ + ca™

2. SWAC Codes

The coding of the procedure was divided into two parts. In the first routine the
input is the set of absecissas £ = (@, - -, zu} (m £ 1023) and the corresponding
functional values f(x;) (i = 1, ---, m), with no restriction on the interval or
spacing. The routine generates: (i) the parameters ar , 8; of (2, 3) defining the
orthogonal polynomials pe(x) of each successive degree & up to 32 (if m > 32),
orup tom — 1 (if m £ 32); (ii) the Fourner coeflicients £, of (4) for the values
f(x;) with respect to these polynomials; and (iii) the error measures ;% of (6).
In the second routine, the results of the first routine (s , Bs , &) and the abscissas

dy, - -+, d, are the input. This routine evaluates
D) = 2 tp(d) (fort <i<r, 0=ng32).
B[}

The d; need not be the same as the z; nor in the same interval. The number of
abscissas has the arbitrary limit r = 1023,

The routines use numbers in a (binary) floattng vector form. Each vector

(21, -+, 2m)isstored inm + 1 cellsas (@, -+, ¢m , gmi1), Which is interpreted
as

& = q5'2qm+L-

Here g¢my1 is an integer such that |gmy| £ 2% — 1; we have | ¢ < 1
(f=1,---,m),and} £ maxic,<m | ¢:| < 1. Eachsecalaris regarded as a floating
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vector with one component, and so is stored in two cells. This floating vector
form has been used previously on Swac by Professor M. R. Hestenes in several
matrix codes. ) '

It was found that a normalization process to keep 3 £ maxicicalgi| < 1
is extremely important for the accuracy of the results. This normalization is
needed after each arithmetic step involving either vectors or scalars.

Because of the number of times the operations are performed, the use of sub-
routines for subtraction of vectors, division of scalars, and finding the inner
product of two vectors is found to be very useful,

Although the numbers are input and are available for output in binary floating
vector form, it was thought advisable also to have the output in a more easily
identifiable form. The routines therefore contain a subroutine to convert the data
into floating deecimal form, and the numbers contained in this paper are a result
of this conversion. The error introduced into the numbers by this conversion is
believed to be not more than approximately one unit in the last digit tabulated.
This belief is substantiated by test conversions of several numbers over the range
of numbers tabulated,

The routines and further details about them are available in the Numerical
Analysis Research libvary of the University of California, Tos Angeles (codes
00474.1 and 00474.2).

In evaluating our results the reader should know that the Swac word length is
36 hinary digits {equivalent to about 10.8 decimals) plus a sign digit.

3. Equally Spaced z;

As a first test for the routines we took an odd number m of equally spaced
peints over the interval [—1, 1]:

gi= 142171 (i=1,2 -, m
. m — 1
The corresponding orthogonal polynomials
Py =2+ (h=0,1,,m~1)

were introduced by Chebyshev (2], and the following formulas are adapted from
Barker {1]:

(8) PR) = 2 PiV(@) — 8P,
where
® R el

(m — 124k — 1’
Comparison of (8) with (1) shows that all
(10) a™ = 0.
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TABLE 1
ur = 33 = 313
k True Swac computed Swac* computed I'ruc Swac computed | Swac® computed
B 80 o7 et B aty

1 0 10722 25667 66| 0 0 10728 16511 36
2 | .35416 6667 .35116 6666] 1022 72473 400 33463 5416 33463 5416| 10-28 49341 35
3| 28250 2083| .2823b 2083| 1022 64123 93| .26770 5281y 26770 5281 1072 46678 Qb
4| .27120 5357! .27120 5357| 10722 50110 13} 25813 9474] 25813 9474| 10723 44625 15
5 [ 206612 1031] .26612 1031| 102 55529 36 .25404 5785 25494 5785 10— 43750 45
8, 26238 0520 28238 0520 10 52907 38 .25348 8560| .25348 855Y| 10~ 43157 22
7 | .25887 7841| 25887 7840| 10722 51002 99) 25269 8031| .25269 8031| 10-22 17078 57
8 | .25520 8333 .95520 8333 10722 50050 28| 25221 7610| 25221 7610, 1022 16328 41
9 | 25122 5490 .25122 5400] 1022 49806 13} .25150 0467 .25190 0467 10-22 16800 69
10 | 24685 b6A0OY 24685 660 1022 50440 54 .25167 7049; 25167 7049 10~22 .16688 74
11 24206 02207 24206 0228 10~22 52005 03{ 25151 0026| 25151 0926| 1022 16588 48
12, 23681 7417 23681 7417/ 1022 54004 93 .25138 1505 25138 1504f 10-2 16497 32
13 | .23131 41300 23111 4130) 1022 59488 94| 25127 6431 25127 6430 1022 .16413 52
14 | 22404 2129 22494 2129 10~2 66115 B2 25118 7925 25118 7825 102 16335 89
15 | 21829 6016] .21829 6016) 1022 75718 08 .25111 0891] 25111 0890[ 10— 16263 63
18 | .21117 2135{ 21117 2135 10722 44820 12} 25104 1875 25164 1874 10~ 16196 13
17 | .20356 7937| 20356 7937 102 27521 59( 25097 8472] 25007 8471] 1072 16132 89
18 | . 19548 1602) . 19548 1601| 10~22 35197 177 25091 8962 25091 8462; 1022 16073 90
19 1 18691 1800 18691 1800} 1022 47077 24| 25086 2092| 25086 2092! 1022 16018 66
20 17785 7545 17785 7545|1022 33086 34| 25080 6929] 25080 6928} 10~ 15967 12
21 | 16831 8089 .16831 808Y| 1022 24571 20| 25075 2766 25075 2766] 102 13019 19
22 - 15829 28604 .15829 2860 10—22 38806 69| .25069 9065 .25069 3065| 10~ 15874 80
23 | .14778 14110 14778 1411 1022 32824 40| 25084 5403 .25084 5403| 10~2* .15833 92
24 | .13678 3392 (13678 3392 10722 20096 70 25059 1449 25059 1449) 10~ 15796 55
26 . .12520 85241 12520 8523( 10722 29025 23| 250563 693D| 25053 6939 1022 15762 70
26 | .11332 6581] .11332 6580| 1022 16503 87| . 25048 1662 25048 1662} 10~22 .153732 39
27 | 10086 7381] 10086 7381[ 107#2 40004 87| 25042 5445 25042 5445|107 15705 66
28 | 08792 0776, .08792 O776] 1022, 20077 93| .25036 8147| .25036 8147 10722 13682 56
20 | (07448 6643| .07448 6643 107 24398 61)| .25030 9653 .25030 9653) 10722 15663 16
30 | 06056 4879 06056 4883| 10~ 25178 18| .25024 9866 .25(24 9866| 10— 15647 53
31| 04615 5399 04615 5463 10—22 17047 12;[ .25018 87061 (2518 B708) 10722 15635 72
* The true o™ = 0 for all k and any odd m.

Incidentally, as m — s, the above polynomials approach the Legendre

polynomials .(z) except for normalization:

lim P (x) =

Ea il

PACHE
(2R

P.(x).
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Moreover,

2z
lim g™ =

mow 4k — 17

The exact formulas (9) and (10) give a control on the round-off error of any
machine caleulations of the a’s and #’s.
For the Swac experiments we selected m = 33 and m = 513, to avoid rounding

the 2; . The corresponding computed values of the o™ and gi™ are shown in

table 1. For each m and I the first column gives 8i™, computed by hand from (9).
The second and third columns show the values of 8i™ and o™ computed and
converted by Swac. It will be observed that there is practically no round-off error
in any of the a’s or g’s. The errors in the a’s are larger for m = 33 than for

m= 513. The errors in 85> and B> are relatively large, suggesting a consider-

able growth in the round-off error of 8i™ as k becomes practically equal to m.

4, Fifting the Function | z |

Besides generating the coefficients of the orthogonal polynomizals, the Swac
routines will fit given functional values f(z,) by computing f' () for selected
values of z according to (1) and (5).

With the equally spaced abscissas of section 3, the function f(z) = |z | was
TABLE 2
m = 513 | m =33
8@y and FIE @ FP @) and FIE @D 1) and £, (2D

0 . b00YT 4658 .50097 4658 .51515 1515

2 .18786 192 1.12354 310 1.1038% 610

4 11740 9689 93930 2789 .36068 T96Q

6 08560 700 1.03698 553 1.01638 001

8 06741 1158 97495 4899 99328 8187

10 05560 976 1.01502 959 1.00257 546

12 (04733 0003 98650 8461 99910 (631

14 04119 791 1.01035 865 '1.00027 985

18 03647 2742 .99130 6275 99992 3845

18 03271 954 1.00640 028 1.00001 776

20 02966 6051 .99489 7666 .99999 6524
22 .02713 304 1.00408 900 1.00000 064

24 .02499 7740 .99671 2848 .99999 9930
26 02317 317 1.00264 634 99999 9947
28 (02159 6012 .GU786 9208 1.00000 055

30 .02021 906 1.00171 408 .99999 2041
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selected. Table 2 shows the output for n = 0(1)31 and for z = 0 and *1. (In
each case the computed values f(41) and f&&’(—1) were identical.)

The routine found, while fitting points on this curve, that no odd degree could
improve upon the preceding even degree. Therefore f¥(x) = f¥(x) for each
even 1.

We have not computed correct values with which to deduce the round-off
errors in the values of table 2. The values look plausible, and we conclude that a
least-squares fit is perfectly possible up to degree 31 by our methods. This is
decidedly in contrast with the failure of ordinary least-squares routines to
compute even the coefficients ¢q , - - - , ¢, of (6") without use of multiple-precision
arithmetic, for n larger than, say, 10.

The slowness of the observed convergence of 7 (0) to 7(0) = 0 is due to the
discontinuity of f’(z) at x = 0. It is conjectured that, as n — « (with m > n),
[F90) — f(0)| = O(1/n), independently of m.

5. A Theorem on Extrapolation

We were interested in using the curve-fitting routine to extrapolate some func-
tions computed for a few points z in an interval [—1, 1] to abscissas like z = 2.
To test such a general process of extrapolation we were unable to use the compu-
tations of section 4 with the function f(z) = |z |. The discontinuity of f'(x) at
x = 0 apparently prevents fff) (x) from approximating f(z) = | z | at any point
outside the interval {—1, 1].

. On the other hand, if f(z) is an entire function of the complex variable z, the
following apparently new theorem shows that extrapolation should be easily
possible. The theorem can be stated under weaker hypotheses, but it suffices for
our purposes.

THEOREM. Let &€ = {xy, -+, x.} be an arbitrary set of m distinct points of the
closed interval [—1, 1]. For n < m let f& () be the polynomial of degree n which
most closely approximales the entire function f(x) on & in the least-squares sense.
le., 9 () mindmizes

m

Sgn) = 2 @) — gz}’
over the class of polynomials q. of degree n.
Then, asm — «, n — © independently (n < m), f»’ (2) — f(2) for all complezx 2.
Moreover, we have the following bound, depending on the inferval, z, n and f, but
not on m or &:

&)
n

Mo an
(11) Efsf)(z) _f(z)‘ =< mp+,

where M 4 is the maximum of | f"°(¢) | for ¢ in the closed triangle T with base
zerost n [—1, 1] and vertex z, and where p = max {|z+ 1|,z — 1]}.
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Proor. We first show that f(z) — f¥(x) = R.(z) has at least n 4+ 1 distinet

zerog in [—1, 11, If not, then choose uy, -, u,p and € = =1 such that:
(i) —l =y < < e <y <y =1 (g < n);
(ii) R.(u) =0 forj =1,2, - ,4q;
(ii) (—DreR.(x) 20 forall z;in (u,, ), r=0,--+,¢;
(iv) (=1) e B.(x;) > 0 foratleast one x;in (%, , %,5y), r=0--,4q
Now define r(z) = H‘,’-n; {# — w;). (Ilfg = 0,letr{z) = 1.) Thenr(z)RB.(x;) = 0
or r{z)Ra{z;) < O0forall< = 1, --- , m, while, by (iv), r(z,)R.(z.) is non-zero

for certain ;. Consider the polynomials g,(z) = £.'P(x) + »r(x), of degree n,
for real values of 5 near 0.
For 5 = 0, a short calculation shows that

%Z:; (flz) — glad}? = —2 g R.(x)r(z),

which is non-zero by the choice of r(z). Hence, for some n small enough in abso-
lute value,

(12) 2, flwd — galwd}* < 2 fd = 1PV,
contradicting the definition of
been used so far.)

By the above, f'(z) interpolates f(z) at some = + 1 distinet points
Yo, Y1, , Us of [—1, 1]. We may therefore use Jensen’s formula for the re-
mainder in polynemial interpolation; see Norlund {4, p. 9]. This states that

. (Incidentally, only the continuity of f has

S _le—w) o f— y) ) e

where X is a complex number with | A | £ 1, and where { is a point in the interior

of 7.
smax{lz+ 1],{z — 1|} = p, the expression (11} is an

Sinceall |z — ».: | =
upper bound for | R.(2) in (13), and is thereby proved.

To prove that fi¥(z) — f(z) we have to prove that R.{z) — 0. Since f(2) is
entire, we know that, for all ¢ in T,

Wby _ (04 D! f _fd
f ({) - 277’! 0:3” (t . g,)n+-21
where ('%’ is a circle with radius B and center ¢. Hence

TCTI S Y
(n+ 1! T 25 Re¥z Rt

where mg’ = max | f(£) | for £ on CF. It follows from (14) that

(14)

J”n+1 < Mg

(15) R T
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where ms = max my’ for all ¢ in 7.
Substituting (15) in (11) shows that

ntl

(16) FAHOR OIS

Since f(z) is entire, R can be picked with p < R, and hence (16) shows that
®(2) — fiz) > 0, as n — o, completing the proof of the theorem.

J ; , eompleting the p

6. Fiiting the Smooth Function ¢

As a suitable entire function we chose f(x) = ¢ as being well tabulated and
easy to work with. We confined our extrapolations mainly to real values of z in the
interval [—2.5, 2.5]. From (11) we have the following upper ‘bounds {or the
truncation error in extrapolation:

(17) @) =S + oy (L~ =™ (z < 0);
(18)- |£8() — € | s ¢ _ RN + @+ (DA (I F I O F
(19) 0 — € £ ;1), (& + 1" 1= 2.

Formulas (17, 18, 19) bound the errors in extrapolation, except for round-off
error. In numerical experiments any errors exceeding the above bounds must be
due to round-off.

Experiments were run for m = 9, 17, 33, and 66. The x, were uniformly spaced
except near x = 0. The following abscissas were used:

—.97(24)— 01 and .22(.24).94;

m= 9 T =
m = 17: ;= —97(.12)—.01 and .10(.12).94;
m = 33: z; = —.87(.06)—.01 and .04(.06).94;
m = 66: x; = —.97(.03)—.01 and .01(.03).97.
Define ' (z), where ¢ = {x,, -+, za), as in section 1. Swac computed

Fi¥(2) for the following values of m, n, and z:
m=9: »=0D018: =z=10, £25 2, =15 =£1.25 =x1, —97, +.94,

+.75, £.5, 0;

17:n = 0(1)16: z = 10, £2.5, +£2, +£1.5, =125 =1, —.97, +.94,

g
[

+.75, +£.5,0;
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m o= 33:n = 0(1)32: z =10, —1.5, —1, .5, 0;
n=001)31: = —97 +.94 £.75;
no=0(1)20: z =15, 125 1;
= 0(1)23: z = 425, 42, —1.25;
m = 66:n = W(1)32: « =10, —1.5, —1, —97, +.94, .75, £.5, 0;

n
n
n=0(1)28: =z =15 125 1;
n=0(1)27: & =25 2;

n=0(1)26: = —2.5, -2, —1.25,

The authors have machine listings of all these computed values.

In table 3 is shown a sample of the values of f{¥'(x), for selected x which never
coincide with an z; . The difference in the round-off error between interpolation
and extrapolation is evident. Almost every computation shows indications that,
as n grows, ultimately f(x) diverges from ¢°. This instability appears to start
at » near 15. When z is inside [— 97, .94], the divergence is oscillatory at first,
and the error grows only slowly, so that even f58 (x) is good to almast one decimal.

For z outside the interval [— .97, .94], the divergence again begins for # near
15, but is onc-sided and grows approximately exponentially and much more
rapidly.

Our assertion that the errors in table 3 are due to round-off has been sub-
stantiated by comparing the errors with their bounds obtained from the above
theorem. Examples of this comparison are shown in the two accompanying
graphs. The base 10 logarithms of [ff)(:z:) ~ & |{n =401, .-, 21) are in-
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Giapn L.z =0, m = 66. The dashed line is the observed value of p(r) = logic |® — F2(0) .
The solid line is the bound for the same quantity from (17).
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GrarH 2.2 = —1, i = 66. The dashed line is the observed value of ¢(n) =-logie el —
J$8 (—1) | . The solid line is the bound for the same quantity from (17).

dicated by dashed lines, while the solid lines show the base 10 logarithms of the
error bounds {17).

On graph 1 it can be seen that the error in F81(0) is below the error bound (17)
for n < 1Ll. However, the machine’s full accuracy has upparently been reached,
and no further improvement is obtained for larger n. Starting with n = 15 the
error even begins to increase.

Graph 2 shows that the error in f3¥'(—1) begins to increase at n = 12 and
finally exceeds the error bound (17) forn = 17. ;

Graphs 1 and 2 both exhibit, for # near 12 or 13 what is commonly known as a
round-off error “noise level” —here apparently about 107 or 107, It should be
noted that this noise level is about the same near an endpoint (x = —~1) as near
the midpoint (z = 0) of the interval of fit. I'or » larger than 20, however, the
noise level seems to grow with =n.
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