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ABSTRACT
We present multi-modal adversarial autoencoders for recommenda-
tion and evaluate them on two different tasks: citation recommen-
dation and subject label recommendation. We analyze the effects
of adversarial regularization, sparsity, and different input modal-
ities. By conducting 408 experiments, we show that adversarial
regularization consistently improves the performance of autoen-
coders for recommendation. We demonstrate, however, that the
two tasks differ in the semantics of item co-occurrence in the sense
that item co-occurrence resembles relatedness in case of citations,
yet implies diversity in case of subject labels. Our results reveal
that supplying the partial item set as input is only helpful, when
item co-occurrence resembles relatedness. When facing a new rec-
ommendation task it is therefore crucial to consider the semantics
of item co-occurrence for the choice of an appropriate model.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies→ Neural networks; Learning from implicit
feedback;

KEYWORDS
recommender systems; neural networks; adversarial autoencoders;
multi-modal; sparsity
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1 INTRODUCTION
Recent advances in autoencoders on images have shown that ad-
versarial regularization can improve the performance of autoen-
coders [24]. The so-called adversarial autoencoders [24] are not
only trained to reconstruct the input, but also to match the code
with a selected prior distribution. We hypothesize that the thereby
imposed smoothness on the code aids autoencoders in reconstruct-
ing highly sparse item vectors for recommendation. The rationale
is that smoothness is one of the criteria for good representations
that disentangle the explanatory factors of variation [4]. In this
paper, we analyze whether adversarial autoencoders can be applied
to highly sparse recommendation tasks. We evaluate the effect of
adversarial regularization with respect to the degree of sparsity
and different input modalities on two exemplary tasks: citation and
subject label recommendation.

Citation Recommendation More and more publishers de-
cide to contribute to the Initiative for Open Citations1, which
aims to make citation metadata publicly available. This mo-
tivates us to consider the following scenario as a recommen-
dation task. When writing a new paper, it is essential that
the authors reference other publications which are key in
the respective field of study or relevant to the paper being
written. Failing to do so can be rated negatively by review-
ers in a peer-reviewing process. However, due to increasing
volume of scientific literature, even some critical paper are
sometimes overlooked. Hence, in this paper we study the
problem of recommending publications to consider as cita-
tion candidates, given that the authors have already selected
some other references and assuming that the paper is close to
completion, i. e., information such as the title (or a tentative
title) of the paper is available.

Subject Indexing Apart from citation data, also subject labels,
or tags, are publicly available for numerous domains, such
as MeSH2 for medicine or EconBiz3 for economics. Subject
indexing is a common task in scientific libraries to make doc-
uments accessible for search. New documents are annotated
with a set of subjects by professional subject indexers. Fully-
automated multi-label classification approaches to subject

1https://i4oc.org
2https://www.nlm.nih.gov/mesh/
3https://www.econbiz.de/
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indexing are promising [29], even when merely the metadata
of the publications is used [9]. Professional subject indexers,
however, typically use the result of these approaches only
as recommendations, so that the human-level quality can
still be guaranteed. This circumstance motivates us to build
a subject label recommender system that explicitly takes the
partial list of already assigned subjects into account.

To unify these two scenarios, we take either the citations or the
assigned subjects as implicit feedback for a considered recommen-
dation task. In the former case, citations are known to resemble
credit assignment [41], whereas in the latter case the subject labels
are selected by respective professionals such that their relevance
to the paper is guaranteed by human supervision.

Traditionally, the recommendation problem is modeled as the
prediction of missing ratings in a U × I matrix with set of users
U and set of items I (matrix completion). In our case, following
McNee et al. [25], we view research papers themselves as users over
their authors or the responsible subject indexers. The rationale is
that one author may be involved in multiple papers of different
domains but that all authors for a given paper should receive the
same recommendations. Analogously, a given paper should receive
the same recommendations for candidate subjects, independently
of the current subject indexer in charge of annotating it.

We have transferred the approach of Makhzani et al. [24], which
was applied to images, and extended it to our problem of a gen-
eral recommendation task. By developing a novel interpretation
of the adversarial autoencoder, we show how it can be applied to
recommendation tasks and how multiple input modalities can be
incorporated. We make use of this capability in our experiments by
considering besides the ratings also additional metadata, namely
the documents’ title, as content-based features. We performed 408
experiments for our two recommendation tasks to study how ad-
versarial autoencoders perform while exploiting titles along with
the partial list of citations or the already assigned subjects, respec-
tively. For a close investigation of the adversarial autoencoders’
performance, we not only consider the adversarial autoencoder as
a whole but also individually assess its components.

We further evaluate to which degree these models are robust to
sparsity in the dataset. When conducting citation or research paper
recommendation, it is not desirable that only already frequently
cited papers get recommended and less frequently cited papers are
ignored. Common pruning strategies comprise removing rarely
cited documents and documents that cite too few other works [2].
This pruning step affects the number of considered items, and
thus, the degree of sparsity. To gain a better understanding of how
the pruning threshold affects the models’ performance, we conduct
experiments, in which the pruning threshold is a controlled variable.

Our results show that the partial list of items is more impor-
tant for the citation recommendation task than it is for the subject
labeling task. This is interesting because an inspection of the seman-
tics of item co-occurrence may help researchers or practitioners to
tackle new recommendation tasks, specifically to decide whether
to supply the partial list of items as input. For citation recommen-
dation, item co-occurrence implied relatedness, i. e., it is of high
relevance which other works have been cited so far. For subject
labels, in contrast, co-occurrence implies diversity: similar subjects

are rarely used together for annotation of a single document. Thus,
the title is more relevant than the already assigned subjects. All of
the evaluated methods appeared similarly sensitive to data sparsity
despite the differences in the number of parameters.

Due to the use of the titles, the adversarial autoencoders yields
competitive performance to the baselines. On the subject label rec-
ommendation task, they outperform the baselines. A closer look at
the individual components of the adversarial autoencoder revealed
that the sole MLP decoder achieved better performance than the
whole model on the subject labelling task, while its performance
fell behind the whole model on the citation recommendation task.

In summary, our contributions are the following:
• We present an adaption of adversarial autoencoders as a
novel approach for multi-modal recommendation tasks on
scientific documents.

• We analyze this newmethod along with all of its components
on citation and subject label recommendation tasks while
varying the input modalities. We gain valuable insights on
the interactions between input modalities and the task: when
item co-occurrence resembles relatedness, multi-modal vari-
ants are preferable, otherwise solely content-based variants
may be more suitable.

• We evaluate the autoencoder models in realistic scenarios, as
we split the datasets on the time axis and consider different
thresholds for pruning by minimum item occurrence. This
is especially important for the citations task because only
already existing papers can be cited and it is desirable that
also less cited papers are recommended.

The remainder of this paper is organized as follows. In Section 2,
we review previous work on citation and tag recommendation as
well as recommendation approaches from the deep learning field.
After formally stating the problem in Section 3, we introduce the
employed models in Section 4, describe the citation and subject
recommendation experiments in Section 5. We discuss the results
in Section 6, before we conclude.

2 RELATEDWORK
Research paper and subject label recommendation. An extensive

survey [2] shows that research paper recommendation is a well-
known topic. In this context, BibTip [11] and bX [5] are well-known
recommender systems, which operate on the basis of citations har-
vested by CiteSeer [12]. Docear is a more recent research paper
recommender system, which takes user profiles into account [3].
For citation recommendation specifically, Huang et al. distinguish
between recommendations based on a partial list of references and
recommendations based on the content of a manuscript [17]. While
the former is suited for finding matching citations for a given state-
ment during writing, the latter strives to identify missing citations
on the broader, document level. Citation recommendation recently
focuses on context-sensitive applications, in which concrete sen-
tences are mapped to, preferably relevant, citations [2, 8, 17]. In-
stead, we revisit the reference list completion problem and we do
not take into account the context of the citation, as the full text
of a papers is rarely available in large-scale metadata sources. In
1973, Small started the field of co-citation analysis [37]. Co-citation
analysis assumes that two papers are more related to each other,
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the more they are co-cited. Following that idea, Caragea et al. relied
on singular value decomposition as a more efficient and extendable
approach [6]. We recognize the need for new methods that are
not only based on item co-occurrence but also take supplementary
metadata into account for these partial list completion problems.

Subject label recommendation is similar to tag recommendation,
as in both cases the goal is to suggest a descriptive label for some
content. Sen et al. propose algorithms that predict users’ prefer-
ences for items based on their inferred preferences for tags [35].
Montañés et al. exploit probabilistic regression for collaborative tag
recommendation [27], while Krestel et al. relied on Latent Dirichlet
allocation [23]. Similarly, Sigurbjörnsson and van Zwol propose a
tag recommender for Flickr to support the user in the photo anno-
tation task [36], whereas Posch et al. predict hashtag categories on
Twitter [32]. Dellschaft and Staab measure the influence of tag rec-
ommender systems on the indexing quality in collaborative tagging
systems [7]. These works, however, focus on tags for social media,
while we consider subject labels from a standardized thesaurus for
scientific documents.

Recommendation and Link Prediction based on Deep Learning.
Multiple recommender systems based on deep learning have been
proposed. Wang et al. used deep learning for collaborative filter-
ing [40]. Another recent collaborative-filtering approach explic-
itly takes side information into account for autoencoders [1]. We
include a similar model in our comparison, as it is one compo-
nent of the adversarial autoencoder. Additional techniques employ
recurrent neural networks to provide session-based recommenda-
tions [33] or combine knowledge graphs with deep learning [30, 34].
To the best of our knowledge, only two approaches makes use of
deep learning techniques for citation recommendation. However,
both of them focus on context-sensitive scenarios [8, 18].

Citation networks are also considered in many studies on link
prediction. By making use of the network structure, dedicated ar-
chitectures learn representations of its nodes. One of the most
prominent approaches is DeepWalk [31], together with its exten-
sion Node2vec [16]. These methods perform a random walk over
the graph and feed the generated sequence into skip-gram negative
sampling methods [26]. Kipf and Welling recently proposed Graph
Auto-Encoders [21] and Graph Convolutional Networks [20]. How-
ever, all of these graph-based approaches assume that all nodes
(research papers) are known during training. Hence, they are un-
able to deal with unknown nodes (new, unseen citing documents) at
test time. Instead, we focus on a more realistic application scenario,
where we need to predict citations for a paper which is being writ-
ten and thus yet unknown. To simulate such practical settings, we
ensure that all documents of the test set are unknown to the system
during training. Such a scenario is challenging as it corresponds to
a cold-start situation.

3 PROBLEM STATEMENT
In the following, we provide a formal problem statement for the
considered recommender task. The documents can be considered
users in a traditional recommendation scenario, while the items are
either cited documents or subject labels, respectively.

Given a set ofm documents D and a set of n items I, the typical
recommendation task is to model the spanned space, D × I. We

Table 1: Notation

Symbol Description

D Set ofm documents
I Set of n items
X ∈ {0, 1}m×n Sparse ratings matrix
S ∈ Rm×d Supplementary document information
x , s Row vectors of X or S , respectively
[x ; s] Concatenation of vectors x and s
▷◁ Natural join (on document identifiers)
I Identity matrix

model the ratings as a sparse matrix X ∈ {0, 1}m×n , in which X jk
indicates implicit feedback from document j to item k . To simulate
a real-world scenario, we split the documents D intomtrain docu-
ments for training Dtrain andmtest documents for evaluation Dtest,
such that Dtrain ∩ Dtest = ∅. More precisely, we conduct this split
into training and test documents based on the publication year. All
documents that were published before a certain year are used as
training, and the remaining documents as test data. This leads to an
experimental setup that is close to a real-world application. More
details will be provided in Section 5.1. All models are supplied with
the complete ratings of the users X train = Dtrain ▷◁ X along with
the supplementary information S train = Dtrain ▷◁ S for training. In
the present work, we use the title of the documents as supplemen-
tary information. Still, in theory, more sources of supplementary
information may be considered. The test set X test, S test is obtained
analogously.

For evaluation, we remove randomly selected items in X test by
setting one non-zero entry in each row to zero. We denote the
hereby created test set by X̃ test. The model ought to predict values
Xpred ∈ [0, 1]mtest×n , given the test set X̃ test along with the title
information S test. Finally, we compare the predicted ratings Xpred
with the true ratings X test via ranking metrics. The goal is that
those items, that were omitted in X̃ test, are highly ranked in Xpred.

In both scenarios, i. e., citation recommendation and subject label
recommendation, we regard documents and items as a bipartite
graph (see Figure 1). Considering citations, this point of view may
be counter-intuitive since a scientific document is typically both
a citing paper and a cited paper. Still, the out-degree of typical
citation network datasets is so high that we cannot expect to have
metadata for all cited papers available. For instance, the PubMed
citation dataset we use for our experiments offers metadata of
224,092 documents that cite 2,896,764 distinct other documents.
Therefore it is reasonable to rely only on the metadata of the citing
documents itself as basis for recommendations.

4 MODELS
In the following, we describe the employed models. We start with
two baselines based on item co-occurrence. Subsequently, we briefly
introduce the multi-layer perceptron as a building block for the
two autoencoder variants. We show how title information can be
incorporated in undercomplete and adversarial autoencoders. We
provide information on hyperparameters in the final paragraph of
this section.
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Figure 1: Exemplary bipartite graphs of documents anno-
tated with subject labels (top) and citation relationships be-
tween documents (bottom). It becomes apparent how the
two recommendation tasks share a similar structure.

Item Co-Occurrence. As a non-parametric yet strong baseline we
consider the co-citation score [37] that is purely based on item co-
occurrence. The rationale is that two papers, which have been cited
more often together in the past, are more likely to be cited together
in the future than papers that were less often cited together. Given
training dataX train, we compute the full item co-occurrence matrix
C = X train

T · X train ∈ Rn×n . At prediction time, we obtain the
scores by aggregating the co-occurrence values via matrix multi-
plication X test ·C . On the diagonal ofC , the (squared) occurrence
count of each item is retained to model the prior probability.

Singular Value Decomposition. Singular value decomposition
(SVD) is an approach that factorizes the co-occurrence matrix of
items XT ·X . Caragea et al. showed that SVD can be successfully
used for citation recommendation [6]. We therefore include SVD
in our comparison and extend it by the capability of incorporating
title information, which has already been proposed as future work
by Caragea et al. [6]. We concatenate the textual features as TF-IDF
weighted bag-of-words with the items and perform singular value
decomposition on the resulting matrix. To obtain predictions, we
only use those indices of the reconstructed matrix that are associ-
ated with items.

Multi-Layer Perceptron. Amulti-layer perceptron (MLP) is a fully-
connected feed-forward neural network with one or multiple hid-
den layers. The output is computed by consecutive applications of
h(i) = f (h(i−1) ·W (i) + b(i)) with f being a nonlinear activation
function. In the description of the following models, we abbreviate
a two hidden-layer perceptron module by MLP-2. This MLP-2 mod-
ule is not only used as a building block for subsequent architectures,
but also as a full model that only operates on the documents’ titles.
In this case, we optimize binary cross-entropy BCE(x ,MLP-2(s)),
where the titles s are used as input and citations or subject labels
x as target outputs. We chose to operate on an TF-IDF weighted
embedded bag-of-words representation [10] for a fair comparison
with the autoencoder variants, which are described below.

Undercomplete Autoencoders. The general concept of an autoen-
coder (AE) involves two components: the encoder enc and the
decoder dec. The encoder transforms the input into a hidden repre-
sentation (the code) z = enc(x). Then the decoder reconstructs the
input from the code r = dec(z). The two components are jointly
trained to minimize the loss function BCE(x , r ). To avoid learning
to merely copy the input x to the output r , autoencoders need to be
regularized. The most common way to regularize autoencoders is
by imposing a lower dimensionality on the code (undercomplete).
In short, autoencoders are trained to capture the most important
explanatory factors of variation for reconstruction [4].

For both the encoder and the decoder we chose anMLP-2module,
such that the model function becomes r = MLP-2dec(MLP-2enc(x)).
When the documents’ title is available, we supply it as additional
input to the decoder r = MLP-2dec([MLP-2enc(x); s]). We embed
the textual features into a lower dimensional space by using pre-
trained word embeddings [26]. The rationale here is that the rather
low code dimension is not overwhelmed by the high amount of
vocabulary terms. For a fair comparison of the models, also the MLP
described above is supplied the same text representation as input.
More precisely, we employ a TF-IDF weighted bag of embedded
words representation which has proven to be useful for information
retrieval [10]. The usage of title information in an undercomplete
autoencoder is comparable to the approach by Barbieri et al. [1]. A
minor difference is that we supply the side information (titles) only
to the decoder, yet use two hidden layers for both the encoder and
the decoder to enable a fair comparison to the adversarial variant,
which is described below.

Adversarial Autoencoders. We extend the work of Makhzani et al.
on adversarial autoencoders (AAE) [24], who combine generative
adversarial networks [14] with autoencoders. The autoencoder
component reconstructs the sparse item vectors, while the discrimi-
nator distinguishes between the generated codes and samples from
a selected prior distribution (see Figure 2). Hence, the distribution
of the latent code is shaped to match the prior distribution. We hy-
pothesize that the latent representations learned by distinguishing
the code from a smooth prior lead to a model that is more robust to
sparse input vectors than undercomplete autoencoders. The ratio-
nale is that smoothness is a main criterion for good representations
that disentangle the explanatory factors of variation [4].

Formally, we first computeh = MLP-2enc(x) and r = MLP-2dec(h)
and then update the parameters of the encoder and the decoder
with respect to binary cross-entropy BCE(x , r ). Hence, in the reg-
ularization phase, we draw samples z ∼ N(0, I ) from indepen-
dent Gaussian distributions matching the size of h. The parame-
ters of the discriminatorMLP-2disc are then updated, to minimize
logMLP-2disc(z) + log(1 −MLP-2disc(h)) [14]. Finally, the parame-
ters of the encoder are updated to maximize logMLP-2disc(h), such
that the encoder is trained to fool the discriminator. As a result, the
encoder is jointly optimized for matching the prior distribution and
for reconstruction of the input [24].

To incorporate the documents’ title, we once again concatenate
on the code level. This scenario corresponds to the supervised case
from the original work of Makhzani et al. on images, in which the
purpose was to separate the style from the class. All information
that cannot be reconstructed from the class is drawn from the
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style (the code) [24]. We adapt this interpretation by supplying title
information as additional input to the decoder. Hence, the model
is optimized to exploit the title information when it is helpful for
reconstruction but also take the partial item set into account. At
prediction time, we perform one reconstruction step by applying
one encoding and one decoding step.

Hyperparameters. The hyperparameters are selected by conduct-
ing pre-experiments on the citation recommendation dataset by
considering only items that appear 50 or more times in the whole
corpus. We chose this scenario because this aggressive pruning
results in numbers of distinct items and documents that are similar
to the ones of the subject label recommendation dataset. Consid-
ering the MLP-modules, we conducted a grid search with hidden
layer sizes between 50 and 1,000, initial learning rates between 0.01
and 0.00005, activation functions Tanh, ReLU [28], SELU [22] along
with dropout [38] (or alpha-dropout in case of SELUs) probabilities
between .1 and .5 and as optimization algorithms stochastic gra-
dient descent and Adam [19]. For the autoencoder-based models,
we considered code sizes between 10 and 500, but only if the size
was smaller than the hidden layer sizes of the MLP modules. In
case of adversarial autoencoders, we experimented with Gauss-
ian, Bernoulli, and Multinomial prior distributions, and with linear,
sigmoid, and softmax activation on the code layer, respectively.

While we do not exclude that a certain set of hyperparameters
may perform better in a specific scenario, we select the follow-
ing, most robust, hyperparameters: hidden layer sizes of 100 with
ReLU [28] nonlinearities and drop probabilities of .2 after each
hidden layer. The optimization is carried out by Adam [19] with
initial learning rate 0.001. The two autoencoder variants use a code
size of 50. We further select a Gaussian prior distribution for the
adversarial autoencoder. For SVD, we consecutively increased the
number of singular values up to 1,000. Using higher amounts of
singular values decreased the performance. We keep this set of
hyperparameters fixed across all models and across all subsequent
experiments to ensure a reliable comparison of the models’ quality.

5 EXPERIMENTS
To evaluate adversarial autoencoders for recommendation tasks
on scientific documents, we conduct a citation recommendation
experiment as presented in Section 5.1 and a subject label rec-
ommendation experiment as presented in Section 5.2. Adversarial
autoencoders are not only evaluated against the two baselines (item
co-occurrence and SVD), but also against its own components: un-
dercomplete autoencoders and multi-layer perceptrons.

5.1 Citation Recommendation
In this section, we describe our experimental setup which is de-
signed to resemble a real-world application of missing citation
recommendation.

Dataset. The CITREC4 PubMed citation dataset [13] consists of
7,546,982 citations. The dataset comprises 224,092 distinct citing
documents published between 1928 and 2011 and 2,896,764 distinct
cited documents. The documents are cited between 1 and 3,247
times with a median of 1 and a mean of 2.61 (SD: 6.71). The citing
4https://www.isg.uni-konstanz.de/projects/citrec/

Table 2: Dataset characteristics with respect to pruning
thresholds onminimum item occurrence for the PubMed ci-
tation recommendation task.

pruning cited documents citations documents density

15 35,664 1,173,568 136,911 0.000240
20 20,270 878,359 121,374 0.000357
25 12,881 692,037 105,170 0.000511
30 8,906 568,563 96,980 0.000658
35 6,469 478,693 87,498 0.000846
40 4,939 413,746 79,830 0.001049
45 3,904 363,870 73,200 0.001273
50 3,185 324,693 67,703 0.001506
55 2,643 292,791 62,647 0.001768

documents hold on average 33.68 (SD: 27.49) citations to other
documents (minimum: 1, maximum 2,242) with a median of 29.

Split on Time Axis. To simulate a real-world citation prediction
setting, we split the data on the time axis of the citing documents.
This resembles the natural constraint that publications cannot cite
other publications that do not exist yet. Given a specific publica-
tion year T , we ensure that the training set Dtrain consists of all
documents that were published earlier than year T and use the
remaining documents as test dataDtest. Figure 3 shows the distribu-
tion of documents over the years along with the split into training
and test set. We select the year 2011 for evaluation to obtain a 90:10
ratio between training and test documents.

Preprocessing and Dataset Pruning as Controlled Variable. For
preprocessing the datasets, we conduct the following three steps:

(1) Build a vocabulary on the training set with items that re-
ceived implicit feedback more than α times.

(2) Filter both the training and test set and retain only items
from the vocabulary.

(3) Remove documents that are assigned to fewer than two of
the vocabulary items.

The pruning threshold α is crucial since it affects both the number
of considered items as well as the number of documents. Thus, we
identify α as a controllable parameter and evaluate the models’
performance with respect to different values for α . Table 2 shows
the dataset characteristics with respect to the pruning threshold.

Evaluation Metric. For evaluation, certain items were omitted
on purpose in the test set. For each document, the models ought to
predict the omitted item as good as possible. Thus, we choose mean
reciprocal rank as our evaluation metric. We are given a set of pre-
dictionsXpred for the test set X̃ test. Hence for each row, we compute
the reciprocal rank of the missing element from x test − x̃ test. The
reciprocal rank corresponds to one divided by the position of the
omitted item in the sorted list of predictions xpred. We then average
over all documents of the test set to obtain the mean reciprocal
rank. To alleviate random effects of model initialization, training
data shuffling, and selecting the elements to omit, we conduct three
runs for each of the experiments. To allow a fair comparison, the
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Figure 2: Adversarial autoencoder for item-based recommendations. Each edge resembles a parametrized mapping f (Wx +
b) with activation function f and parametersW ,b. When not labeled differently, the activation function is rectified linear
followed by dropout.

Figure 3: Count of documents by publication year starting
with 2000 along with the split in training and test set for the
PubMed citation dataset.

removed items in the test set remain the same for all models during
one run with a fixed pruning parameter.

Results. Figure 4 shows the results for the models with respect
to the pruning parameter that controls the number of considered
items as well as the sparsity (see Table 2). We observe a trend that a
more aggressive pruning threshold leads to higher scores among all
models. When no title information is given, the item co-occurrence
approach consistently yields the highest scores. When title infor-
mation is available, adversarial autoencoders become competitive
to the item co-occurrence approach and yield higher scores than
all of their components.

5.2 Subject Label Recommendation
On the basis of our experience in multi-label classification [9, 15],
we now consider a subject label recommendation task, which is
close to how professional subject indexers work.

Dataset. The EconBiz dataset provided by ZBW — Leibniz Infor-
mation Centre for Economics consists of 61,619 documents with
label annotations from professional subject indexers [9, 15]. The

Table 3: Dataset characteristics with respect to pruning
thresholds on minimum item occurrence for the EconBiz
subject label recommendation task.

pruning labels assigned labels documents density

1 4,568 323,670 61,104 0.001160
2 4,103 323,060 61,090 0.001289
3 3,760 322,199 61,060 0.001403
4 3,497 321,213 61,039 0.001505
5 3,259 320,048 60,983 0.001610
10 2,597 314,738 60,778 0.001994
15 2,192 309,101 60,524 0.002330
20 1,924 303,693 60,272 0.002619

4,669 assigned labels are a subset of the controlled vocabulary Stan-
dardthesaurus Wirtschaft5. The number of documents to which a
label is assigned ranges between 1 and 13,925 with mean 69 (SD:
316) and median 14. The label annotations of a document ranges
between 1 and 23 with mean 5.24 (SD: 1.83) and median 5 labels.

Evaluation. The preprocessing steps and evaluation procedure
for the subject label recommendation task is the same as in Sec-
tion 5.1. We also conduct the split between training set and test set
on the time axis (see Figure 5). This is challenging because label
annotations suffer from concept drift over time [39]. We use the
years 2012 and 2013 as test documents to obtain a train-test ratio
similar to the scenario in Section 5.1. The dataset characteristics
affected by dataset pruning are given in Table 3.

Results. Figure 6 shows the results for the models with respect
to the pruning parameter that controls the number of considered
items and therefore also the sparsity (see Table 3). When no title
information is available, the adversarial autoencoder is competitive
to the item co-occurrence approach.When title information is given,
the adversarial autoencoder yields considerably higher scores than
all models operatingwithout this information. The sole decoder part
(an MLP-2 module) of the adversarial autoencoder yields, however,
consistently higher scores than the model as a whole.

5http://zbw.eu/stw/version/latest/about
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Figure 4: Mean reciprocal rank of missing citation on the test set with varying minimum item occurence (pruning) thresholds.
Left: Only the partial list of items is given. Right: The partial list of items along with the document title is given, except for
the MLP, which can only make use of the title.

Figure 5: Count of documents by publication year starting
with 2000 along with the split in training and test set for the
Economics subject label dataset.

6 DISCUSSION
We have evaluated adversarial autoencoders for two different rec-
ommendation tasks on scientific documents with varying input
modalities and varying numbers of considered items. Our results re-
veal relationships between the type of recommendation task and the
input modalities. On the citation task, the partial list of citations is
relevant to recommend potentially missing citations. For the subject
label recommendation task, however, using solely the decoder on
the title information yields even better performance than the whole
model. Thus, our experiments show in which cases adversarial
autoencoders are beneficial. On the citation recommendation task
the title information enables adversarial autoencoders to become
competitive to the strong baseline from co-citation analysis. The

effect of the adversarial regularization component is marginal, yet
leads to a consistent improvement over traditional, undercomplete
autoencoders. By imposing different thresholds on minimum item
occurrence, we varied the number of considered items and thus, the
degree of sparsity. We observe that all considered models are simi-
larly affected by the increased difficulty caused by higher numbers
of considered items, despite the high amount of parameters.

Even though it is not surprising that co-citation count is highly
relevant for citation recommendation [37], we have shown that
adversarial autoencoders have a conceptual benefit: they offer the
capability of exploiting additional information along with the par-
tial list of citations. From the perspective of the model, it is of high
importance to learn about the prior distribution of the data, which
explains the strength of the item co-occurrence baseline. Autoen-
coders retain this benefit and may learn to put appropriate weights
in the bias parameters if it is helpful for the overall objective. We
envision that further types of information, such as the authors and
publication year may further increase the overall performance.

Compared to item co-occurrence or singular value decomposi-
tion, all neural network approaches have a large number of learn-
able parameters as well as hyperparameters that require tuning.
To assess the quality of the model itself, we used a fixed set of
hyperparameters across all experiments and conducted multiple
runs of the same experimental setup to alleviate random effects in
initialization and shuffling.

On the subject recommendation task, we observed that the MLP
decoder alone yields higher mean reciprocal rank scores than the
adversarial autoencoder. Thus, already assigned subjects are less
informative for a subject recommendation task than the titles are.
This can be explained by a specific guideline for subject indexers

Session: Personalized Recommender Systems III UMAP’18, July 8–11, 2018, Singapore

203



Figure 6: Mean reciprocal rank of missing subject label on the test set with varying minimum item occurence thresholds. Left:
Only the partial list of items is given. Right: The partial list of items along with the document title is given, except for the
MLP, which can only make use of the title.

working on the specific EconBiz dataset that we used for our ex-
periments: when two or more subjects with a common ancestor
in the hierarchical thesaurus of subjects match, it is preferred to
assign the ancestor instead of the child subjects [15]. Thus, two
subjects that are semantically related because they share a common
ancestor are, because of the guideline, unlikely to co-occur in the
annotations of a single document.

We conducted 408 experiments over two different recommenda-
tion tasks with different input modalities and varying degrees of
sparsity. While it is a limitation that we only use one dataset per
task, this enabled us to investigate the interactions across tasks,
input modalities and the effect of sparsity. As a result, we can state
that, on the one hand, there are tasks in which co-occurrence im-
plies relatedness. On the other hand, there are recommendation
tasks, in which co-occurrence of items rather implies diversity.

In the present work, we used one prototypical task for each of
these two types of recommendations, i. e., citations, where it is
known that co-citation reflects relatedness of the cited resources [2,
37], and subject labels, where the guidelines of subject indexers
suggest that semantically related subjects are less likely to co-occur.
We have carefully investigated the interaction between the seman-
tics of item co-occurrence and supplying the partial list of items as
input for a recommender system.

For practical recommender systems, the present work offers evi-
dence that the aforementioned semantics of item co-occurrence is
relevant for the decision, whether the partial list of items should be
supplied to a recommendation model as input. We have shown that
also on recommendation tasks, adversarial autoencoders consis-
tently outperform their traditional, undercomplete counterpart and
how additional information can be incorporated in such models.

Our results show that both models with no learnable parameters
and models with a high amount of learnable parameters are equally
sensitive to the number of considered items, which we controlled
by pruning the datasets with respect to minimum item occurrence.

7 CONCLUSION
We conclude that the different semantic interpretation of item co-
occurrence in recommendation tasks highly affects the preferable
input modalities. When item co-occurrence resembles relatedness
such as in citations, supplying the list of already cited documents
is beneficial for the overall performance. For subject recommenda-
tions, we observe that co-occurring subjects does not imply that
these subjects are semantically similar. Rather, the document’s sub-
ject needs to be described by multiple, diverse subject annotations.
In such cases, we have shown that a single multi-layer perceptron
component that operates only on the documents’ titles is stronger
than the whole adversarial autoencoder. We have shown that ad-
versarial autoencoders consistently outperform undercomplete au-
toencoders, and that their capability of incorporating multiple input
modalities offers a conceptual benefit.

Reproducibility. The source code for reproducing our experi-
ments is openly available on GitHub6.
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