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ABSTRACT
Eating activity monitoring using wearable sensors can potentially
enable interventions based on eating speed for critical healthcare
problems such as obesity or diabetes. We propose a novel method-
ology, IDEA that performs accurate eating action identification and
provides feedback on eating speed. IDEA uses a single wristband
with IMU sensors and functions without any manual intervention
from the user. The F1 score for eating action identification was 0.92.
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1 INTRODUCTION
Eating action monitoring is important for administering and facili-
tating eating speed based dietary interventions. In the paper, we
propose IDEA, Instant Detection of Eating Action that can operate
with any wristband based IMU sensors (accelerometers, orienta-
tion, and gyroscope) to instantly identify eating action without any
manual input from user.
Challenge: An eating action is a sequential arrangement of three
distinct components interspersed with gestures that may be un-
related to the eating action. This makes it extremely challenging
to accurately identify eating actions. The primary reason for the
lack of acceptance of state-of-art eating action monitoring tech-
niques [3] includes: i) the need to install wearable sensors that are
cumbersome to wear or limit mobility of the user, ii) the need for
manual user input, and iii) poor accuracy in absence of adequate
user input.

The core hypothesis of IDEA is that despite variations in arm
movements, locations of the mouth and food plate, type of food,
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Figure 1: IDEA architecture and overview.

and utensils used, an eating action is universal and is expected to
have commonalities amongst individuals. For example, if a person
is using an utensil to pick up food from a plate on a table, the
arm action to lift the food up from the table to mouth is assumed
to be common across all individuals. Once such common actions
are identified, other information such as picking action, putting
food in mouth, twisting of wrist to orient spoon or fork towards
the mouth can then be added to the common action to identify
whether that common action is a part of an eating action. To exploit
such commonalities, IDEA uses a two-step process, i) Generalized
Model and ii) Personalized Model. Also, IDEA uses a small set of
users, donors, from which the training data is collected to derive
a set of eating action candidates. A practical deployment of IDEA
does not need any data from a given user and identifies eating
actions in a plug-n-play manner. IDEA in effect provides automated
labeling.

2 METHODOLOGY
The IDEA methodology consists of four phases as seen Fig. 1: seg-
mentation, generalized model, personalized model, and interval
calculation. For segmentation, we utilize an extrema based segmen-
tation method. From our observation of dataset, we conclude that
when the user starts and finishes any eating action component,
their hand pauses momentarily or there is a sharp change in the
orientation of their wrist. Based on this observation, we utilized
the extrema to segment the continuous movement of hand gesture
into two types of segments: a) “Eat" and b) “No Eat". The extrema
based segmentation method generates irregular size segments so
we used the interpolation to obtain uniform size segments. The aim
of generalized model, where data from an individual A is compared
with the data of other users in a set S, is to detect strong and weak
candidates for eating action of A. This is done using a Deep Neural
Networks (DNN), four hidden layers with nodes starting from 512
and exponentially reducing to 64. The activation function is ReLU,
the output layer is sigmoid for binary classification. The output
of this phase is two folds: i) two sets including the set of actions
that are confirmed eating actions, and unconfirmed ones, and ii) a
set of users in the set S that are “similar" to the given user. In the
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personalized model phase, the eating actions obtained from the set
of “similar" users given by generalized model are used as training
set to classify the unconfirmed actions set as true eating actions or
not. The interval calculation provides the eating speed feedback.
In this phase, we obtain eating intervals by simply calculating the
time-stamp difference between previous ‘Eat’ and current ’Eat’.

3 RELATEDWORK
Nearly all eating behavior monitoring systems require an initial
training phase, where the user must provide labeled data related
to an eating action as in Sen et al. [6]. This initiation task is time
consuming and often annoying. Moreover, such training must be
redone if the food item, plate, and utensil changes. IDEA is plug-
n-play and automates the training process by first using a general
model to detect few eating actions and using them as training data.

A distracted eating pattern is when a user is involved in other
activities like talking, swallowing saliva, shifting in their seats, and
multiple picking before eating. Liu et al. [4] could not account for
distracted eating situations. However, since IDEA identifies the
three actions separately, it can detect such distracted situations.

4 EXPERIMENTAL RESULT
Setup: Fig. 1 displays IDEA architecture. The user wears a Myo
wristband [1] which collects accelerometer, orientation, gyroscope,
Electromyogram (EMG) data at a frequency of 50Hz. LG G2 (smart-
phone) is connected to the Myo through Bluetooth to receive Myo
data. For each user, we also recorded video simultaneously using
LG G2 camera. The video data is used to build the ground truth.
Myo provides 18 data streams from four sensors including 3 ac-
celerometer data streams, 4 orientation data streams, 3 gyroscope
data streams, and 8 EMG data streams.
Data Acquisition: We recruited thirty-six subjects following IRB
approvals. Each subject participated as a volunteer for an eating
episode that lasted for at least 15 mins with an average of 30 eating
actions. Subjects were asked to sit facing a smartphone camera
during the eating episode and wore the Myo. Subjects ate food
either obtained from a restaurant or cooked at home in different
types of containers. The subjects brought their own containers and
used two types of utensils: a fork and spoon. They were free to eat
whatever they want. Hence, the collected data has user-dependent
eating factors resulting in variations on eating directions, speed,
relative distance between the food plate and the mouth, etc. In the
collected data, each subject has at least 20 eating actions, which are
distributed across different areas in the food plate. Also, there are a
total of 1246 eating actions and 8400 non-eating gestures.
Labeling: It is important to develop the ground truth. After syn-
chronization between the video and Myo data, we annotated the
meal video manually through visual inspection. To reduce human
error the annotations were performed by four independent human
observers and were cross validated against each other. Each an-
notated video is labeled as one of the following: (1) picking, (2)
carrying, and (3) putting in mouth. A cycle of these three annotated
eating components is considered as one eating action. Then, the
sensor data streams are labeled based on the annotated videos.
Result: With a training set of eight donors and a test set of 28, the
precision of eating action identification was 0.93 while the recall
was 0.89. For the worst case users, on an average, IDEA improves

Figure 2: F1 Score Comparison between IDEA and Existing
DNN. (ALL) is for all users and (Worst) is for worst users.

precision by 0.11 and recall by 0.15 with respect to other deep
learning strategies without getting any training data or any manual
user interventions. IDEA can also be used for automated labeling
of eating action. The mislabeling rate for IDEA is 11 out of nearly
10,000 eating or non-eating actions and that for human eye is 18
as observed in our study. Fig. 2 shows that on an average IDEA
improves the F1 score by 0.05 for 8 donors with respect to the
DNN based approaches. IDEA has an F1 score of more than 0.9 if at
least 7 users are included in the training set. The figure also shows
the performance for the worst case user set. On an average IDEA
improves F1 score by 0.15 for the worst case users with respect to
traditional DNN based approach.

5 CONCLUSIONS
In this paper, we have proposed IDEA, a novel methodology for
detecting eating actions using only a wristband sensor without
the need for collecting training data from the user. The proposed
methodology is plug-n-play and does not need any initialization
from the user, hence working in an user-independent manner. IDEA
can also be used to automatically annotate eating actions for future
use in a personalized model. When combined with image based
food type identification projects such as MT-Diet [2], IDEA can
be applied to build a nutritional retrieval system. Also, the IDEA
methodology will be useful for wristband based sign language
recognition projects such as DyFAV [5]. Plug-n-play recognition of
such complex gestures can result in fast and accurate sign language
translation systems and will be explored as a crucial future work.
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