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1. Statement of the Problem; Notational Conventions 

These notes have to do with methods of obtaining and methods of apprais-  
ing approximate  solutions of matr ix  problems. I f  the problem is to solve a sys- 
tem of linear equations, or to invert  a matrix,  one might  suppose tha t  
an appraisal of the error can be made directly by  substitution. But  consider 
the ' sys tem 

A x  = h, (1.1) 

and let h = h(A) be a proper value of A, and u a proper vector belonging to 

Then 

A u  = ku. 

A ( x  A- u) = h A- hu. 

Hence if X is small, any component  of error along u can be completely obscured 
in the rounding process, so tha t  an "approx imate"  solution x* =" ~c A- u, even 
if crude, m a y  satisfy the system exactly to within machine errors. 

The situation is the same in the inversion of a matr ix;  in fact, the following 
theorem is of interest: 

THEOttEM 1.1. For any h > 0 and any g > O, there exist matrices, A and C 
such that every element of  A C - I is numerically less than X, whereas there are 
elements of CA - I which equal u in magnitude. 

In  other words, C could be a good right-hand inverse of A but  a poor left- 
hand inverse. Let  

A u  = Xu, A %  = uv. 

For any ),, #, u and v such a matrix A exists. Then 

A ( A  - l  + uv r) = I + huv T, 

(A -1 + UvT)A = I + gUY r, 

and one has only to take 

C = A -~ "4- uv r. 

The observation of certain notational conventions will save repeated ex- 
planations. Ei ther  Greek or Roman  lower case letters will be used for indices 
and dimensions. Otherwise, lower ease Greek letters will denote scalars; lower 
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ease Roman letters will denote vectors, and these will be column vectors unless 
the contrary is indicated; capitals, either Greek or Roman, will denote matrices. 
In general, matrices will be square and of order n, unless it is indicated other- 
wise, and vectors will be of dimension n. The elements of a matrix A will gen- 
erally be a,s ; the column vectors a.~ and the row vectors a~.. I ts  proper values 
will be h,(A), and the singular values are the non-negative quantities a, de- 
fined by 

,r,~(A) = ~,~(A*) = M(AA*) = M(A*A). 

The spectral radius is 

p(A) = max IM(A) I • 
$ 

The identi ty matrix will be denoted I ,  however, and its i th  column vector  is 
e, and its i th row vector e, r. Also 

e - - ~ Z e ~  

is the vector with 1 in each position. 
The matrix 

-000 
1 0 0 
0 1 0 

J =  

. . . . .  ° 

has 1 just below a diagonal element, and is zero elsewhere. The matrix 

K = J + J  r 

has 1 just below a diagonal element and 1 just  above, and is elsewhere zero 
When necessary a subscript will indicate the order: J .  and K .  are of order n. 
Evident ly j2 has 1 two places below a diagonal element; j3 three places; - . .  ; 
and J "  -- 0. 

Absolute value signs with matrices and vectors signify the replacement of 
each element by its absolute value. Inequali ty signs between matrices or be- 
tween vectors signify that  corresponding elements everywhere satisfy the in- 
equality. Thus 

signifies tha t  

for every i and j .  Moreover, 

A < _ B  

A ~ t B  [ . 
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signifies tha t  

~ , i -  -< I f~,, I 

for every i and j.  Note tha t  the two statements 

A =< B,  A r a B  

do not imply A < B. They  imply only that  the relation 

OLz3 ~ ~*3 

holds for every i and j,  and that  for some i, j it is true that  

a,j < fl~i. 

But  such implications as: 

if A ~ B, B _-< C, 

if A _-< B, C => 0, 

are fairly obvi6us, as is the inequality 

then A _-< C; 

then A C  ~ BC;  

I A + B I ~ I A I + I B I .  
Finally, in discussing systems of equations it is sufficient, when convenient, 

to assume all quantities real, since a complex system can be replaced by a real 
system of twice the order. Thus consider the system 

(A -4- i B ) ( x  + iy) = h A- ik. 

On multiplying out and equating real and imaginary parts one has 

A x  - B y  = h, 

B x A - A y  = k. 

Hence the complex system is equivalent to the real system 

Unfortunately,  though, in the discussion of proper values and vectors there is, 
in general, no escape from the complex plane. 

I t  will be convenient on occasion to speak of " the point x."  By this is meant  
the point at  the terminus of x when x is drawn from the origin. I t  will also be 
convenient to speak of " the space A."  By this will be meant  the space of all 
possible linear combinations of the columns of A. 

2. Norms  

Two vectors can differ in any or all of their n elements; two matrices in any 
or all of their n ~ elements. In either case it is desirable to have a single number 
to measure the departure of the one from the other or to measure the magni- 
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tude of a vector  as a whole or a matr ix  as a whole. This implies the need for a 
suitable real valued, non-negative function of all the elements. The functions 
tha t  are most  useful for present purposes possess certain other special prop- 
erties and are called norms. Using pairs of vertical bars to denote a norm, the  
additional properties can be stated as follows: 

(V1): II x H > 0 unless x = 0; 

(V2): i f  ~ => 0 ,  I1 a x  II = a II x II ; 

( v 3 ) :  II x + y II --< II x ]l + I[ y [I- 

With a = 0, V2 implies tha t  I[ 0 H = 0. Any real-valued function of the ele- 
ments  of a vector  will be called a norm if it possesses these three properties. 

I t  is sufficient, for the moment ,  to consider only real vectors, since if 

x = u T i v ,  

 comp,exve0tor onec    io o  he e  or(:) o 2n-so oo. 
THEOREM 2.1. Given any norm, the points satisfying 

K:  I[ x [[ _-< 1, 

form a closed, bounded convex body which contains the origin in its interior. 
To say tha t  K is a convex body means tha t  any  segment joining two points 

in K contains only points of K. If  x and y are two points of K,  then all points 
of the segment between them are represented by 

ax + (1 -- a)y, 0 ~ a =< 1. 

But  

I l a x +  (1 -- a)Yll ~ I J a x [ l +  II( 1 - a)yl l  

= - I I  x I1 ++ (1 - -)11 y II -~ - + (1 - . )  = 1. 

I f  K were not finite, any finite vector  x in the direction of a point  a t  infinity 
Would satisfy [I x [[ = 0, contrary to V1. 

THEOREM 2.2. Let K be any closed, bounded convex body containing the origin 
in its interior. Any  ray through the origin intersects the boundary of K in exactly 
one point. I f  the ray is in the direction x, let the intersection be X ' ,  and let X repre- 
sent the terminus of x. Define 

OX  
~,(x) = OX'" 

Then the function v(x) is a norm. Hereaf ter  it will be understood tha t  the origin 
is interior to any  convex body to be considered, and tha t  the convex body is 
closed and bounded. 

I t  is clear tha t  the function possesses properties V1 and V2. To  show tha t  it 
also possesses V3, if x and y are any  two points, then 
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x'  - x / = y 
~,(x)' y r(y) 

terminate on the boundary of K, since v(x') = ~(y') = 1. The  point 

x'r(x) + y'v(y) (x + y) 
v(x) + v(y) v(x) Jr r(y) 

is on the segment joining x' and y' and hence, by the convexity property,  lies 
within K or on its boundary. Hence 

( x + y )  -~< 1, " . ( F )  + ~(y)j = 

and hence, by property V2 which the function is already known to possess 

~,(x + y) =< ,(x) -4- ~,(y). 

But  this is V3. 
Thus there is a one-to-one correspondence between norms and convex bodies K. 

On occasion it will be convenient to let I1 x ]Ix signify the norm associated with K. 
Most  useful norms have the property 

(V2') [[ ,~x II = I - I  II x II, 

somewhat stronger than V2. For this to hold in the real case, K must be symmet- 
ric with respect to the origin: 

II x II = II - x  H. 

In the complex ease this implies tha t  

II e'°x II = II x II, 

which implies tha t  K is bounded by certain cylindrical surfaces. 
I t  is sometimes convenient to consider any K as a member of a nested family 

of convex bodies KK, for K >= 0, where KK consists of all points x satisfying 

I lx l l  =< ~. 

More generally, for any scaler K (real or complex), KK can be defined as the set 
of all points y = Kx where xcK.  Evidently if the origin is strictly interior to K,  
it  is strictly interior to KK when K ~ 0. Throughout  this discussion ordinary 
Euclidean geometry is presupposed, with an orthonormal set of basis vectors. 

THEOREM 2.3. I f  the sequence {u,} of vectors u,  vanishes in  the limit in  one norm 
it  vanishes in every norm. I n  this event the vectors u,  will be said to approach 0 as a 
limit, and i f  u,  = x, - x, the vectors x, will be said to approach x as a limit. 

Let  K and K '  be two convex bodies and II u, l[ and I] u, n' the associated norms. 
Suppose the sequence of norms [[ u, I[ is known to vanish in the limit. Let  ~ > 0 
satisfy K =< II x II for all points x with II x I1' = ~'. Such a K exists since the origin 
is strictly interior to K'K'. Hence 

KK C K'K'. 
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Since the sequence of ]] u, ]] vanishes in the limit, for every K > 0 there exists a 
p such that  when i ~ p, II ul N ~ K. Hence ]l u, ]]' =< K', which proves the 
theorem. 

I t  is usual to say that  a sequence of vectors vanishes in the limit if each se- 
quence of corresponding elements vanishes in the limit. But  the magnitude of an 
element of maximal magnitude is a norm, and its K is the hypercube whose faces 
are 

4 , =  ± 1 .  

Hence the theorem implies that  a sequence of vectors converges in the ordinary 
sense if and only if, for any choice of norm, the sequence of norms vanishes. An 
obvious corollary is: 

COROLLARY 2.3. A norm II x II is a continuous function of  the n variables ~, . 
For real vectors u and x, consider the relation 

UTX -.~ V 

with fixed u and variable x. 
If v is held to a fixed value the vectors x define a plane having u as normal. 

For ~ = 0, the plane passes through the origin, and intersects any K. As v in- 
creases, it  will pass through a certain maximal value above which the plane no 
longer contains points of K. The plane corresponding to this maximal value of p 
is called a support plane of K. This plane divides the space into two half-spaces, 
one containing K and one not. For all points x of the first half-space, 

u% =< ~. 

The value of ~ defining the support plane is a function v(u), called the support  
function, and the plane is called the support plane in the direction u. For  complex 
vectors one considers the real part  of u ' x ,  

Re(u 'x)  ~ v, 

since evidently if u = ul + iu~, x = xl + ix2, then 
T Re(u 'x )  = u lTXl  + U s X2 .  

THEOREM 2.4. Given a convex body K and the associated norm, the support func-  
tion p(u) is a norm II u I]' and will be said to be dual to the norm of K .  This  can be 
otherwise defined as 

Re(u 'x )  
]l u II' = m a x  

~ 0  L I x l l  

In the proof, the notation r(u) will be retained in order not to prejudice the 
issue, and it will be sufficient to consider only real vectors. I t  has already been 
remarked that  for all x in the half-space containing K it is t rue tha t  

u% =< ~(u), 

and this includes all vectors x'  with n x' [[ = 1. Hence take 
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x ! 

X - -  
II z I1' 

and the final assertion follows. Since v(u) obviously possesses properties V1 and 
V2, it  remains to prove V3. But  

v(u + v) = max (u + v)rx _~ max urx + max vrx = v(u) + v(v). 
II~llml I lz l l= l  I lzll-X 

Moreover, the maximum is always attained since [I x I] = 1 defines a closed set. 
Hence v(u) is indeed a norm. 

THEOREM 2.5. (ll X ll')' ---- II X [1" Tha t  is to say, duality is a reciprocal relation. 
I t  is to be shown tha t  

II x II = max urx, 
I I ~ W - 1  

and it  is sufficient to consider a vector x for which II x [I = 1. Let  u be any vector 
with II u H' = 1. Then, as y varies, 

ury = 1 

is the equation of the support plane in tha t  direction. Since I] x I] -- 1, x is a 
point of the boundary of K, and either it lies on that  support plane, in which 
case urx -- 1, or else it lies in the half-space for which urx < 1. 

THEOREM 2.6. For any pair of dual norms, and any two vectors x and y, 

Re(x'y) _-< II x I1'. II y II. 
This is essentially a restatement of the last par t  of theorem 2.4. 
In defining matrix norms, since a matrix can be regarded as a vector of n ~ ele- 

ments, it is natural to impose the same conditions, and possibly others. The 
same conditions will indeed be imposed, and hence matrix norms will have the 
same continuity properties, in particular, as vector norms. I t  is convenient to 
impose also a fourth condition, yielding altogether the following set: 

(M1): [[A I[ > 0 unless A = 0; 

(M2): i f .  0, II aA II -- -]I A []; 

(M3): HA + B H  =< [IA H-t- I [Sl l ;  

(M4): II A B  [[ =< II a H'[I B li- 

The  matrices are assumed to be square, which is no real restriction since one can 
always adjoin null rows or columns. A particular matrix norm will be said to be 
consistent with a given vector norm in ease, for every A and x, 

(C): I[ Ax  H <= I] A II" II z II. 

Furthermore, the matrix norm is said to be subordinate to a vector norm in 
ease it is consistent and possesses the further property,  

(S): For  every A there exists an x ~ 0 such tha t  II A ]l = [[ A 11" II x H. 

Such an x would, of course, vary  from matrix to matrix. 
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THEOREM 2.7. To every vector norm there corresponds a unique subordinate matrix 
norm defined by 

]]A[I = max [[Axl] = m a x l l A x l l  - -  , 

The following lemma will perhaps aid the intuition: 
LEMMA 2.7. For any convex set K,  and any matrix A ,  let A K  denote the set of 

points z = A x  where xeK. Then A K  is convex. 
In fact, if A x  and Ay  are in A K ,  then, for 0 __< a _-< 1, the point 

aAx  + (1 - o~)Ay = A[,~x + (1 - a)y] 

is also in A K .  This proves the lemma. Now let ~ -- K(A) be the smallest number 
for which A K  c KK. Then K(A) is the function of A defined in the theorem, 
and if ~(A) is a norm it certainly satisfies condition S. Moreover, K(A) clearly 
satisfies M1 and M2. For M3, 

]](A + U ) x [ I  = I I A x T S x ] ]  =< I[Ax[I + IIBxll 

by V3, and the maximum of a sum cannot exceed the sum of the maxima. For 
M4, i f B x  ~ 0 ,  

II A B x  II II A B x  II II Bx  I] 
Nxl[  l i B x l [  N x l l '  

and both sides can be maximized. The maximum on the left precludes Bx  = 0 
unless B = 0, and for this case A B  = O. Hence K(A) is a norm and is clearly 
unique. 

THEOREM 2.8. Given a vector norm ]1 x [[, the subordinate matrix norm II AII ,  
and the dual vector norm I[ x II', the matrix norm ]1 A I]' that is subordinate to 
the vector norm I[ x II' is 

II A I1' = fl A*  II. 

I t  is immediately obvious that  ~(A) = [I A* ]] is a norm, and it is sufficient to 
consider the real case. I t  will be shown that  

I[AI] = ]]A T[I'. 

In fact, for all y ~ 0 and x ~ 0, 

YTx < ]] ATY ]]' I] x I[ < il AT l]"[I y ]]"]] x ]1, ]y TAx I < II AT ]]"]] x ]]. 
= = f( y (l' = 

Hence, when the left member is maximized with respect to y ~ 0, 

I] Ax  II =< ]1 AT [[" II x I], 

o r  

I[ A x  11 < II A T 
f{ x r{ = fr'. 



T H E  A P P R O X I M A T E  S O L U T I O N  OF M A T R I X  PROBLEiV[S 213 

Again, when the left  member  if maximized with respect to  x ~ 0, 

I] AII =< II A r  [['. 

Bu t  in like manner  one can show tha t  

[I A r  [[' =< [[ AI[.  

Hence  equal i ty  mus t  follow. 
THEOREM 2.9. Given a matrix norm I[ A ]1, a vector norm with which it is consistent 

can be defined by 
II x [l = l[ (x, O, O, . . . )11 ,  

where on the right one takes the matrix everywhere null except in the first column, 
which is equal to x. 

Consis tency is a consequence of M4, and the other  M-proper t ies  imply the 
corresponding V-properties.  

THEOREM 2.10. Given any nonsingular matrix G, i f  ]6 x [[ is a vector norm, then 

II x Iio = II G- ix  fl 
is a vector norm; given any matrix norm ]] A It, then 

II A ]lo = [[ G-lAG I] 

is a matrix norm. These will be called the G-transforms of the original norms and 
relations of consistency and subordination are preserved under such transformations. 

This  is verified directly.  
THEOREM 2.11. Dual to the G-transform of a norm is the dual norm transformed 

by (G-l) *. Hence duality is preserved only under unitary transformations. 
This  follows from the fact  t ha t  

x*y = (x*G)(G- ly )= (G*x)*G-ly. 

THEOREM 2.12. I f  the convex body K is bounded by planes, and i f  II x II is the 
associated vector norm and [i A [[ the subordinate matrix norm, then at least one of 
the vectors x for which [l x I[ = 1 and I[ A x  II = II A II represents a corner of K.  

For  if ~ is the smallest number  for which KK D A K ,  then  the boundary  of 
KK mus t  contain a t  least one corner point  y = A x  of A K .  But  then x is a corner  
point  of K.  

THEOREM 2.13. I f  A is nonsingular, then A K  is of dimension n. Hence there is a 
largest K ~ 0 for which ~K c A K ,  and ~-~ = [I A-~ II. 

The  existence of the K ~ 0 is obvious. Le t  y = A x  be any  point  common to 
the boundaries of ~K and A K .  Then  II x I] = 1, and if [[ x '  [[ = 1, l] Ax '  [I ~ ~, 
since the point  y' = Ax '  can only lie outside KK or on its boundary .  Hence  

K = min IIAx'[I = min [[Ax'll _ min I[y'll 
L  'H=i x, 0 II x'l l  y' 0 II A- y' H" 

But  since A is nonsingul~tr, x'  ~ 0 if and only if y' ~ O, whence 

-1 II A- lY  ' I_____~ A-1 =maxy, 0 y' - I I  II. 
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The fundamental problem is, given a matrix A,  to construct a norm for which 
[[ AII is as small as possible. I t  will be shown that l] AI[ can be made a rb i t r a ry  
close to the spectral radius p(A), and, indeed, this can be done with symmetric 
norms. But practical methods for constructing such norms are not available 
except for A ~ 0. 

3. Examples of Norms 

The most commonly used norm is the Euclidean norm II x lIB, defined by 

[I x l l :  = x ' x ,  

and associated with the unit sphere as K. This norm is self-dual, and the inequal- 
ity of theorem 2.6 is the Schwarz inequality. The Euclidean matrix norm [I A lIB, 
defined by 

II A llz 2 = ~ II a,. II 2 = ~ IIa.~ II ~ 

is consistent but not subordinate. That it is consistent follows from the relation 

]IAxt]B 2 = ~ ( a , . x )  ~_~ i] x l [ ~  i] a,. i ] :  -- I I x ] ] ~ l i A i ] : ,  

the inequality coming from the Schwarz inequality. That it cannot be subordi- 
nate follows from the fact that 

II I lip = n ~, 

together with the following lemma: 
LEMMA 3.1. I f  there exists a vector norm to which the matrix norm I] A It is sub- 

ordinate,  tho~ JI I J] = 1. 
To see this, apply M4. Then' if 

11 xx tl = II z II. II x II, 

the lemma follows, since I x  = x. 
The matrix norm subordinate to the Euclidean vector norm is the spectral 

norm I1 A IIs, defined as the largest singular value. This can be seen most easily 
by applying theorem 2.10: Observe first that if V is any unitary matrix, then 

fl v x  Il~ --  IZ x lIB, 

since 

(Vx)*Vx  = x*V*Vx = x*x. 

Hence to maximize x*A*Ax subject to II x lIB = 1 is equivalent to maximizing 
x * V * A * A V x  subject to the same conditions, where V is any unitary matrix. 
In particular V can be the matrix of proper vectors of A ' A ,  so that 

V * A * A V  = A(A*A) = diag [M(A*A), M(A*A),  . . . ] .  

Hence the problem is reduced to that of maximizing x*Ax, subject to x*x -- 1. 
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But  if 

M ( A * A )  >= X2(A*A) ~ . . . ,  

then x*Ax is a weighted mean of the M ( A * A )  which takes on its maximum of 
M ( A * A )  = ai2(A) for x = el .  

I f  G is nonsingular, the G-transform of [[ x lie is given by 

II GG-'x [1E 2 = (G-lx)*G-lx  = x*Hx,  

where H is a positive definite matrix, 

H = (GG*) -I. 

This norm is not self-dual unless G is unitary,  and in tha t  case H = I and the 
norm is unchanged. The subordinate matr ix  norm is II G - l A G / I s ,  i.e. the largest 
singular value of G-~AG, or the square root of the largest root of 

det ( G ' A ' H A G  - ~I)  = O, 

or, equivalently, of 

det ( A ' H A  - ~H) = O. 

The dual norms are similarly expressed in terms of H -1. 
For the next example, consider first the real case, and let K be the cube with 

faces 

~, = ± 1 .  

The associated norm will be called the e-norm, and is defined 

J] z L = m a x  1 f, [. 
t 

More abstract ly it can be defined by the two conditions 

(i) I x  I =< ell x II, ; 

(ii) if ~e _-> I x  I, then  ~ >= II x II,. 

I t  is easy to verify tha t  the dual norm is 

N x L '  = e T I l l ,  

and the faces of K '  are defined by the equations 

for all possible choices of the signs. Subordinate to the vector e-norm is the matr ix  
e-norm, 

I IAII ,  = I ] ] A l e J ] , ,  

and to the d-norm 

IIA II: = fl I A T l e [ I . .  
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In words, one sums the absolute values in each row for the e-norm, or each col- 
umn for the d-norm, and the largest of these is the value of the norm. 

Let G = diag (~,, v~, -. • , ,/.) ~ 0 be any non-negative, nonsingular diagonal 
matrix, and let 

g = Ge. 

Then g > 0. The G-transform will be called a g-norm. I t  satisfies 

rr x [[0 = m a x  I~,J 

Or, it can be defined by 

(i) I x  J =< gJl x IJ, ; 

(ii) if yg a [ x [, then ~ a ]] x Jig. 

The associated K has the faces 

}• = :: i=' / , .  

Dual to the g-norm is the g'-norm: 

]] • IIg = g~l x I. 
The faces of the associated K '  have the equations 

~ ::t:: %$, = 1. 

Subordinate to the vector g-norm is 

[JAIl, = [ [ I A I g [ [ , .  

For complex matrices the e-norm has two natural generalizations. One comes 

by applying the ordinary e-norm in the 2n-space of real vectors ( ~ ) d e f i n e d  by 

the space of complex vectors x q- iy. The subordinate matrix norm for complex 
matrices A + iB  is the e-norm of I A } + I B ]. The other is perhaps more 
natural and will be assumed here, and this applies the formulas of the real case. 
Thus 

/Ixff, = max [~•[, 

where ~, is complex and the absolute value signs signify the modulus. In the 2n- 
dimensional space the associated K is no longer bounded by plane faces, but by 
circular cylinders 

Certain relations of inequality among norms can be established directly: 
THEOREM 3.1 For any vector x, 

Ilxll, ~ Ilxll- ~ Ilxll,' ~ ntllxll~ =< n t l x l l , .  
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The  third inequali ty follows f rom the  ordinary Schwarz inequali ty:  

I xr l  e ~ IIx[]B'[[e][~ = n½]]x[1B. 

THEOREM 3.2. I f  V is unitary and g > O, then 

[I V [[. = [[ g [[. max ~7 ~. 
i 

I n  particular 

II v I1. ~ n ~. 

If V is uni tary,  and v* any  row of V, then 

v*~ = I v ~ l . l v t  = 1. 

But by the ordinary Schwarz inequali ty 

Iv ~ Ig ~ [I ~ I[~.ll g I1~ = II g II~. 

Hence 

if 

I v l g  ~ ~g 

217 

$ 

II x I1~ -- ~-111 x I1,~ 

[[ A I[2 = [[ A ]]1, 

where ]] A [[1 and [[ A 112 are the subordinate matrix norms. 
The proof is immediate  from geometrical  considerations. 
THEOREM 3.4. For any matrix A ,  

n-~[[ A [Is _-< I] A lie =< nail A I[s, n-~l] A I]s _-< I] A ]],' __< nJ[[ A IIs- 

First, let x*x = 1, and [[ A x  ]]~ = H A [Is. Such a vector  exists since the  
spectral norm is subordinate to the Eucl idean vector  norm. Moreover  I x I ~ e. 
Hence,  by  theorem 3.1, 

[I A x  I]R --< n½N A x  ][, --< nt[[ A ]]eli x No --< nail A lie. 

Next,  let I] x I], = 1 and I] A x  lie = [I A [[,. Then  [[ x ]], =< n t. But  

tl A x  ]], _-< [[ A x  lIE ~ I] A [[sll x lit- 

This completes the proof for [[ A lie, and for It A He' apply the same a rgument  to 
A*. 

but 

THEOREM 3.3. Given any vector norm ]] x [], with associated convex body K i ,  
for fixed positive K let Ks = K1,  and define the vector norm ]] x 112 associated with 
K s .  Then 
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For each of the four relations of the theorem, there exists a matrix A for which 
the equality holds. Hence these relations are the sharpest possible. 

THEOREM 3.5. I f  A is Hermitian, then 

11 A [Is =< l] A [[, = [I A [[,' =< n~ll A liE. 

For if A is Hermitian, then I1 A lie = o (A) ,  and it will be shown below tha t  
p(Z) ~ II A I1 for any norm and any matrix A. 

THEOREM 3.6. For any matrix A and any norm, 

.H A [[2 < 1[ A [1-II A 11'. 

For 

1[ a II. 3 = o(aa*)  ~ ]1 A A *  II --< I1 All" II A* II = [1 A 11. [[ AII' .  

4. Norms and the Spectral Radius 

If the proper values of a matrix B are X,(B) and these are,ordered in magnitude, 

Xl(B) I => I X2(B) I => "-- => I X.(B)1,  

then 

p(n) = lXl(n) I 

is the spectral radius of B, since all proper values of B lie in or on the circle of 
radius p. Often iterative methods require the formation, implicitly or explicitly, 
of sequences of vectors of the form 

s~ = BE,-1 = B~so, (4.1) 

with some matrix B and an arbitrary so, where 

8r ~ X * - -  X~ 

represents the deviation of a current approximation from the true solution. 
THEOREM 4.1. The sequence of vectors s, defined by (4.1) vanishes in the limit 

independently of so i f  and only i f  the sequence of powers B ~ vanishes in the limit. 
For this it zs sufficient that there be some norm such that 

[IBH < 1. 

There exists a vector norm with which the matrix norm is consistent by theo- 
rem 2.9 and if the s, vanish in some norm they vanish in all. The sufficiency there- 
fore follows from 

II s, 1[ =< II B" II-II so [I --< II B II ". l[ so II. 

The value of [[ B II provides also a measure of the rate of convergence when 
convergence occurs. Actually convergence occurs if and only if p(B) < 1, but 
in general p is not easily computed. I t  is desirable, therefore, to know how closely 
p may be approximated by a norm. First, however, the following partial theorem 
will be proved: 
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THEOREM 4.2. For the sequence of matrix powers B" to vanish in the limit, it is 
necessary that p(B) < 1. 

For let 

V-1BV = L 

where L is the Jordan normal form of B. Then 

B ' =  VL~V -1. 

The elements of V and V -1 are independent of p, whereas X[ occurs in the diag- 
onal of L',  and elsewhere there occur lower powers of X1 multiplied by binomial 
coefficients which become infinite as v becomes infinite. Hence elements of L' ,  
and therefore of B' ,  become infinite if IM] --> 1. 

THEOREM 4.3. For any norm and any matrix B, 

[IB II >= p(B). 

For  suppose # = l] B ]] < p(B). Choose e > 0 so that  # + • < p, and let 
B' = (~ + •)-lB. Then IIB' [[ < 1 and the sequence of powers B'" vanishes in 
the limit. But  

p ( B ' ) -  , (B)  > 1 

and this is impossible. 
COROLLARY 4.3. I f  S is symmetric, then l[ B [[, ~ [[ B [I, = I] B H,'- 
In fact, if B is symmetric, [[ B [[, = p(B). 
LEMMA 4.4. Let T be a triangular matrix and r its diagonal element of greatest 

magnitude. Then for any e > 0 there exists a norm such that 

IITIl-_<r+•. 
For definiteness let T be a lower triangle, and consider 

D = diag (1, ~, ~2, . . .  , ~,-1). 

In D-1TD the elements in the diagonal are the same as those in T; all elements in 
the first subdiagonal are divided by ~, all those in the second by ~2, . . . .  By 
choosing ~ sufficiently large, the sum of the magnitudes of the off-diagonal ele- 
ments in any row can be made less than e. Hence apply the e-norm or the spec- 
tral norm to D-lTD.  

THEOREM 4.4 For any matrix B and any • > O, there exists a norm for which 

IIBII = < , +  p(B). 

Moreover, i f  for each X,(B) such that I X,(B) [ = p, the number of independent proper 
vectors belonging to it is equal to its multiplicity, then there exists a norm for which 
[IB [[ = p(B). 

The last condition holds, in particular, for all diagonalizable matrices. The 
theorem follows from lemma 4.4, theorem 2.10, and the fact tha t  the Jordan 
normal form is a triangular matrix. 
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THEOREM 4.5. For the sequence of matrix powers B" to vanish in the limit it is 
necessary and suff~ient that p(B) < 1. 

This supplements theorem 4.2 which stated only the necessity. If p < 1, let 
0 < e < 1 - p. Then the norm of theorem 4.4 satisfies I[ B [1 ~ P + e < 1, 
which establishes convergence. 

THEOREM 4.6. For any g-norm and any x and B, 

[Ixll~ = Ni xIH~,  I]eIl~ = [[IBIN~ . 

This follows from the fact tha t  only absolute values occur in the definitions. 
In many practical situations the matrix B of interest is non-negative, B __> 0. 
Hence some consideration of the g-norms of non-negative matrices is in order. 

A matrix B is said to be reducible in case for some permutat ion matrix P,  

P r B P  = B 2 d '  

where Bn and B2~ are square submatriees. If no such permutat ion matrix exists, 
the matrix is irreducible. The  examination of a reducible matrix reduces to the 
separate examination of the submatrices Bu and B ~ .  

THEOREM 4.7. Let B _-> 0 be irreducible, and let g ~ 0 be any positive vector. 
I f  g is not a proper vector of B, then a g~ ~ 0 can be found such that 

I1 B Ilo, < II B lip. 

Let  II B II. = Then 

and since g is not a proper vector, 

Bg ~ ~g, 

Bg ~ ,~g. 

If the inequalities are written in scalar form, some will express equalities, since 
otherwise ~ would exceed H B IIg, and some will express strict inequalities. Then  
there exists a permutation matrix P such that  

: I-"'1 ":-I, r,i-i 
p T B p  LB21 B22J prg = Lg2j ' 

Bu gl "Jr B12 g2 < "/gl, B21 gl + B ~  g~ = ~ g ~ .  

Since B is irreducible, B21 ~ 0. Then  for sufficiently small e > 0, 

(1 - -  e)Bllgl + B1292 < (1 -- e)'/gl, 

(1 - -  e)B~lgl -{- B~,~q2 =< ~g2, 

where the strict inequalities remain inequalities, while a t  least one of the equal- 
ities becomes an inequality. Tha t  is to say, if 

gl' = (1 - -  e ) g , ,  
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then 

Bl,gl' -~- Bl~g2 < 7g1', 

B21gl' .qt_ Bs2g2 ~ 7g2. 

I f  any equalities remain, perform a new permutat ion and repeat. Eventual ly  
one arrives a t  a g' for which all relations are of strict inequality. 

Hereafter  a transformation by  a permutat ion matrix will be called simply a 
permutat ional  transformation. 

THEOREM 4.8. Let B ~- 0 be a non-negative, irreducible matrix. The spectral 
radius p(B) = l~ is a proper value, and belonging to it is a unique proper veclor b, 
and b > O. Moreover, 

The process described in theorem 4.7 can be repeated to provide a sequence of 
vectors g', g", . . .  , and associated norms 7',  7", " ' "  with 7 '  > 7" > " ' "  • 
The sequence of 7 's  is properly monotonically decreasing and is bounded below 
by ~, hence can only terminate on reaching ~ as a limit, with a non-negative vec- 
tor b such tha t  

Bb = fib. 

Hence ~ is a proper value. If  there are null elements in b, perform a permuta-  
tional t ransformation if necessary so tha t  

b = , bl > 0, 

and denote the permuted matrix by B. Let  

[B ' I  B~21 

B = IBm1 B22J" 

Then since Bb = l~b, one has 

Bllbl = ¢tbl 

Bslbl = O. 

But  bl > 0, B21 ~ 0, and the last relation can hold only if B21 = 0, which is con- 
t rary  to the hypothesis of irreducibility. Hence b > 0 and II B lib is defined. 
I f  b' > 0 is any  other proper vector belonging to ¢~, then for suitable o~, 

b -- ~b' -> 0 

and has a t  least one null element. But  this is also a proper vector belonging 
to ~. Hence b -- ab'  = 0. 

THEOREM 4.9. I f  B ~ B '  _-> O, then p(B) ~ p(B').  I n  particular, B '  can be any 
submatrix of B augmented by null rows and columns to make the order that of B.  

I f  B is reducible, then by a permutat ional  t ransformation it can be given the 
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form 

A .  S.  H O U S E H O L D E R  

B = B~..J 

and the same permutational transformation applied to B'  gives it  the form 

;i:]. 
Since 

it follows that  

det (M - B) = det (hi  - Bn) det (hi  - B~), 

p(B) = max [p(Bu), p(B~)I. 

Hence it  is sufficient to prove the theorem for the case of B irreducible. But  if 
-- p(B) and Bb = Bb, then B'b ~ 3b. Hence 

fl S' lib =< 3, 
and therefore 

p(B') =< ~. 

THEOREM 4.10. Let I A ] _-< B. Then p(A) =< p(B). I f  B is irreducible, then 
p(A) -- p(B) implies [ A [ -- B. 

Since, for any g > 0, ]] A Jig = ]] I A ] ]]o, the first par t  follows from theorem 
4.9. Now let 

Aa  -- aa, 

where a = h(A) is any proper value of A. Then 

[ a [ . [ a [  ~ [A  [ .[a[  ~ S i a l .  

If B is irreducible, there exists a positive row-vector b' > 0 such tha t  

b'B -- ~b', l~ -- p(B), 

and b' can be normalized so that  b' I a I = 1. On multiplying the first and last 
members of the above inequalities by b', one has tha t  

Suppose I a I = 3. Then equalities must hold throughout:  

[ a l . l a l  = ] A l . l a l  = B l a  I, 

[ a [ is a proper vector of B belonging to B, whence ] a [ > 0. Therefore 

(B -- [ a [)l a l = O, 

and since B __> [ A I, this implies B = [ A [. 



THE APPROXIMATE SOLUTION OF M.A_TRL( PROBLEMS 223 

The g-norms are easiest to compute,  but  unfortunately any  g-norm of A m a y  
be far in excess of p(A).  Thus  if A is unitary,  p(A)  = 1, and orthogonal matrices 
can be constructed for which P(I A I) = n~. But  fortunately one is often interested 
in non-negative matrices, in which case the above theorems show tha t  g-norms 
provide all needed information. 

THEOREM 4.11. I f ,  with any norm IIB [[ < 1, then I -- B is nonsingular and 

( I - -  B)  -1 = I + B + B 2 + . . . ,  

the series on the right converging. Conversely, ~f the series on the right converges, 
then p(B) < 1 and for some norm ~t ~s true that I[ B 11 < 1. 

If, for any norm IIB [[ < 1, then p(B) < 1 and 1 - h(B) # 0 for every proper 
value h(B). Hence I - B is nonsingular. Since 

( I -  B)  - I -  ( I  + B + . . .  + B v) = ( I - -  B) -aB ~+~ 

identically, therefore 

]I (I  --  B )  -1 --  ( I  + B + - . .  + B')II  ~ II ( I  --  B )  -~ If" [I B II "÷1 

and the right member  vanishes in the limit. 
Conversely, let 

S , = I + B + . . . + B  ~, 

and let the S, approach the limit S. Then 

S B  ~+1 = S -  S , ,  

and since the right member  has the limit 0, so has the left. I f  both members  
vanish for any  v, they vanish for any  v' ~ v, whence B ~+~ = 0, B is nilpotent, 
and every proper value A(B) = 0. Hence p(B) = 0. Otherwise a slight modifica- 
tion of the argument  given for theorem 4.2 shows tha t  p(B) < 1. 

THEOREM 4.12. Let B ~ Bt '  -> O, equalities excluded. Let B be irreducible and 
B~ = B - B / .  I f  p(B) =< 1, then C~ = ( I  - B~)-aB~ ' exisls and either p(C~) = 
p(B) = 1 or p(C1) < p(B) < 1. I f  p(B) > 1 but C1 exists and C~ _>- O, then 
p(C~) ~ p(B). I n  particular, i f  B1 is nilpotent, then Ca always exists and C~ >= O. 

In  practice B1 is usually null except in elements below the diagonal, and hence 
is nilpotent. In  general, let ~ = p(C1) and 

"rc = Clc = ( I  - B1)-lBl 'c  => O. 

Then 

"r(I - B1)c = B / c ,  

~c = (~B1 + Bi')c. 

Hence 7 = p(C1) = p(~,B1 W B/ ) ,  and "yB1 W Bl'  is irreducible if B is irredu- 
cible. But  either 

7 = 1, ~ B ~ +  B /  = B,  p(B) = % 
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or  

or else 

3" > 1, 3"B1 + Bi '  ~ B, p(f)  < 3", 

3" < 1, 3"B1 + Bi '  _-< B, p(B) > 3". 

Now let f = p(B) ~ 1, and let 

Bib = Bb > O. 

Then ( I  --  /31-1Bl) -1 = I + f l - lB1  -.{- B1-2Bi  2 + . . .  >= ] --~ B1 + B i  2 --~ . . . .  

( I  - -  B~) -1 = C1. But  

f l(I  - -  f l - l B 1 ) b  = B ~ ' b ,  

fb  = ( I  - f - l B l ) - l B l ' b  __> Clb. 

Hence p(C~) ~ p(B),  and the equali ty can hold only if B = 1. Existence is as- 
sured in this case since 

p(B-1B1) = B-~p(B1) < f - ' p ( S ) .  

Note  tha t  as in the proof of theorem 4.8 one can show tha t  e > 0. 
THEOREM 4.13. Let B ~ Bs' _-> B2' ~ O, equalities excluded, wish B irreducible 

and p(B) < 1. Let B ,  = B -- B, ' ,  C, = ( I  - B,)-~B,  '. Then p(B) > p(C~) > 
p(C~). 

By theorem 4.12, 3', = p(C,) < 1. Le t  

3"1Cl = ClCl > O, 

where the strict inequality follows from the remark made above. Then  

3"1cl = (3"lBl + Bl ' )c l .  
Let  

Then 

Hence 

B'  = Bi '  - -  B 2  t = B 2  - -  B1 >= O. 

3"1B1 -+ B i '  = 3"1B2 + B2t + (1 --  3"1)B' >= 3"1B2 + B2t. 

3"1Cl ~ (~iB2 + B 2 ? ) C l  o 

From the proof of theorem 4.12 it  can be seen tha t  

p(C~) = p(3"~B2 + B~'), 

and from the preceding result it appears  tha t  

p(3,1B2 + B2') < 3"1. 

Let  

~(3") = p(B~ + 3"-1B~'). 
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Then 

and ~ decreases monotonically as ,y increases. But  if 

then 

p(~2B~ ÷ B~') = ~ ,  

v(~) = 1. 

Hence ~,~ < ~i .  Hence the theorem. 

'I~EOREM 4.14. Let B = B~ + B2 , I B ] = I B,  ] + 1B~ I. Then i f  p(] B F) < 1, 
C = ( I  --  B1)-IB~ exists and p(C) < PJ(I B D- 

This is a corollary to theorem 4.12. 
A system of equations can generally be written in the form 

( I  - B ) x  = h, 

with B having a null diagonal. The most common iterative methods make use of 
either of the two sequences 

o r  

where 

B = B1 ~- B~ , 

x,+l = h + B x , ,  

x,+l = k + C x , ,  

k = ( I  - B1)-lh,  C -- ( I  - B1)-IB~.  

Generally (in the so-called Gauss-Seidel method) B1 is a lower triangle, B2 an 
upper triangle. The theorems 4.12 and 4.13 say that  when B >= 0, either both 
iterations converge or both diverge, for arbi t rary x0, and that  if both converge, 
the second converges more rapidly. Moreover, the transfer of non-null elements 
from B~ to Bi accelerates convergence whenever convergence occurs. When the 
condition B => 0 fails, however, the results are much less precise, and, in fact, 
examples can be constructed for which either iteration converges while the other 
diverges. Intuitively, though, one expects the second iteration to converge more 
rapidly, and in most practical cases this is so. Some other fairly general cases will 
be examined now. 

THEOREM 4.15. Let B have the form 

where each 0 represents a square submatrix.  Let  
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Then C = (I - B1)-IB2 exists and p(C) = p2(B). Moreover, i f  h(B) is any proper 
value of B, then ~ = ~2(B) is a proper value of C; and if  ~(C) = ~2 is a non-nuU 
proper value of C, then ~X  are proper values of B. 

One verifies tha t  I + Bi = (I - B1) -1 which proves the existence of C. Proof 
of the other assertions is based upon a well known property of determinants:  

L~Mu~_ 4.15. I f  A~ is nonsingular, then 

In fact, 

FAu Al~'~ -1 
det  LAst A~J = det(An) • det(A~ -- Asi All A~2). 

AiI A12"~ -A~'~Ai2] rAil 
A2x A,2A IIo = LA~* 

o ] 
Ass - -  A21 A 5 1 A l ~  " 

Hence take determinants of both sides. 
Now it follows directly from the lemma that  det (AI - B) is equal to a power 

of ~ multiplied by det (~2I - QR). Next  

0 

and det (~I - C) is equal to a power of/~ multiplied by det (~I -- QR). The the- 
orem now follows immediately. 

Note that  if R = QT, B is symmetric, and I -- B is positive definite if and only 
if p(B) < 1, hence if and only if p(C) < 1. 

A matrix A is said to have property (A) if there exists a permutat ion matrix P 
such that  

P r A P  = D -- B, 

where D is diagonal and B has the form of theorem 4.15. This transformation 
permutes the diagonal elements among themselves. For  purposes of equation 
solving or inverting, if D is nonsingular, there is no restriction in assuming D = I .  

THEOREM 4:16. I f  p(A ) < 1, then there exists a positive definite matrix H such 
that H - A rHA is positive definite. Conversely, i f  H and H -- A THA are both 
positive definite, then p(A ) < 1. 

If H is positive definite, then there exists a matrix G such that  

H = ara .  

I f  H - A r H A  is positive definite, then for every x # 0, 

xT(H -- A r H A ) x  > O, 

(Gx)r(Gx) > (GAx)r(GAx). 

Let  

Then  

y ~ G x .  

yry > (GAG-~y)r(GAG--~y), 
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[[ y > [[ CAG-ly 

for every y ~ 0. Hence ]l GAG- '  ]Is < 1 and p(A)  < 1. 
Conversely if p(A)  < 1, there exists a nonsingular G such that  [] G A G - '  ]Is < 1 

(theorem 4.3). The above proof goes through in reverse. 
LEMMA 4.17. I f  A and S are symmetric, A = S -- B -- B r, and 

C =  ( S - -  B)-IB r 

exists, then 

A -- CrA'C = ( I  - C r ) S ( I  - C). 

This is verified directly. 
'I~-IEOREM 4.17. I r A ,  S,  B and C are as in the lemma, and S is positive definite, 

then p(C) < 1 i f  and only i f  A is positive definite. 
If  A is positive definite, then I - C is nonsingular. For suppose 

x = C x - -  ( S -  B ) - lBrx .  

Then 

(S  - B ) x  = Brx ,  

( S -  B - -  B r ) x  = O, 

A x  = O, 

and hence x = 0. Hence ( I  - c r ) s ( I  - C) is positive definite, and by theorem 
4.16, p(C) < 1. 

Next, suppose p(C) < 1. Then 

P = ( I  -- CT)S ( I  - C) 

is positive definite, and 

A = P + C r A C  

= P + C r P C  + (C~)rAC ~ 

= p + C r P C  + (C2)rpc2 + . . .  

Now if 

C = g A Y  -1, 

where A is the Jordan normal form, it can be shown that  there exists W such tha t  

C T =  W A W  -1. 

Hence if U = WV -1, then 

C T =  UCU- ' .  

Hence 

A = P "b UCU-1P C q- UC2U-1pc  ~ "q- U C 3 U - 1 p c  a + . . . .  
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Therefore A is expressible as a converging series in positive definite matrices. 
Hence A is itself positive definite. 

In most applications, S is the diagonal of A, and S - B the lower triangle of 
A. However, S can be made up of blocks of submatriees along the diagonal, and 
B taken to be the lower triangle of S - A. 

5. Errors  and  I terations 

Given a system of equations 

Ax = h, (5.1) 

let x, be supposed to approximate the true solution x, and let 

s~ = x - -  x , ,  r~ = h - -  Ax~ = A ( x  --  x~) = A s . .  

Then 

s~ = A-lr~, 

and, for any consistent norms, 

[I s~ [[ =< [[ A -1 l[" [[ r~ i[- (5.3) 

A rigorous appraisal of the error s~ requires knowing something of A -~ as well 
as of r~. If  A is known only as a numerical matrix, one can, in general, evaluate 
II A-t  II only after evaluating A -1. But  in many eases the matrices A which arise 
in the solution of linear differential equations have a rather simple structure, and 
certain norms can be evaluated, a t  least approximately, without knowing A -~ 
explicitly. 

For matrices known only numerically, the computed inverse is not necessarily 
sufficiently close to the true inverse to yield a value of II A-t  II directly. How- 
ever, a rigorous upper bound is available. 

THEOREM 5.1. Let  H = I --  A C ,  and,  in  an y  norm,  let II H [I < 1. Hence  C 
is  an  approx imat ion  to A -1. Then  

[]e l[  I I A - ' - C t l  < HCHH 
II A-111 ~ 1 -  []HH' = 1 -  ] lg ] l "  

COROLId~.RY 5.1. I l K  -- I - C A  and  II K [[ < 1, then 

II A -a  lI < ]I C I] II A-~ - C II < ]I K C  [] 
= l - [ I g l [ '  --1-[Ig[l" 

Evidently 
A -1 = C ( I -  H )  -1 

= C +  C H +  CH ~ +  " "  

and since II H II < 1 the series converges. Hence 

[[ A-x [I ~ ]] C II + II c If II g II + II C 11" II g II 2 + . . . .  II C I1[1 - II H 11] -1. 

The other relations are obtained in a similar way. 
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In actual application one should be warned that because of rounding the com- 
puted H will, in general differ from the true one, and there is actually a ease on 
record in which the norm of the computed H gave too small an estimate of 
II A-1 - C l]. For the e-norms, at least, it is possible to place a bound upon the 
difference between the norms of the true H and the computed H, by considering 
the programming of the matrix product AC.  Hence a rigorous, though possibly 
pessimistic, bound for II A-1 - C [I is still available. 

The main objective in this section, however, will be to consider certain special 
matrices which arise in the finite difference schemes for solving differential equa- 
tions. Only linear partial differential equations will be considered. Assume, first, 
that the equation is two dimensional, and that the solution is required over a 
rectangular region. I t  is no restriction to take two of the sides along the two axes. 
For hyperbolic and parabolic equations, the values of the required solution, or 
its derivatives, or both, are normally prescribed along three of the sides (initial 
and boundary values); for elliptic equations the function is prescribed along all 
four sides. 

To set up the approximating difference equations, one subdivides the region 
by equally spaced vertical lines, and equally spaced horizontal lines, say n ver~ 
tical lines with spacing Ax, and m horizontal lines with spacing At or Ay. 
These lines intersect in nm points forming a lattice, and one seeks to evaluate the 
required function at these points. To do this, one approximates the derivatives 
in the equation by finite differences according to some suitable method of inter- 
polation, and so obtains a set of, altogether, n m  difference equations to be solved 
for the n m  functional values. These equations are linear and algebraic. 

In abbreviated symbolic form, let v be the function defined by the differential 
equations, and let the equation be written 

P ( D ) v  = f ,  

where P ( D )  represents a differential operator operating upon v, and f is some 
given function, possibly zero. Let u represent the function defined by the dif- 
ference equations, hence defined only at the lattice points, and let 

Q ( A ) u  = f (5.4) 

represent the system of difference equations. Finally let w = v -- u represent 
the truncation error. This, like u, is defined only at the lattice points. Then 

Q ( A ) w  = [Q(A) - P(D)]v. 

Now the difference operator Q(A) can be expanded by known methods in terms 
of the derivatives, and hence Q(A) - P ( D )  can be expressed as a differential 
operator, say 

Q ( A )  - P ( D )  = R ( D ) .  

Hence 

Q ( A ) w  = R(D)v .  (5.5) 
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While v is the required function, and hence not  known, it  may  be that  its 
existence and continuity properties are known to such an extent  tha t  by invok- 
ing the theorem of the mean, R ( D ) v  is known to be bounded and even has 
known bounds. These bounds are, of course, functions of n and m, or, equiva- 
lently, of A x  and ~ y .  If so, then w satisfies a system of difference equations 
for which the right-hand members can at  least be bounded. I t  is important  to 
note tha t  if we consider the right member of (5.5) to be known, then (5.4) and 
(5.5) are of the same form. 

Now the lattice points are arranged in a rectangular array with m rows of 
n per row. Let  these be numbered from 1 to n along the lower line; from n + 1 
to 2n along the next, - . .  , and from (m - 1)n + 1 to i n  along the top line. 
Without  ambiguity we can now let u represent the vector whose elements are 
the values of the function u arranged in the order just  described, and let w 
represent the vector whose elements are the values of the function w. Then  the 
vectors u and w satisfy equations of the form 

A u  = h 

and 

A w  = k ,  

where only the right members differ. Three questions are of importance. The 
first is, does 

w = A - l k  

approach zero in a suitable norm as n and m become infinite, and if so, how 
rapidly? This is the question of convergence and truncation errors. In  general, 
what kind of bounds can be established for II w [I as a function of n and m? 
Second, given any approximation u* to u, however obtained, what bounds 
are available for ]] u* - u ]I as a function of n and m? Evidently 

A ( u  - -  u * )  = h - -  A u *  -~ d,  

u - -  u *  = A - l d ,  

I l u -  u*ll =< I IA- I ] ] 'Hd[ I .  

Also 

II w I1 =< I1 A - 1 1 [  LI k I[. 
Hence in both instances one needs to evaluate, at  least approximately, the norm 
II A-1 II. In general II A-I II becomes infinite as n and m become infinite. I t  is 
important  to know whether or not the norm grows so rapidly with n and m 
(e.g., exponentially) tha t  carrying a reasonable number of extra digits in the 
computation would suffice to hold [1 u - u *  [l within bounds. This is the prob- 
lem of numerical stability. 

Finally, since these questions are independent of any method of solving the 
difference equations, this question remains. Since the systems are generally 
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large, one usually resorts to an iterative method of solving, and it is important  
to know that  the selected method converges, and at  what rate. In some schemes 
(the "marching" schemes), the problem does not arise, since the matrix A is 
already triangular in form and the value of u can be given explicitly at  each 
point in terms of its values at  previously computed points. In others, however, 
the implicit (or " ju ry")  schemes, the matrix is not triangular, and this is al- 
ways the case for elliptic equations. But  for parabolic and hyperbolic equa- 
tions the matrix is reducible, and one has to solve repeatedly a system of equa- 
tions of order n (instead of nm) all having an identical submatrix. 

In the methods to be discussed, the matrix A is expressible as an m X m array 
of submatrices, each of order n. Moreover these submatrices are themselves 
expressible as rational functions of the matrix K defined in section 1. Hence 
the submatrices are symmetric and commutative, their proper vectors are the 
same as those of K, and their proper values are rational functions of those of 
K. I t  is possible to give explicit expressions for the proper vectors and for the 
proper values, but  only the latter will be used here. These expressions follow 
immediately from the following theorem: 

THEOREM 5.2. Define the polynomials ~b~(~, p) by 

~,o = 1 

~ = X, 

l//, = X~,--1 - -  p21~v--2 , ~ ~ 2 .  

I f  ~1 and u2 satisfy the quadratic 

#~--  ~ +  p 2 = 0,  

then 

# 1  - 1~2 

~b, = (v + 1)p', X ~ - 4p e. 

Moreover, i f  

then 

and 

then 

= 2p cos 20, 

~b, - -  pv s in  2(~ + 1)0 
sin 20 " 

= 2p cosh 200, 

~, = pv sinh 2(v + 1)co 
sinh 200 
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The proof is made by  induction. Now one verifies also by induction tha t  

Cv(h, 1) = det (hi  - K~). 

Hence 
THEOREM 5.3. The proper values of K = K,~ are 

w r  
Xv(K) = 2 cos 20v, 20, = 2v0x = n +------1" 

M a n y  of the matrices A to be considered are of the form described in the 
following theorem. 

ThEOReM 5.4. Let A have the form 

A =  - Q P  0 . . .  
0 ~ Q  

where P = P ( K )  and Q = Q(K) are polynomiols in K.  Then if  K, = h,(K) is 
any proper value of K,  then 

P(~,) = h,(P), Q(K,) = k,(Q) 

are proper values of P and Q, respectively. Let 

I X,,(P)] _>- p- '  > 0 

and 

for every v. Then 

[ Q(K,)[ =< I P(K,)I 

[[ A -1 [[. = I[ A-1 H,' <= P him. 

In  fact, if M = P-~Q, then 

• M2p-1 Mp-1  p-1 
, , ,  . . . . . .  

Hence 

11 A-'  lie = II A- '  lie' =< II p - '  I1, + II M P - '  II. + "'" + II M~-aP-' II,. 
B u t v '  = 0 , 1 , . . . , m -  1, 

XT(Q) < [xya(p)  j < I x,(M"P-') I  = x T + ~ ( p )  = = p .  

Hence 

II M"P-' l[. ~ pn ~ 

which proves the theorem. 
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THEOREM 5.5. With hypotheses the same as in theorem 5.4, for large m the in- 
equality 

II A-1 I] ;2 > [ [ p(~) [ _ [ Q(K) []~ -t- I P(~)Q(~) I ~r2 
4m 2 

holds, where ~ = K, is that proper value of K that minimizes the right member. 
To prove this it is necessary to consider the matrix 

I 
hI -- P~ -- Q2 pQ 0 . . .  0 7 

hI -- ATA = PQ h I -  p 2 -  Q2 pQ . . .  0 J 5 o o . . .  h r - p  

In this matrix every submatrix along the diagonal is of the form 

hi  -- p2 _ Q2 

except for the last one, which is hi  - p2; every block above and every block 
below the diagonal is PQ; and every other block is null. Evidently all sub- 
matrices are commutative. Hence consider the following lemma: 

LEM~ 5.5. With obvious nonsingularity assumptions, a triple-diagonal matrix 
has the following factorization: 

I P 1  Q i .  0 . . . j  I I 0 0 - . i i ]  iN1  QI 0 -.- ] R1 P2 Q2 1 = Ft I 0 / 0 B~ Q~ - - . |  
0 R2 P3 . . . [  0 r2 I 0 0 Ba . . .  

. . . . . .  ° . .  , o *  . . . . . . .  , °  

where 
B1 --  P 1 ,  FF1Bi*-- R 1 ,  

F1Q1 + B 2  = P, ,  r2B2 ---- R 2 ,  

r2Q2 T B3 = P3, taB3 = R3, 

• . °  . . °  

Moreover, if the submatrices P~ , Q~ , Rp are all commutative, then one can define 

• o = I ,  

xIt~ = B~xIt~_l , v = 1, 2, . . .  , m, 

and the ~ satisfy the reeursion 

~ o  = I 

I'1 = P 1  , 

~1~ = P~1~-1- R~-lQp-l~-2 , ~, = 2, 3 , ' . . ,  m. 

This is proved by induction. Evidently the determinant of the matrix on the 
left is equal to the determinant of ,I,,. 
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Now let the submatrices P , ,  Q, and R, be identified with those which occur 
in XI - ArA, and consider the polynomials ~b,(k, P)  of theorem 5.2. Then  

2", = ,/,~(XI - -  p 2  _ Q2, p Q ) ,  v < m ,  

~I,,,, = G , , ( k I  - p 2  _ Q~, p Q )  + Q~h~_i (hI  - p 2  _ Q~, p Q ) .  

Since the matrices P and Q are commuta t ive  and diagonalized by  the same 
orthogonal matrix V, the same is true of the matrices ~ ,  and Vrxt',V is diag- 
onal. Moreover,  each diagonal element is a polynomial  in k of degree ~. Hence 
every proper value of ArA is 'a  zero of a polynomial of the form 

= ~ ( X  -- a~ - r~, a t )  + r ~ _ l ( h  - a~ -- G cr) ,  

where 

for some v. Let  

= P(K,), r = Q(K~), 

k -  a~ - -  r 2 = 2a t  cos O, (5.6) 

= (~ - -  r) 2 + 4~r cos 2 (0/2) (5.7) 

= (¢ + T) 2 - -  4¢r  sin ~ (0/2). 

Then by  theorem 5.2, 

~b sin 0 = ¢mrm[sin (m + 1)0 + ( r /a)s in  mO]. (5.8) 

To  prove the theorem it will be shown tha t  
• 2 sin ~r 

({ o- I - I r + 4 1  [ 

is a lower bound for the zeros of ~. The result will then follow from the fact  
tha t  [I A [I s 2 = X is the smallest proper value. From the two expressions for 
in (5.7) it is clear tha t  when ¢ and r have like signs ~ is a decreasing function 
of 0, and when they have opposite signs it is an increasing function. Suppose 
the signs are opposite. Since [ r/¢l < 1, the quant i ty  within brackets in (5.8) 
is positive when 

For  large m, 

7 r  
0 < 2 0 _ < - -  

- r e + l "  

11" 7 r  

sin 4(m + 1) --" 4 m '  

which proves the theorem for this case. I f  the signs are alike, set 0 = ~r -- 0' 
and the resuIt again follows. The smallest proper value of A rA is the smallest 
zero k of all the ~b's formed as K, ranges over all proper values of K. 

In  case P = I ,  one has a "march ing"  method and there is no need for an 
i terative solution of the equations. Bu t  if P ~ I ,  the equations can be solved 
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by repeatedly solving systems with the matrix P,  and if n is large one may  
wish to resort to an iterative method of solving each time. Often P,  or a scalar 
multiple of P,  has the form 

For  large n, 

P = I - ~K, ~ > 0. (5.9) 

p ( K )  --" 2 1 1 - - ~ 1  

whence the simple iteration converges if and only if # _~ ½. If  

C(~) -- ~(I  - ~ j ) -~ j r ,  

then 

p(C) = p2(~g). 

In fact, the principal minors of [X(I -- ~J)  -- ~ j r ]  have a representation like 
that  of ~b~(X, ~) but  with X = 4~ s cos ~ 8. 

THEOREM 5.6. I f  P has the form (5.9), then the simple iteration converges, in- 
dependently of the order of P, .if and only i f  ~ _~ ½. I n  this event the Seidel type 
iteration converges twice as fast. 

Turn,  now, to some special methods, and consider first the parabolic equation: 

O~u/Ox ~ = Ou/Ot. 

The simplest method is to take 

A y  

This leads to 

Hence 

and 

P = I ,  Q = (1 - 2v)I  --t- vK. 

X,(Q~ = 1 - 47 sin s 0, ,  

[ x,(Q)/x,(P)[ =< 1 

for every v if and only if .y ~_ 3. In  this event theorem 5.4 applies. 
To apply theorem 5.5. note tha*. 

(5.10) 

II A- '  II, < K'm. 

X l ( P )  - -  Xl(Q) -~. 4 ~  s i n  2 81 ~ ~/-hH 
[(n + 1)Z~x]~ 

and this certainly minimizes the first term on the right of the inequality. But  
(n "-b 1)•x remains fixed as n increases, ~vhile A y  ~ m -~. Hence there exists 
a constant K' independent of n and m such that  
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If  the region is bounded but  not  rectangular, it  can be enclosed in a rectangu- 
lar region, and by  omitting certain rows and eolumns from the matrix asso- 
ciated with the rectangular region, one obtains tha t  associated with the actual 
region. I t  is sufficient to omit only the off-diagonal elements. If  At represents 
the matrix associated with the true region, then 

Hence 

and therefore 

I - A _ >  I - A t > = O .  

o ( I -  A,) < o ( I -  A) < 1, 

1] A71 ]]. < [] A-1 ]]e, ]1A-/' ]] s < ]J A -1 ll~, 

Thus the appraisals for the rectangular region provide upper bounds for the 
norms associated with more general regions. 

The method 
2 3"~, u = V~u, (5.11) 

where ~Tvu represents t he  backward difference and 3' is the same as before, is 
an implicit scheme leading to 

P = (1 + 43")1 -- 23"K, Q = I .  

Here one has 

X~(P) = 1 -t- 8~, sin s 0~, 

and the conditions of theorems 5.4 and 5.5 are satisfied independently of the 
value of 3,. Since 

X,(P) - M(Q) = 83" sin ~ 01, 

therefore, for some K', 

]1 A-'  Ll~ < ~'m. 

To apply theorem 5.6 for convergence, one has 

2y 1 
~ - i + 4 ~ < ~  • 

so that both types of iteration converge. 
The Crank-Nicolson method makes use of 

~8~2(1 + E~,)u = 2A~u. 

Hence 

P = (~-4- 23,)1 -- 3"K, 

= (1 -- 2~)I -4- 3"K, 

X.(P)  -= 1 -4- 4~  s in s 0~, 

(5.12) 
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X~(Q) = 1 - -  43' sin 2 0 , .  

Hence  the  condi t ions  of the  two  theo rems  are  fulfilled for all  3'. F o r  th i s  ease 

h i (P )  - -  Xi(Q) = 83, sin 2 01, 

and  again ,  for some ~', 

F o r  t heo rem 5.6 one h a s  

M o r e  genera l ly ,  consider  

T h e n  

II A - '  II. < ~'m. 

3' 1 

g - l + 2 ~ , < ~  ' 

~2 
T ~(~3 A- a E u ) u  = A u u ,  0 <= a = 1 - -  fl <= 1. 

P = (1 + 2~o0I  - "yaK, 

Q = (1 - 2-#~)I - ~,t~K, 

X,(P) = 1 + 4~c~ sin s 0~, 

X,(Q) = 1 - -  4,),/3 sin 2 0~. 

T h e  r equ i r emen t s  of t he  t h e o r e m s  are  sat isf ied if 

23,a ~ 3' - -  ½, 23,~ =< 3' + ½. 

T h e n  

and ,  for some K', 

F o r  the  i t e r a t i on  one has  

~I(P)  --  M(Q) =- 4~, sin s 01, 

I[ A -1 Its < ~'m. 

(5.13) 

I 0 

- - B  I 

M = C 2 - - B  

0 C 2 

O O °°*- 

0 0 . . .  

I 0 . . .  

- - B  I . . .  

~a  1 

T h e  ma t r i ce s  requ i red  b y  the  hype rbo l i c  equa t ion  are  s l igh t ly  more  compl i -  
ca ted .  Some add i t i ona l  p r e p a r a t i o n  is requi red .  

T n E O R ~  5.7. A m a t r i x  M express ib le  i n  the f o r m  
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in  which B and C are commutative, has as its inverse 

where 

I 

r l  

M-1 = F 2  

F3 

0 0 0 

I 0 0 

F1 I 0 

r~ r l  I 

r , , = ¢ , , ( B , C ) ,  ~' = 0 , 1 , - . . , m -  1. 

The polynomials ~, are those defined in theorem 5.2, and the proof is made 
by direct verification. 

COROLLARr 5.7. I f  B and C are diagonalized by the same transformation, so, 
likewise, is each F,, , and 

Vt 

X,(F,,) = ~ , ( ~ ,  'l',) = 3', sin (v' "4- 1)~, 
sin ~,, 

where 

fl, = X,(B), ~, = X,(C), 

tip = 2T~ COS~. 

The theorem and corollary permit  est imates of the e-norms for the usual 
methods of solving the simple hyperbolic equation: 

02u 02u 

Ox ~ Oy~ " 

Evaluat ion of the spectral norm is more difficult and Mll be omitted. 
The simplest method is represented by  

A y  (5.14) 2 2 
r ~x U -~ ~2U, r ---- A X "  

This leads to a matr ix  A = M of the form given in theorem 5.7 with 

B = 2(1 - r 2 ) I - k  r2K, C = I.  (5.15) 

Hence 

f~  ---- 2 - -  4r  2 sin 2 0r, ~ = 1. ( 5 . 1 6 )  

From the corollary it follows tha t  

I f r  NN 1, then 

I X~(r¢)[ < c s c~ , .  

cos¢~ = 1 -- 2r  2sin 20~, 
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and csc ~, assumes  its grea tes t  value with v = 1. Hence ,  neglect ing t e rms  of 
higher order,  

2 2T2 . 2  

- -  - - ~  1 ~ 1  ~ 

2 4(n + 1) 2' n + 1 n 

Hence  

and therefore  

I × , ( r , , ) l  < n 
TTr 

~b 3/2 

II I ' , ,  tl~ = II r , ,  II: < - - ,  
TTr 

m n  312 

II A - '  [[~ = ]] A - '  IlJ < - -  (5.17) 
TTr 

I f  r > 1, the  t r igonometr ic  funct ions  mus t ,  in some cases, be replaced by  hy-  
perbolic funct ions and  the p roper  values  can become arb i t ra r i ly  large. 

Analogous  to  the  final m e t h o d  considered for parabol ic  equat ions  is the  
scheme 

Le t  

~ E - I ~  ~ 2 r2(~E~ + ~  ~ )o~u = ~2u, 0 =< a = 1 -- ~3 ~ 1. (5.18) 

P = (1 + 2 a r ~ ) I  - a r ~ K ,  
(5.19) 

Q = (1 + 2f~r2)I - ~r2K. 

T h e n  the  ma t r ix  which arises in this case is of the  fo rm 

A = M diag (P, P ,  . . . ,  P )  (5.20) 

where  M is the ma t r ix  of t heo rem 5.7 wi th  

B = 2 P - ' ,  C 2 = Q P - ~ .  (5.21) 

All submat r i ces  are symmet r i c  and  commuta t i ve .  T h e  proper  values  of P and  
Q are 

X~(P) = 1 + 4 a t  2 sin 2 0, , 

k,(Q) = 1 + 4 ~  sin ~ 0, .  

Hence  all mat r ices  are posi t ive definite, and  if ~ =< a, 

~,~ = k,(C 2) =< 1. 

Reference to corol lary 5.7 therefore  shows t h a t  this condit ion ensures  t h a t  

L x , ( r , , ) l  < csc ~ .  

A little man ipu la t ion  shows t h a t  

cos 2 ~ = k , (p -~ )h~(O-~) ,  
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and the  largest  va lue  occurs wi th  r = 1. Neglec t ing  t e rms  of higher  order,  

T ~  

n 

whence 

M o r e o v e r  

whence,  again,  

I Xl(F,,) I < -~-. 
TTI" 

[ h,(P-1)] < 1, 

m n  ~12 
II A-~ II. = [I A-1 lie' < - -  

TTr 

Sl ightly more  compl ica ted  is the  scheme 

re[aEu "t- (1 - 2a) -4- aE~-i]u = ~tu2u, 

For  this m e t h o d  t ake  

P = (1 + 2ar2)[  --  a r e K ,  

O = 2 I  - (1 - 2a ) r e (2 I  - g ) .  

T h e n  A has  the fo rm (5.20) wi th  

B = Qp-1 ,  C = I .  

T h e n  

and 

Xv(P) = 1 + 4 a r  e sin s 0~, 

x,(Q) = 2 - 4(1 - 2oOr e sin s 0, ,  

Xv(Q) 
~ = X , ( B )  - X~(P)  < 2 .  

Hence  q~. is real and  

I < csc  

T h e  grea tes t  va lue  occurs a t  v = 1, and  

2(1 --  2a)T e sin s 01 
[1 -t- 4olr 2 sin S 01] 

2o~<  1. 

COS ~al = I - -  

Neglec t ing  t e rms  of higher  order,  

2 = 4(1 -- 2a)reTr~n -2, ]] A-1 ]Ix = II A-1 I]/ < 
m n  312 

2rlr(1 -- 2a)~" 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 
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For  the  elliptic equat ion,  OSu/Ox 2 + 02u /Oy  2 -- 0, the  s implest  scheme is 

2 2 A y  r ~ u  + ~ u  = 0, r = - -  (5.27) 
A x  

T h e  mat r ix  has  the  fo rm 

I:i 0 1 
A = -0 - - I  -B : : :  , B = 2(1 .-]- r 2 ) I  - -  T~K. (5.29) 

L . . . . . . . . . . . .  J 
T h e  p roper  values  of A are  readi ly  found b y  app ly ing  l e m m a  5.5 to  the  m a -  

tr ix M - A. I n  the  recursion there  defined, 

P , =  M - B ,  R,  = Q, = I .  

Hence  

',I,, = ~,(Xl - -  B, I). 

Let 

~, = ~ ( B )  = 2 + 4 r  2sin s 0, .  

T h e n  the  zeros of ~ ( ~ ,  - f l , ,  1) are the  p roper  values  of A. I f /3  is a n y / 3 , ,  and  

h - ~  = 2 c o s 2 0 ,  

then  ~/,~ vanishes  for 

PtTr 
20 = 20,,  = 2v'O~ - - -  

m + l '  

and  hence for  

X = 4(cos = 0,, + r 2 sin = 0,). 

Th is  is least  when v' = m, v = 1. Hence ,  neglect ing t e rms  of higher  order,  if 
X(A) is a n y  proper  va lue  of A, then  

A(A) >_- 7r2(m-2 + r2n-2), 

hence,  for some cons tan t  K, if r remains  fixed, 

),(A) > (Km) -2. 

Hence  

[] A I]s =< : m  

and 

II A - '  lie = II A - a  ll : ~ KSm~/2n½. 

T h e  examina t ion  of p rob lems  in three  or more  independen t  var iables  can be 
handled  in the  same w a y  al though,  as one m a y  expect ,  the  detai ls  are  more  
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compl ica ted .  I f  we refer to the  mat r ices  t r ea t ed  above  as two-s to ry  matr ices ,  

then  in three  dimensions  one m u s t  t r e a t  th ree - s to ry  matr ices .  T h a t  is, if, in 

the  z-direct ion the re  are p paral le l  p lanes  in the  la t t ice ,  t hen  there  arises a 

ma t r ix  A of order  n m p, and this  ma t r ix  breaks  up in to  p~ submat r ices  of a 

p a t t e r n  s imilar  to  those appear ing  above,  bu t  each of these submat r i ces  i tself  

falls in to  m s submatr ices ,  each of order  n. T h e  pa t t e rn s  are repea ted ,  and  the  

analysis  is s imilar  bu t  requires  more  s teps  to  car ry  through.  
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