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The sequence u, i = 1, 2, --- ) formed by taking the principal remainders
modulo 7 of @', where n and @ are relatively ‘prime positive integers, may be
shown to be periodic of period &, where 6 is the smallest positive integer satis-
fying

o = 1(mod »).

When & is defined in this way, ¢ is said to belong to the exponent § modulo =.

It has been suggested by Lehmer [7] that, provided & is reasonably large, the
numbers un ' may be used as uniform variates in the range (0 — 1).

In section 1 we shall give a general method for evaluating & and in section 2
the results of some of the well-known tests for randomness performed on digits
generated by this multiplicative congruence method when the multiplhier a is
chogen to be 3%® in order to give a sequence of maximum period for = = 10"

1. Evaluation of b

Juncosa [4] has discussed the problem of choosing a so that 5 is 2 maximum
for n = 10° and Moshman [8] has caleulated 3 for @ = 7% and n = 10°. Lehmer
showed that, when n = 10% 4 1, § is a maximum if @ = 23.

The following definitions and theorems I to VI are well known (see, for ex-
ample, Nagell {9]). Theorems VII, VIII and IX may easily be proved, or refer-
ences to them may be found in Dickson [2].

In the following discussion, unless otherwise stated, all numbers considered
are positive integers.

Derintrion: Luler’s ¢-function, ¢(n), is defined as the number of positive
integers, including 1, less than and relatively prime to n.

TaroreM 1: If n has as distinct prime faciors only p1, P2, - -+, Dr, then

T

Tueorewm I1: If a ¢s relatively prime to n, then
a*™ = 1(mod 2).

Taeorem III: If a* = 1(mod n), then x is a multiple of 3.

COROLLARY: & 18 a divisor of ¢(n).

Derinition: If § = ¢(n), then a is called a primitive root of n.

Taeorem IV: Let n be grealer than 1, and a be prime to n. If a belongs to the
exponent & modulo n and +f the highesl common faclor of m and & equals g, then

a™ belongs to the exponent < modulo n.
3
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TueoreM V: The number n has primitive roots if and only if n can be expressed
in one of the forms 2, 4, p°, 2p°, where p is an odd prime.

TueoreMm VI: If o is a primilive root of the odd prime p, and if o* — 1 ds
not divisible by p°, then a is o primitive root of p'.

Let 8(n, a) denote the exponent modulo z to which a belongs.

Taeorem VIL: If p is an odd prime and a s prime lo p and if r is such thal
p" is the largest power of p which divides &’ — 1, then

o P T8p ey ifs >,
8(p", a) = {5(29, @) ife<o

Notice that theorem VI is simply a particular case of theorem VII.
TaroreM VIII: Let r be greater than 1.
(i) If a is congruent to -1 modulo 2 but not 2", then

. T ife >,
82 @) = {1 ifs<r

(i) If @ is congruent to —1 modulo 2" but not 2%, then

Toils >,
82, a) = <1 ifs =1,
2 ifl <s<r
TrHEOREM IX: If n = mn,- 1, where ny and ny are relatively prime, then
én,a) = l.em. of &(m,a) and &(ne, a).

Now if n = 2’ (a convenient choice for a binary machine), theorem VIII
gives the period of the sequence immediately.

When n = 10°, § is a divisor of 4-10°", by theorems I and II, and if s > 1,
10° has no primitive roots so that § < 4.10",

Now, by theorem IX, 8(10°, &) = l.c.m. of 8(2°, @) and 8(5°, ), and if 5 18
the largest power of 5 dividing a’®*” — 1, and 2* is the largest power of 2 di-
viding (@ + 1), and s > r, ¢, then

8(10°, @) = l.em. of 2 and 5778(5, a).
Since 8(5, a) is a divisor of 4, put 8(5, a) = 27 wherey =0, 1, 2.
. T2t st 2y,
5(10°, @) = {5“’-27 ifs~t <.
If we choose @ = 7, then ¥ = 2 (since 8(5,7) = 4)and r = 2and f = 3 s0
that
e oy [5-1007° ifs z 5,
5(10%7) = {100 ifs— 4,
and by using theorems VII and VIII for s = r, i,

. 20 s =3,
5(10’7)2{4 fs—12
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Now by theorem IV,

4 ifs=123,
5105, 7% = {20  ifs = 4,
102 if s = 5,

which disagrees with Moshman’s [8] result. The reason for this is as follows.
Moshman states that if 57 is the highest power of 5 dividing (7)*™" — 1 then

g is given by ¢ = 2 4+ [%], where [t] is the greatest integer less than or equal

to £. This can be seen not to hold for the particular case &k = 1.
The correct expression for g is a particular case of the following theorem.
TaeoreEM X: If the highest power of p, an odd prime, dividing z — 1 1s pe’ and
the highest dividing y is p", where x, y and £ are positive integers and 5 s a posi-
tve inleger or zero, then the highest power of p dividing ¥ — 1 4s po.
Proor: Put z — 1 = ap’ and y = §p", where o, § are not divisible by p.
Nowa — 1 = (1 4+ apb)® — 1 = aBp" + terms of higher order inp.
This also holds for p = 2 if £ > 1. Thus ¢ = 2 4 5 where 5 is the highest
power of 5 dividing 4% + 1.
Now the maximum value of 5(10°, a) is given by

5.1 i s = 4,

100 ifs=3,
20 ifs =2,
4 if s =1,

For 6{10°, a) to attain these values, a must be chosen so that (5, a) = 4,
r = 1 and ! = 2. That is, a is a primitive root of 5 and such that a' — 1 is not
divisible by 5° and neither ¢ + 1 nor @ — 1 is divisible by 8. A possible value
for a is 3.

Natice that the period of individual digits may be found by considering
appropriate values of s. For example the maximum period of the least significant
digit is 4.

If we are interested only in values of s = 4 (that is, we discard the least sig-
nificant digits because of their shorter periods), we can attain the maximum
period of 5-10"* by choosing @ so that r = 1and ¢ = 2 and §(5, a) may be 1
or 2. A possible value for g is then 11.

Also by theorem IV, if a is chosen to give the maximaum period then ¢™, where
m is relatively prime to 10, will also give this maximum period.

To start at a different part of the sequence o’ (s = 1, 2, .- . ) we may choose
1, in some random manner, and the principal remainder modulo 10° of a* may
be evaluated on a desk calculator. Or we may generate numbers »; (i = 0, 1,
2, --- ) which are the principal remainders modulo 10° of @'b where b is ran-
domly chosen to be relatively prime to 10. Depending on the value of b, we
obtain numbers from some part of eight sequences, each having a period of
5-10"%, which cxhaust the 4-10""" numbers less than and relatively prime to
10°.
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If d, is the ¢th digit of the number o"-b, and the period of the num-
ber > . 4,107 (thiat is, the number consisting of the first m digits of a”-b) is
denoted by 5, then provided m = v + { (where v and { are as defined in above)
the period of the number 3 ih* d,10"" is 10"-8 when n = 1.

Hence each oue of the 10" possible values of w1 ¢;10°™ must occur with
all & possible values of 2 i, d:10°", This means that when using

19 e Yk 2,107

a8 a random number we know that all possible numbers occur with equal fre-
quencies in a complete period.

2. Tests for Randomness

24,000 pseudo-random numbers were generated using a multiplier, a, equal
to 3" and taking s equal to 20. For the first 4,000, b was chosen to be 1 and
for succeeding groups of 4,000, b was chosen each time to be a random 20-digit
number (using the Rand tables {9]). From each group of 1,000 20-digit num-
bers, 10 sequences of 1,000 digits were obtained, each sequence corresponding
to a particular digit position from the 10 most significant.

These sequences were subjected to the frequency, serial and gap tests as
deseribed by Kendall and Babington-Smith [5}. The serial test was modified in
the following way as suggested by Good [3].

Let n, be the number of digits equal to 7 and #,, be the number of (47) se-
quences in a random eyclic sequence of length N,

Let

(ni — N - 1079°
g s

and

s (i; — N 107%)°
va = <Z> N 10
where (1,_7) runs through its 10° possible values.
Now ¢’ has a.symptotlcally a xo distribution (a chi-squared distribution w1th
9 degrees of freedom) and " has been considered to have asympt.otmally a X
distribution. However, Good [3] has shown that the expected value of ¢’ is 99
and that it is reasonable to expect that V¥ = ¥ — ¥," has asymptotically a
xs0 distribution. Billingsley [1] has found the asymptotic distribution of ¥2 and
we have shown (in work to be published) that, in fact, V' has asymptotically
a xin distribution. We have used V¢ for the test statistic of the serial test.
To test whether the numbers 2,107 might be used as uniform variates, the
frequencies with which these numbers fell in the classes 7-107° to (r + 1)-107°
where r = 0, 1, - -+, 99 were found and a goodness-of-fit test was carried out
for each 1,000 numbers.
The results of these tests were as follows.
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Frequency test. Of the 240 values of ¥y, seven were found to be greater than
16.919, the 5 per cent critical value of a x,’ distribution.

Serial test. Of the 240 values of V¢, nine were found to be greater than
113.14, the 5 per cent critical value of a xa0 distribution (using the Wilson and
Hilferty approximation [6]).

A xi test, used to examine the goodness of fit of the V. values obtained to
a xso distribution, yielded a value of 12.315.

Gap test. The numbers of gaps between zeros of sizes 0 to 99 were found.
Some of these 100 classes were paoled so that the expected frequency in each
class should be at least 1. The 240 x3, goodness-of-fit tests then yielded nine
values greater than the § per cent critical value of 42.577.

Uniform test. The 24 x3s goodness-of-fit tests yielded two values greater than
the 5 per cent critical value of 123.22.
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