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The sequence u, (i = 1, 2, - . .  ) formed by  taking the principal remainders 
modulo n of a' ,  where n and a are relatively ~prime positive integers, may  be 
shown to be periodic of period 6, where 6 is the smallest positive integer satis- 
fying 

a a ------ l ( m o d n ) .  

When 6 is defined in this way, a is said to belong to the exponent 6 modulo n. 
I t  has been suggested by  Lehmer [7] that ,  provided 6 is reasonably large, the 

numbers u,n -1 m a y  be used as uniform variates in the range (0 --~ 1). 
In  section 1 we shall give a general method for evaluating 6 and in section 2 

the results of some of the well-known tests for randomness performed on digits 
generated by this multiplicative congruence method when the multiplier a is 
chosen to be 3 TM in order to give a sequence of maximum period for n = 10'. 

1. Evaluation of 6 

Juncosa [4] has discussed the problem of choosing a so tha t  6 is a maximum 
for n = 10 ~ and Moshman [8] has calculated 6 for a = 7 ~+1 and n = 10". Lehmer  
showed that ,  when n = 108 -]- 1, 6 is a maximum if a = 23. 

The following definitions and theorems I to VI  are well known (see, for ex- 
ample, Nagell [9]). Theorems VII ,  V I I I  and I X  may  easily be proved, or refer- 
ences to them m a y  be found in Dickson [2]. 

In  the following discussion, unless otherwise stated, all numbers considered 
are positive integers. 

DEFINITION: Euler 's  C-function, ¢(n), is defined as the number  of positive 
integers, including 1, less than  and relatively prime to n. 

THEOREM I:  I f  n has as distinct prime factors only pi , p ~  , " "  " , pr , then 

4~(n) = n ( i - - ~ ) ( 1 - - ~ ) (  . . . . .  ) ( 1 - - ~ ) .  

THEOREM I I  : I f  a is relatively prime to n, then 

a ~(") ~ l (mod n). 

THEOREM I I I :  I f  a • ~ l (mod n), then x is a multiple of 6. 
COROLLARY: 6 is a divisor of ¢(n). 
DEFINITION: I f  6 = ¢(n), then a is called a primitive root of n. 
THEOREM IV: Let n be greater than 1, and a be prime to n. I f  a belongs to the 

exponent 6 modulo n and i f  the highest common factor of m and 6 equals ~, then 

a m belongs to the exponent ~ modulo n. 
# 
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THEOREM V: The ~umber n has primitive roots i f  and only i f  n can be expressed 
in one of the forms 2, 4, p', 2p', where p is an odd prime. 

THEOREM VI:  I f  a is a primitive root of the odd prime p, and i f  a ~-1 - 1 is 
not divisible by p~, then a is a primitive root of p'. 

Le t  ~(n, a) denote  the exponent  modulo  n to  which a belongs. 
THEOREM VII :  I f  p is an odd prime and a is prime to p and i f  r is such that 

pr is the largest power of p which divides a ~(p'a) -- 1, then 

~(p', a) = ~p,-r~(p, a) if s > r, 
(~ (p, a) if s _-< r. 

Not ice  t h a t  theorem VI  is s imply a par t icu lar  case of theorem VII .  
THEOREM V I I I :  Let r be greater than 1. 
(i) I f  a is congruent to + 1 modulo 2 ~ but not 2 ~+1, then 

I218--r ~(2 ~,a) = i f s  > r, 
i f s  =< r. 

(ii) I f  a is congruent to --1 modulo 2 ~ but not 2 "+~, then 

2 "-~ i f s  > r, 
~(2",a) = ~1 if s =  1, 

i f l < s = < r .  

THEOREM I X :  I f  n -~ h i .  n2 where nl and n2 are relatively prime, then 

~(n, a) -~ 1.c.m. of 6(hi , a) and 6(n2, a). 

Now if n = 2 ~ (a convenient  choice for a b inary  machine) ,  theorem V I I I  
gives the period of the  sequence immediate ly .  

When  n = 10", 6 is a divisor of 4-10 '-~, by  theorems  I and II ,  and if s > 1, 
108 has no pr imit ive  roots  so t h a t  ~ < 4 .10  "-~. 

Now, by  theorem IX,  ~(10', a) = 1.c.m. of ~(2', a) and ~(5 ", a), and if 5 ~ is 
the  largest power of 5 dividing a ~(5'a) - 1, and 2* is the  largest  power  of 2 di- 
viding (a =t= 1), and s > r, t, then  

6(10 °, a) = 1.c.m. of 2 "-* and 5"-~8(5, a). 

Since 6(5, a) is a divisor of 4, pu t  6(5, a) -- 2 ~ where ~ = 0, 1, 2. 

f5"-~.2 "-t if s - t => ~, 
~(10', a) = 15,_~.2~ if s - t < ~,. 

If  we choose a -- 7, t hen  ~, = 2 (since 6(5, 
t h a t  

•5 " 1 0  ' - 3  

~(10 °, 7) = (100 

and by  using theorems VI I  and V I I I  for s _~ 

{204 if 
6(10 ~, 7) = if 

7) = 4) a n d r  = 2 a n d t  = 3 s o  

if s => 5, 
i f s  = 4, 

r ,  t ,  

s = 3 ,  
s =  1,2. 
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N o w  b y  theo rem IV,  

21i if s = 1, 2, 3, 
~(10',75 ) = i f s  = 4, 

.-3 if  s ~ 5, 

which disagrees wi th  M o s h m a n ' s  [8] result .  T h e  reason for  this is as follows. 
M o s h m a n  s ta tes  t h a t  if 5 q is the  highest  power  of 5 dividing (7~) ~+~ - 1 t hen  

q is given b y  q = 2 "-I- gg where  It] is the  grea tes t  integer  less t h a n  or equal  

to  t. Th is  can be seen not  to  hold for  the  par t icu la r  ease k -- 1. 
T h e  correct  expression for  q is a par t i cu la r  ease of the  following theorem.  
THEOREM X :  I f  the highest power of p, an odd prime, dividing x - 1 is p~, and 

the highest dividing y is p' ,  where x, y and ~ are positive integers and 77 is a posi- 
tive integer or zero, then the highest power of p dividing x ~' - 1 is p~+'. 

PROOF: P u t  x -- 1 = ap t and  y -- ~p ' ,  where a , /~  are not  divisible by  p. 
N o w  x ~ --  1 = (1 W ap t )  art - 1 -- a/~p ~+~ ~ t e rms  of higher  order  in p. 
This  also holds for  p = 2 if ~ > 1. T h u s  q = 2 "-k ~ where  5" is the  highest  

power  of 5 dividing 4k --[- 1. 
N o w  the  m a x i m u m  value of ~(10 *, a) is g iven by  

' 5 -10  ~-2 i f s  >= 4, 
100 if s = 3, 
20 if s = 2, 

4 i f s  = 1. 

For  ~(10", a) to  a t t a in  these values,  a m u s t  be  chosen so t h a t  ~(5, a) = 4, 
r = 1 and  t -- 2. T h a t  is, a is a p r imi t ive  root  of 5 and  such t h a t  a 4 - 1 is not  
divisible by  52 and  nei ther  a W 1 nor  a --  1 is divisible b y  8. A possible va lue  
for a is 3. 

Not ice  t h a t  the  per iod of individual  digits m a y  be found b y  considering 
appropr i a t e  values  of s. For  example  the  m a x i m u m  period of the  least  significant 
digit  is 4. 

I f  we are in teres ted  only in vMues of s ~ 4 ( tha t  is, we discard the  least  sig- 
nif icant  digits because of thei r  shor ter  periods) ,  we can a t t a in  the  m a x i m u m  
period of 5 .10  ~-2 b y  choosing a so t h a t  r = 1 and  t = 2 and  ~(5, a) m a y  be 1 
or 2. A possible va lue  for a is then  11. 

Also b y  t heo rem IV,  if a is chosen to  give the  m a x i m u m  period t hen  a m, where  
m is re la t ively  p r ime  to  10, will also give this m a x i m u m  period. 

T o  s ta r t  a t  a different p a r t  of the  sequence a ~ (i -- 1, 2, • . .  ) we m a y  choose 
i, in some r a n d o m  manner ,  and  the  principal  r emainder  modulo  10 ° of a '  m a y  
be eva lua ted  on a desk calculator .  Or we m a y  genera te  numbers  u~ (i = 0, 1, 
2, . . -  ) which are  the  principal  remainders  modulo  10' of a~b where b is ran-  
domly  chosen to  be re la t ively  p r ime  to  10. Depending  on the  va lue  of b, we 
obta in  number s  f rom some p a r t  of e ight  sequences, each hav ing  a period of 
5-10  '-2, which exhaus t  the 4-10  "-~ number s  less t han  and  re la t ively  pr ime to  
10 °. 
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If d, is the i th digit of the number a'.b, and the period of the num- 
ber ~ - 1  d,10 ~-~ (that is, the number consisting of the first m digits of a'-b) is 
denoted by 6, then provided m ->_ ~, + t (where ~ and t are as defined in above) 
the period of the number ~ 2 ~  d,10 ~-1 is 10 ~-~ when n => 1. 

'~"~ m,-F n ,Z lrtt--1 Hence each one of the 10" possible values of z.,~ffi~,+~ ~i~,, must  occur with 
all ~ possible values of ~ 1  dA0 ~-~. This means tha t  when using 

l O - ( m +  n) X"~m+ '~ n 1/i $-1 
l=..,,=~-i-t t~tz~ 

as a random number we know that all possible numbers occur with equal fre- 
quencies in a complete period. 

2. Tests for Randomness 

24,000 pseudo-random numbers were generated using a multiplier, a, equal 
to 3 ~9 and taking s equal to 20. For the first 4,000, b was chosen to be 1 and 
for succeeding groups of 4,000, b was chosen each time to be a random 20-digit 
number (using the Rand tables [9]). From each group of 1,000 20-digit num- 
bers, 10 sequences of 1,000 digits were obtained, each sequence corresponding 
to a particular digit position from the 10 most significant. 

These sequences were subjected to the frequency, serial and gap tests as 
described by Kendall and Babington-Smith [5]. The serial test was modified in 
the following way as suggested by Good [3]. 

Let n, be the number of digits equal to i and ~,j be the number of (ij) se- 
quences in a random cyclic sequence of length N. 

Let 

~-, (ni - -  N • 10-1)  2 ¢12 
z...,,=o N "  10 -1 

and 

~22__ ~ (~j--N" 10-2) 2 
(i~) N -  10 -2 

where (ij) runs through its 102 possible values. 
Now ~l 2 has asymptotically a 192 distribution (a chi-squared distribution with 

9 degrees of freedom) and ~2 2 has been considered to have asymptotically a x~0 
distribution. However, Good [3] has shown tha t  the expected value of ~22 is 99 
a n d  tha t  it  is reasonable to expect tha t  17~22 = ~22 - -  ~12 has asymptotically a 
x~0 distribution. Billingsley [1] has found the asymptotic distribution of ~2 2 and 
we have shown (in work to be published) that ,  in fact, ~ 2  2 has asymptotically 
a X~o distribution. We have used ~7~22 for the test statistic of the serial test. 

To test whether the numbers uA0 -~° might be used as uniform variates, the 
frequencies with which these numbers fell in the classes r .  10  -2  t o  ( r  -Jr 1 ) .  10  -3  

where r = 0, 1, . . .  , 99 were found and a goodness-of-fit test was carried out 
for each 1,000 numbers. 

The results of these tests were as follows. 
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Frequency test. Of the 240 values of ~,12, seven were found to be greater than 
16.919, the 5 per cent critical value of a xs 2 distribution. 

Serial test. Of the 240 values of V~2 ~, nine were found to be greater than 
113.14, the 5 per cent critical value of a x~0 distribution (using the Wilson and 
Hilferty approximation [6]). 

A x[1 test, used to examine the goodness of fit of the V~,~ 2 values obtained to 
a x~0 distribution, yielded a value of 12.315. 

Gap test. The numbers of gaps between zeros of sizes 0 to 99 were found. 
Some of these 100 classes were pooled so that the expected frequency in each 
class should be at least 1. The 240 xl9 goodness-of-fit tests then yielded nine 
values greater than the 5 per cent critical value of 42.577. 

Uniform test. The 24 xl9 goodness-of-fit tests yielded two values greater than 
the 5 per cent critical value of 123.22. 
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