
M e t h o d s o f S i m u l a t i n g a D i f f e r e n t i a l A n a l y z e r
o n a D i g i t a l C o m p u t e r *

F. LESH

California Institute of Technolooy, Pasadena, Calif.

Introduction

One of the problems facing large computer installations today is the increas-
ingly large ratio between problem preparation time and problem solution time.
Sometimes weeks or even months may elapse between the time a problem is
first presented to a programmer and the time the first production occurs. Many
methods have been tried for simplifying this presentation. Compilers, formula
translators, and interpretive routines have been written and tested on a wide
range of problems and some of them are quite effective.

In the field of differential equations, the preparation of a problem for solu-
tion on an electronic analog computer is frequently much easier than the prep-
aration of the same problem for solution on a digital computer. For this reason
there has been some work done to simulate analog computers on digital com-
puters. Selfridge has done much of the introductory work along these Iihes
[1]. The system described here is an extension of Selfridge's work in tha t it uses
a more powerful integration scheme (Runge-Kutta) and a different method of
problem presentation.

The routine'described in this paper called DEPI , for Differential Equations
Pseudo-code Interpreter, was written to simulate a general-purpose analog
computer on a digital computer in the hopes of combining the programming
ease and program flexibility of the analog compater with the accuracy and
reliability of the digital computer. In general, the plan was to simulate the
operation of actual analog computers unless considerable simplification would
result from the introduction of non-similarity.

DEPI's Component Structure

Perhaps the most obvious thing about an analog computer is tha t it is built
of modules, each performing a distinct mathematical function. D EP I ' s com-
ponent structure, illustrated in figure 1, corresponds generally to these respec-
t ive modules.

Notice that no multipliers are included as components. This is because mul-
tiplication is very simple on a digital computer, and it was much easier to in-
elude multiplication as a par t of the input function of amplifiers and integrators

* This paper presents one phase of research carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under Contract No. DA-04-495-Ord 18, spon-
sored by the Department of the Army, Ordnance Corps. It is an expanded version of a
joint paper by the author and W. R. Hoover presented at the meeting of the Association,
June 19-21, 1957.

281

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320932.320939&domain=pdf&date_stamp=1958-07-01

282 F. LESH

Component Type Input ~ t p l t
I

1. Amplifier 0 !. - . - , 0 n OZ~ ! + - . - + O.~b.

~z, "".¢,,

2. Integrator Olt*' ' t
~z." ' .~.

S(e]~ z + . . . + saC,,)at

3. Divider 0.~ 0/~

4. Square Root Generator 0 6 J~

5. Resolver 8 { sin 0
COlt

6. Belay 0,~ 0, Y < Y's

7. Fusctiea Generator 0 [(0)

8. Poteutiometer none K

9. Output 01,. • . , 0 a Listing o| the values of

el . - . . , O n

Fig. 1. Component Structure

as shown. The ~ and 0 here refer to any of the variables or constants in the
system. As with an analog computer, integrators are simply amplifiers whose
output is the time integral of the input.

Divider and square root circuitry in an analog computer involves several
amplifiers and a multiplier and would be very difficult to simulate digitally.
Since these operations are so simple on a digital computer, dividers and square
root generators have been included as basic componvnts.

Resolvers, whose output is the sine or cosine of the input, are included as
modules in some analog computers and they are included in DEPI also.

Relays on an analog computer are simply switches which serve to introduce
program changes" in the middle of a computation, and DEPI relays serve the
same purpose.

SIMULATING A DIFFERENTIAL ANALYZER ON A DIGITAL COMPUTER 2 8 3

Function generators on an analog computer are usually some sort of electro-
mechanical servo de~ce whose output is an arbitrary function of the input.
Function generators are also among the components of DEPI.

Analog potentiometers multiply a variable by a constant which must be less
than one. In DEPI, multiplication is handled by the amplifiers and integrators
so that all that is needed is a set of constants stored in memory. Since the deci-
mal point is considered to be after the fourth digit in DEPI operation, these
constants will all be less than ten thousand.

For each type of component except potentiometers there is a special sub-
routine which does nothing but calculate and store the outputs for the com-
ponents of that type. The output subroutine does nothing but list the desired
output. All of the component subroutines operate in the interpretive mode,
that is to say, they read and interpret each control word on each pass. Each
individual component has a three-digit component number between 000 and
199, and a single memory cell in the computer where its output is stored.

Control Word Structure

Programming for DEPI is done directly from a flow diagram, and consists
of writing a sequence of control words on a coding sheet. The structure of the
control words is shown in figure 2. Notice that each control word has a number
which appears in its first three digits. The ~ and 0 in the integrator and ampli-
fier control words stand for the numbers of two components whose outputs are
multiplied together to form a single input. Each integrator and amplifier can
have as many control words as desired. The total input is the sum of all the
designated product pairs. The ~ and 0 of the divider control word indicate
the component numbers of the numerator and denominator respectively. The
O's in the square-root generator, resolver, and function generator control words
indicate the arguments of the operations and the U indicates whether a sine or
cosine is desired.

The 0 in the function generator control word indicates the argument of the
desired function. The Y is the address of a potentiometer which contains the

t

relay switching constant, and the 0 is the address of the input variable. The s
in the output listing routine control word designates the number of digits to be
ignored at the left end of a number to be listed. The b gives the number of
digits to be printed before the decimal point and a the number after. The 0
indicates the component number of the variable to be listed. This control word
can be either positive or negative. If it is positive the sign of the variable is
listed, but if it is negative, the sign is suppressed.

The ~flexibility of the program is obtained largely by means of the relays, as
shown by figure 3. Each relay consists of a set of ten memory cells in which
control words may be stored. The function of the relay subroutine is to ex-
change the control words stored in the relay for the ones with the same control
word number in the problem code. In the case shown here, only seven of the ten

284 r . ~ZSH

i

Component

1. Amplifier

2. Integrator

3. Divider

4. Square Root Generator

5. Resolver

6. Function Generator

7, Relay

8. Output Listing

Structure of Control Word

control
word ~ 0

number

+ txxx) txxx) o (xxx)

e

+ (x.xx) (xxx) o (xxx)

• ,- txxx) (xxx) 0 (xxx)

0

+ (xxx) 0oo0 (xxx)

u 0

+ (xxx) 000 x (xxx) { : = Oc°sine= 3 sine

e

+ (xxx) o0oo (xxx)

Ys 0

+ (xxx) (xxx) 0 (xxx)

s b a 0

ix) (xx)(x) (xxx) + (xxx)

Fig. 2. Control Word Structure

possible storage positions for the relay are being used. Notice tha t the memory
location for any control word in the code can be found by adding 1400 to the
control word number.

Integration
One of the most important choices affecting the outcome of a simulation

program is whether to use a simple integration scheme and a very fine mesh or
a more powerful integration scheme and a larger mesh. There are several ad-
vantages to the use of a simple integration formula. The most obvious of these
is tha t the coding is simpler. There is also the advantage tha t frequently the
mesh size may be taken small enough tha t all relays can operate at a mesh
point instead of having to calculate new time increments and integrate back-

S I M U L A T I N G A D I F F E R E N T I A L A N A L Y Z E R O N A D I G I T A L C O M P U T E R ~ 8 5

0

o~

+ +

o
o

s

t

+ + + + + + + + + +

+ +

/
M

÷ + +

o °~

©

286 F. LESH

Dtffelreatial Eqeatim

AMI~ Proem

- 5 . 92 -~
Y

i

o8~ P

I)ept Pro~Fm

OOI

O~ Y

10| ~
~ 0.By

oo,! o.sy

Coestalts

(loo) - - (o 8X2a~7)

(I01) = 0 8

Pwtml
Dept Code

patch
word (p space

sambel"

+ 000 04)1 0 0 0 1 ~

osof + 001 104) 0
÷ 002 000 0 000

+ 003 I01 0 000

+ 004 000 0 000

+ 0C5 000 0 001

÷ 0C6 CO0 0 OCO

mteFato¢ 000

zero worcl

ia teFat~ 001

ze¢o worll

divider 050

~o

Fig. 4. Programming-Coding Comparison

ward or forward to some intermediate point. On the other hand, the truncation
error for a scheme like Euler's, say, is so large that frequently the mesh size
must be kept quite small to preserve accuracy. This can increase calculate time
so much that the more accurate methods are actually faster. The method chosen
for DEPI was fourth-order Runge-Kutta [2]. This method has high accuracy,
requires no starting procedure, the interval of integration can be changed at
will, and discontinuities present no special problems.

Programming and Coding for DEPI

A simple comparison between analog and D E P I programming is shown on
figure 4. Notice that because of the ease with which multiplication and division

SIMULATIb~G A D I F F E R E N T I A L A N A L Y Z E R ON A D I G I T A L C O M P U T E R 287

can be performed on a digital computer, the DEPI program contains only
half as many components as the corresponding analog program. The input
pairs to integrator 000 in the DEPI program specify that its input will be the
square of the output of integrator 001 plus the output of divider 050 times
constant number 100. The translation of the program into a code is quite simple.
Integrator 000 has two control words since it has two input pairs. The first of
these expresses the prodt~ct of the output of integrator 001 by itself and the
next specifies the product of the outputs of divider 050 and constant number
100. The zero word indicates the end of the control words for integrator 000.
The next control word specifies the input to integrator 001 as the output of
integrator 000 times constant number 101. This is the only input to integrator
000 and the next zero word indicates this fact. In a specific location in the com-
puter memory the programmer must place a 2 so that the integrator routine
can compare this number with the number of zero words it comes to and trans-
fer control to the amplifier subroutine when they are equal. This code is not
complete, of course, since it does not even specify the output, but there is per-
haps enough shown to give some idea of the simplicity of the problem formu-
lation.

Conclusions

A DEPI program has been written for a Datatron 204 at the Jet Propulsion
Laboratory in Pasadena. Two problems were run on it for evaluation purposes.
The first of these was a set of two non-linear, first-order differential equations
describing flame temperatures which could not conveniently be run on the
analog installation because of the range of the variables involved. The second
problem was a flat earth trajectory, many of which have been run both on the
analog computer and the Datatron 204. This is a set of four first-order differ-
ential equations with several arbitrary functions, a square root, and several
discontinuities. The preparation time for this problem was two to three days
as compared to two to three weeks for a standard digital program or about a
week for an analog program. The resulting code was far more flexible than the
standard digital one and at least as flexible as an analog code. The ratio of
computing times, however, is high--a single DEPI integration step taking, for
this problem, four times as long as the same step in the standard flat-earth
trajectory program. Since the standard digital solution to the trajectory takes
about two and one-half times as long as the analog solution at comparable ac-
curacies, the ratio of DEPI time to analog time is approximately ten to one.
Datatron 204 is a medium-speed machine, however, and this ratio would re-
verse on some high speed computers, so that the DEPI time would only be
one-tenth of the analog time.

Several basic improvements could be made to the methods used in DEPI.
For one thing, the attempt to simulate the component structure of an analog
computer seems artificial and a freer approach would probably lead to a great
improvement in the simplicity and coding ease of the resulting scheme. The
necessity for serial servicing in DEPI is highly undesirable from the point of

288 F. LESH

view of the prograrpmer and could probably be eliminated altogether. The fact
tha t D E P I operates in the interpretive mode causes its computing speed to be
about a third of what it could be. Compiling techniques could probably over-
come this defect, though a routine using this technique would be much harder
to write and to keep flexible. The Runge-Kut ta type integration is probably
one of the best features of DEPI . I t allows the a t ta inment of high accuracy
without a prohibitive expenditure of computing time.

REFERENCES

1. R. G. SELFRtDGE, Coding a General-Purpose Digital Computer to Operate as a Differ-
ential Analyzer, Proceedings of the Western Computer Conference (Joint IRE-A.IEE-
ACM Computer Conference, Los Angeles, California, March 1-3, 1955), pp. 82--84
(New York, Institute of Radio Engineers).

2. F. B. HXLDEBP~ND, Introduction to Numerical Analysis (New York~ McGrawoHiU Book
Company, Inc., 1956).

