o Test Routines Based on Symbolic Logical Statements*

Check for
Updates

Ricaarp D. Euprep

Datamatic, Newton Highlands, Massachuseits

L. Introduction

In order for the successful operation of a test routine to guarantee that a com-
puting system has no faulty components, the test conditions imposed by the
routine should be devised at the level of the components themselves, rather than
at the level of programmed orders. Therefore, it seems that the proper approach
to writing test or maintenance routines is by way of the logical diagrams of the
system, and not the list of machine orders. This is the only way in which all con-
ditions of operation of each logical function can be uniquely and completely de-
fined and all logical components within each logical function can be made to
perform the task to which they are assigned. Orders can then be programmed to
present all conditions, and further orders can be programmed to detect improper
performance of the logical functions, thereby producing a minimum program
which tests and detects failure in each logical component in the system.

2. Background and Definttions

A method of producing such a test routine was developed and applied to the
Central Processor of the Datamatic 1000 system. The logical functions in the
Datamatic 1000 were implemented by tubes and diodes. The functions are in
the form of buffer-gate-buffer and were originally represented by logical state-
ments. Since almost any system is originally represented by logical statements,
the method deseribed here could be applied equally well to another system.

3. Description of Method

A method for selecting the minimum number of test conditions necessary to
determine whether all tubes and diodes within a gating structure are operating
properly will now be described. External items, such as auxiliary amplifiers,
delay circuits, transmission lines, and so forth, are also tested by the tube-diode
tests for the gating structures with which they are associated.

?|TI|T

F
Fra. 1

* Presented at the meeting of the Association, Aug. 11-13, 1958.
33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320954.320957&domain=pdf&date_stamp=1959-01-01

34 RICHARD D. BLDRED

Counsider a simple buffer-gate-buffer structure as shown in figure 1. In logical
notation this is represented by ¥ = (A v B)-(C v D). It is desired to present
2 minimum set of conditions to this function to determine whether each com-
ponent within this function is operating properly. Specifically, it is required to
best:

(1) That each input buffer diode conducts when activated. Buffer inputs will
hereafter be referred to as or inputs.

(2) That each gate leg diode inhibits when not activated. Gate legs will here-
after be referred to as and legs.

(3) That the output of the gating structure is not lost when traveling via out-
put components.

(4) That the output components do not provide a signal when the input con-
ditions are inappropriate,

Suppose we initially apply the input combination A-B-C-D which should
activate the funetion and then check for an output at F. This checks require-
ment (1) for or inputs A and C. It also checks requirement (3). Now shift
to a different combination of input variables, changing the active inputs at every
and leg whenever it is possible to do so, but always keeping one, and only one,
or input variable active to each and leg so that this input buffer diode bears the
sole responsibility for activating the gate leg. This gives us the second input
combination A-B-C-D which checks requirement (1) for or inputs B and D,
and again condition (3).

Now apply the combination A-B-(C v D), which should not activate the
function, and check for no output at F. This checks condition (2) for and leg
(A v B) and also condition (4). Now shift to a different combination of input
variables activating in turn all and legs except one so that each and leg has the
sole responsibility for inhibiting the output of the function. This gives us the
combination (A v B)-C-D, which tests the (C v D) and leg and again con-
dition (4).

In summary then, we have two sets of tests: the activation tests and the in-
hibition tests. The activation tests for the example given are:

A-B.C-Dand A-B-C-D.
The inhibition tests are:
AB-(CvDand(Av B).CD.
To briefly consider a slightly more complex example, take the function repre-

sented in figure 2. -
A B T A T
| l
|

Fig. 2

(™)
<

TEST ROUTINES

The activation tests are as follows:

(1) A-B-C-D-E

2) A-B-C-D-I8

(3) A-B-C-E (The state of D is arbitrary.)

For the inhibition tests we have:

(1) A-B-C-T (The state of D is arbitrary.)

(2) A-D-E (The state of B and C is arbitrary.)

3)AvBvO-@AvD-E
In sctivation test (1), we hold A active and B and C inactive, thereby testing
or input A which now has the sole responsibility for activating the gate leg. We
already have A active so we hold D active to test or input D. I, of course, must
be active to activate the function. In test (2), we switch to holding I3 active and
A and C inactive, and since we already have A we inactivate D to test or input
A. In test (3) we switch to C being active and since the second and leg has already
been fully tested, the condition of D is arbitrary. In inhibition test (1), we hold
the first and leg inactive by the combination A-B-C. The second leg is now active
by A so that the condition of D is arbitrary. E holds the third leg active. Gate
leg 1 has now been tested for inhibition as it has the sole responsibility for in-
activating the function. In test (2), A-D holds the second and leg inactive. A and
I hold the other two legs active so that the condition of B and C is arbitrary.
In test (3), E holds the third leg inactive, and, as can be seen, any of several
combinations will hold the other two legs active.

The illustrated examples were for one gate functions. If a function contains
more than one gate, the tests are applied to each gate individually.

It can be seen that the maximum number of activation tests for a function
with or inputs is equal to the total number of or inputs. The minimum number of
tests for such a funection is equal to the largest number of or inputs on one and
leg. If there are no or inputs then the number of activation tests equals one. The
number of inhibition tests for any function is always equal to the number of and
legs. Whether the number of activation tests is at & maximum or minimum, of
course, depends on any logical relationship which exists between the input
variables,

4. Application of Method

This method was applied to develop a test routine for the high speed packages
of the central processor of the Datamatic 1000 system. Charts were prepared
and filled out by subsystem for each logical function in the system. The columns
in the chart were defined to contain the following information:

(1) Symbolic name of logical funetion.

(2) The logical combinations necessary for all activation and inhibition tests.

(3) The necessary programmed order or orders to produce the logical combina-
tion. This included the name of the order and any requirements of addresses,
operands, previous orders, and so forth, to produce the necessary logical combina-
tlon.

36 RICHARD D, ELDRED

(4) How the failure of the logical function under these conditions would affect
the operation of the machine, assuming no built-in machine checking.

(5) Whether or not this failure would be detected by built-in machine checking.

(6) How the failure of the logical function under these conditions would affect
the expected operation of the program, assuming no machine checking.

(7) Whether or not the effect on the program can be detected by a programmed
check.

Ivery logical function in the system was listed in this manner, with the ex-
ception of some second and third level checking functions which assumed an
error in their input conditions. Since a program is not capable of knowingly pro-
ducing incorrect data, it was not possible to list these functions.

In order to write the test program then, it was necessary only to write & mini-
mum set, of orders which produced all the logical combinations in column (3).
This guaranteed that all required test conditions were presented to all logical
functions. To test the checking functions which could not be listed, a programmed
check was placed opposite each test order. The programmed checks were de-
fined by the effect of “the failure on the program” as listed in column (6).

5. Resulls

The result of this endeavor was a program containing approximately 110 test
orders and an additional 290 machine words comprising constants, control, and
programmed checks. This program checked approximately 700 high speed and
agsociated packages containing 900 tubes and 21,000 diodes, for all conditions
of activation and inhibition. The total time for one pass through this program
is 0.08 seconds. From these specifications, it can be seen that this program is well
suited for operation in conjunction with marginal checking.

This program has been used successfully during the debugging and production
stages of the Datamatic 1000 and is now being used in the field as the principle
maintenance routine for the Datamatic 1000 Central Processor.

It is recommended that the writing of a program such as this be done in con-
junction with the logical design checking of the various machine units as it is a
natural by-product of such a study.

