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ABSTRACT
The explosive growth of Online Social Networks in recent years has

led to many individuals relying on them to keep up with friends &

family. This, in turn, makes them prime targets for malicious actors

seeking to collect sensitive, personal data. Prior work has studied

the ability of socialbots, i.e. bots which pretend to be humans on

OSNs, to collect personal data by befriending real users. However,

this prior work has been hampered by the assumption that the likeli-

hood of users accepting friend requests from a bot is non-increasing

– a useful constraint for theoretical purposes but one contradicted

by observational data. We address this limitation with a novel cur-

vature based technique, showing that an adaptive greedy bot is

approximately optimal within a factor of 1 − 1/e1/δ ≈ 0.165. This

theoretical contribution is supported by simulating the infiltration

of the bot on OSN topologies. Counter-intuitively, we observe that

when the bot is incentivized to befriend friends-of-friends of target

users it out-performs a bot that focuses on befriending targets.

CCS CONCEPTS
• Networks→ Online social networks; • Theory of computa-
tion → Discrete optimization;
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1 INTRODUCTION
Online Social Networks (OSNs) have seen explosive growth in re-

cent years, rapidly becoming the largest repositories of personal
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information on the Internet. This leads to the question: how difficult

is it for an attacker to steal users’ personal information from popu-

lar OSNs? This may be done by, for instance, befriending users with

socialbots that can exfiltrate normally private data via their friend-

ship relations. Boshmaf et al. showed that Facebook is vulnerable

to such attacks [5], while Freitas et al. more recently showed that

Twitter is vulnerable to similar attacks [10].
1
This information can

then be sold on the black market, used to enhance spearphishing

attacks, or to crack password recovery systems – and thus indirectly

used to reduce the security level of the rest of our infrastructure.

Li et al. recently used the observational data of Boshmaf et al.
[5] to estimate the rate at which a socialbot could extract private

data from an OSN [19]. In doing so, they found that a socialbot

using an adaptive greedy approach would obtain at least (1 − 1/e)
times as much benefit as the optimal and that no algorithm can do

better than (1 − 1/e) unless P = NP . However, this approximation

guarantee demands a strong assumption: the expected benefit of

befriending users must be submodular. In the deterministic case,

this is often formalized as

∀S ⊆ T : f (S ∪ {e}) − f (S) ≥ f (T ∪ {e}) − f (T )
Semantically, this means that the benefit has diminishing returns as

more users are befriended. However, this condition does not hold

due to the impact of acceptance probability on the expectation: the

acceptance probability increases as more users are befriended [5],

leading to non-submodular behavior. Although Li et al. study this

setting, their guarantees do not hold without submodularity [18].

While the performance bound of submodular problems has been

studied since 1978 [20], such study of monotone non-submodularity

has only begun very recently [2, 27]. However, these recent results

are not readily applied to the reconnaissance attack application

owing to the fact that it is necessarily adaptive. Due to the massive

size of modern OSNs, obtaining accurate knowledge of the entire

network topology at once is infeasible. Therefore, the bot must

explore the network as it crawls, revealing parts of the topology by

befriending users and observing with whom they are friends, and

then using this information to inform future steps. This property

of making decisions based on the outcome of previous ones is the

defining trait of adaptive algorithms. In particular, the adaptive

stochastic nature of the problem makes current results inapplicable

and necessitates new solutions.

In this work, we address the above limitation by introducing

novel mathematical techniques to theoretically analyze the perfor-

mance bound of adaptive greedy algorithms for non-submodularity.

At the heart of our techniques is a key proof bounding on the effect

1
While stealing personal information from public Twitter profiles makes little sense,

the embedding of socialbots on a network has other nefarious applications such as

spreading misinformation e.g. in a way that evades containment [21].
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of adding a node to a solution later rather than earlier. We accom-

plish this through a newmeasure of the rate of change of a function,

the primal curvature. A bound on this measure is shown to be both

necessary & sufficient to obtain an approximation guarantee in

the general case. In our specific case, we exploit the structure of

the problem to obtain an approximation ratio of 1 − 1/e1/δ
with

δ a constant depending on user behavior. The generalized tech-

niques provided in this paper advance the research front of several

applications, where both adaptivity and non-submodularity are

required, such as adaptive viral marketing in OSNs [12, 16, 25]. As

the first work established the rigorous proofs for adaptivity and

non-submodularity, this paper opens the way for the development

of adaptive approximation algorithms on domains where external

factors – such as human behavior – prevent common assumptions

like submodularity from holding.

Our contributions can be summarized as follows:

• We provide the first theoretical study of reconnaissance at-

tacks under a realistic model of friend request acceptance.

We obtain a bound of 1 − 1/e1/δ
with δ = O(1).

• We provide the first technique to theoretically bound the

approximation quality of non-submodular adaptive approxi-

mation algorithms, which generalizes the 1 − 1/e ratio for

adaptive submodular maximization via the greedy algorithm.

• We delve deeper into the behavior of a socialbot under this re-

alistic model, finding that the added term rewarding a bot for

improving friend request probability adds needless complex-

ity and that, paradoxically, encouraging the bot to become

friends-of-friends with targeted users actually results in a

greater fraction of targets being befriended.

Related Work. Reconnaissance Attacks. Reconnaissance attacks

on OSNs have been shown to be an effective method of extracting

private information from OSN users [5, 10]. The method of attack

is conceptually simple: a single “socialbot” is created on the OSN

with a realistic user profile, and automatically befriends users with

the goal of extracting as much private data as possible (e.g. for sale

on the black market or use in breaking “secret question” password

recovery schemes for further attacks). Ryan & Mauch showed that

such fake profiles can be effective in obtaining access to the personal

feeds of high-ranking government and corporate officers [23]. In

a similar vein, Varol et. al. studied the presence of bots on Twitter

and found that human users befriended more human-like users

than bots [26], indicating that for reconnaissance to be successful

it must be undertaken by human-like bots–a.k.a. socialbots.

Note that this attack is distinct from the well-studied Sybil at-

tack, and due to the absence of the bots creating large sub-graphs,

it is unlikely to be detected by Sybil detection schemes [3]. Tradi-

tionally, literature on reconnaissance attacks has been primarily

experimental in nature and lacked rigorous theoretical guarantees

[5, 10, 22]. More recently, a greedy socialbot was shown to collect

at least a 1 − 1/e fraction of the information collected by an op-

timal bot using adaptive techniques (see Golovin & Krause [11]

for a full treatment on adaptivity) [18]. This was extended to a

ratio of 1 − 1/e−(1−1/e)
when the bot is allowed to make multiple

simultaneous friend requests [19].

However, these ratios do not hold without submodular benefit

and friend request acceptance models. While the benefit model is
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Figure 1: The acceptance probability function proposed by
Li et al. [18] using the data of Boshmaf et al. [5].

under the control of the attacker and can be easily constructed to

be submodular, observational data indicates that the friend request

acceptance model is strongly non-submodular [5, 18].

Non-Submodular Optimization. Submodular optimization has

been the subject of intense study. Perhaps the most-used work

to come out of this is the tight 1 − 1/e ratio of Nemhauser et al.
[7, 20], which is fundamental to the guarantees of many applied

works. Quite recently, a number of works have also begun to study

non-submodular optimization, which cannot exploit the useful “di-

minishing returns” of submodularity to obtain approximation guar-

antees. However, to obtain these guarantees constraints must be

imposed on the problem (a proof of the necessity of one such con-

straint is contained in Sec. 3.1). Even in the case of functions that are

approximately submodular and violate submodularity only due to

noise, this problem requires strong constraints to obtain meaningful

guarantees [13, 14]. Das & Kempe proposed the submodularity ratio
γ as a means of quantifying the magnitude by which submodularity

is violated [6]. Using this, they obtain a ratio of 1 − 1/eγ for their

specific problem. Recently, Bian et al. extended this by incorporat-

ing the generalized curvature α to obtain a ratio of
1

α (1 − e−αγ ) in
general for greedy maximization subject to cardinality constraints

[2]. Wang et al. took an alternative approach, obtaining a ratio for

the greedy algorithm via the elemental curvature [27].
However, none of these apply to adaptive stochastic optimization,

which is necessary the modeling of non-deterministic systems –

such as the reconnaissance attack. The problem of non-submodular

adaptive maximization has not yet seen study.

Organization.We begin in Section 2 by giving a semantic de-

scription of the socialbot reconnaissance attack and presenting

an algorithmic description of the socialbot in terms of our formal

model. Next, we describe our measure of curvature and derive the

1 − 1/e1/δ
ratio in Section 3. While we focus on our particular

application, this ratio extends to any problem with a finite curva-

ture bound. This is followed by our experimental evaluation of the

socialbot in Section 4. Finally, we conclude with a discussion of the

implications and potential future work in Section 5.

2 PROBLEM FORMULATION & ALGORITHM
Before formally defining our problem, we first describe the seman-

tics of the socialbot attack that informs it. Consider a social network

such as Facebook. Users have a significant amount of personal in-

formation, much of which is locked behind privacy controls. The

default (andmost common) setting for content on Facebook is “Only

Friends,” which allows only direct friends to see your posts and

friends. While link prediction can give an estimate as to the proba-

bility of friendships existing (e.g. [1, 8, 9]), there remains significant
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incentive for attackers to befriend users for the information in their

profiles. We term users under such attacks targets. However, users
may not accept a friend request from a bot. Thus, the bot must

consider the probability of acceptance – and ideally take advantage

of human behavior to maximize it. To improve the acceptance prob-

ability, the bot may first seek to befriend friends of the targets. The

reconnaissance process then unfolds round by round.

Boshmaf et al. observed that acceptance probability on Facebook

seems to be dominated by the number of mutual friends – likely a

result of the Triadic Closure Principle [5], which states that if a and

b are friends with c , then a and b are also likely to be friends. In this

case, the bot can boost the likelihood of requests being accepted

by first befriending more vulnerable mutual friends. This raises

the question of how to make the critical first few friends. It has

been observed that users with abnormally high number of friends

(so-called “high-degree users”) have a larger chance of accepting

friend requests without critical examination of the requester [4].

This allows the bot to bootstrap by sending initial requests to high-

degree users, then crawling along the network–taking advantage

of triadic closure to keep acceptance probabilities high.

Li et al. fit a model of acceptance probability to the observational

data of Boshmaf et al. [18]. The exact function they give is

α(u | ψ ) = ρ1 log(E [|N (u) ∩ Nin (s)|] + 1) + ρ0 (1)

with ρ1 = 0.22805837 and ρ0 = 0.18014571 and s representing
the bot (the expectation is taken with respect toψ , which will be

defined in the next subsection). This function is shown in Fig. 1.

N (u) and Nin (s) are the sets of outgoing and incoming neighbors of

u and s , respectively. Taking expectations under this model results

in a non-submodular objective since the probability of a user u
accepting a request may increase after another user v is befriended

without a corresponding drop in the benefit of befriending u.

2.1 Formal Definitions
In sum, this leads us to an adaptive model of the problem [11].

Our model incorporates two pieces of uncertainty: the possibility

that edges may not exist, and that friend requests may be rejected.

The former are represented as a set of random variables (RVs)

Xe ∈ {0, 1}∀e ∈ E where the OSN is represented as a digraph

G = (V ,E), where V is a set of users and E is the set of friendships;

Xe = 0 iff the edge e does not exist. Note that edges are added on

successful friend requests by the bot. Wemodel friend requests with

two sets of RVs Yv ∈ [0, 1) and Zv ∈ {0, 1}. These Yv represent

thresholds for the acceptance probability, withv accepting a request

if α(v | ψ ) ≥ Yv , where α(v | ψ ) is the acceptance probability of v
under partial realizationψ (defined below). The Zv ’s are induced
variables representing the status of the bot’s friend request to v ,
with Zv = 1 iff α(v | ψ ) ≥ Yv at the point where s made the request.2

In the adaptive framework, there exists a set of possible (total)
realizations Φ, which encode all potential states of the random vari-

ables Xe , Yv , and Zv described above. An adaptive policy π makes

decisions based on a partial realizationψ , which encodes the values

of the random variables in a system that are currently known. The

2
We found a definition exclusively in terms of Yv or Zv problematic due to the need

to denote the answers to two distinct questions: (Yv ) a request was just made–did it
succeed? and (Zv ) a request was made in a prior step–was it successful?. Using both

together greatly simplifies presentation.

domain of a partial realization, denoted dom(ψ ), is the set of ran-
dom variables revealed inψ . We write F (ψ ) = {u | Zu ∈ dom(ψ )}.
A partial realization is said to be consistent with a total realization,

denotedψ ∼ ϕ, if they are equivalent everywhere in dom(ψ ). We

will denote the adaptive greedy policy selecting k elements πk and

the optimal policy selecting k elements π∗k . When the choice of k is

clear, we drop the subscript for notational simplicity. We slightly

abuse notation and denote the final partial realization produced by

policy π were it to run on a realization ϕ as π (ϕ).
Under this model, the bot is given as input a graphG with known

nodes and unknown edges, along with an edge probability function

p(u,v) and a benefit model B = (Bf ,Bf of ,Be ). The bot ultimately

outputs the sequence of friend requests made and the final partial

realization uncovered by this sequence. At each step, an adaptive

greedy bot will select the element maximizing the expected mar-

ginal gain ∆(v | ψ ) and sends it a friend request. If it is successful,

we observe Yv ≤ α(v | ψ ) =⇒ Zv = 1, and we observe each Xe
where e ∈ E is an outgoing edge of v . On the other hand, if the

request fails we observe Zv = 0 and do not observe any variables

Xe . Given this formulation, we write the objective f (S,ϕ) as:

f (S,ϕ) =
∑
u ∈S

Zu

Bf (u) +
∑

v ∈N (u)
Be (u,v)


+

∑
v ∈N (S )\S

©«1 −
∏

v ∈N (u)
u ∈S

(1 − ZuXu,v )
ª®®®¬Bf of (v) (2)

where N (u) is the set of nodes that may be adjacent u, N (S) is the
union of such over all u ∈ S , and Bf (·), Bf of (·), and Be (·) represent
the benefit assigned to a given friend, friend of friend, or edge

revelation. In addition, we require Bf of (v) ≤ Bf (v) for all users v .
We refer to a user u as a target if Bf (u) > 0. The expected benefit

of f w.r.t. all possible realizations is favg(π ) = E [f (F (π (Φ)),Φ)]
where Φ is a random total realization. This gives us the final piece

to formally define the socialbot attack.

Problem 1 (Maximal InformatioNExtraction (MINE)). Given
a social graph G = (V ,E) with edge probabilities p(u,v), an accep-
tance model α(v | ψ ) that is adaptive monotone non-decreasing
w.r.t.ψ , and a benefit model f (S,ϕ) that is adaptive monotone non-
decreasing submodular w.r.t. S , find the k-element policy π that max-
imizes the expected benefit obtained.

It has been shown that this problem
3
is inapproximable within

1− 1/e − ϵ for any ϵ > 0 unless P = NP even in the case where α is

also submodular [19]. Were α submodular, this objective would be

adaptive submodular [18] in addition to adaptive monotone, and

the adaptive greedy policy would then have a tight ratio of 1 − 1/e
[11]. It will be shown in the next section that – under some mild

conditions on α – this ratio is preserved nearly exactly when α is

allowed to be non-submodular.

2.2 Needed Properties for the Greedy Solution
As in prior work, we take a greedy approach to optimizing f . In
this approach, the bot at each step chooses the user to befriend

3
This problem has seen prior study under the moniker “AReST” [18, 19].
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Algorithm 1 Greedy MINE

Input: Problem instance (G,p,α ,B,k)
Output: An ordered set of nodes F ⊂ V to befriend, realizationψ .
1: F ← ∅,ψ ← ∅
2: for i = 1 . . .k do
3: u∗ ← arg maxu ∈V \F ∆(u | ψ )
4: F ← F ∪ {u∗}
5: Send a friend request to u∗, observing Yu∗
6: if α(u∗ | ψ ) ≥ Yu∗ then
7: for v ∈ N (u∗) do
8: Observe Xu∗,v , updatingψ

9: Set Zu∗ = 1

10: else
11: Set Zu∗ = 0

12: Updateψ with the observed value of Yu∗

13: return F ,ψ

with highest expected marginal gain (line 3 of Alg. 1). It then sends

this request and observes the result. If the user accepts the request,

additional observations are made (lines 6-11). After having sent

k requests, the bot returns the set of requests it made F and the

partial realization resulting from those requestsψ .
Despite a similar approach to prior work, our objective function

differs in the omission of a term rewarding the bot directly for

improving marginal gain. We therefore prove necessary properties

for the greedy algorithm to be applied. First, we prove that our

objective maintains the property of adaptive monotonicity. Then,
we derive a closed form for the expected marginal gain. The section

closes by using this closed form to prove that the function is in

general not adaptive submodular.
Adaptive Monotonicity of f .We adopt an alternative defini-

tion of adaptive monotonicity that is equivalent to the standard

one. First, we require the definition of policy concatenation.

Definition 1 (Concatenation of policies [11]). Given two
policies π ,π ′, define π@π ′ as the policy obtained by running π to
completion, and then running π ′ as if from a fresh start, ignoring the
information gathered during the running of π .

Definition 2 (Adaptive Monotonicity [11]). A function д :

2
E ×OE → R≥0 is adaptive montone if for all polices π ,π ′, it holds
that дavg (π ) ≤ дavg (π ′@π ).

Lemma 2.1. f is adaptive monotone.

Proof. Let π ,π ′ be policies and for a realization ϕ write ψ =
π (ϕ),ψ ′ = π@π ′(ϕ). Notice that for any realizationϕ, F (ψ ) ⊆ F (ψ ′).
Hence it is enough to show for any S ⊆ S ′, f (S,ϕ) ≤ f (S ′,ϕ). It is
clear that any Bf (u),Be (v,w) in f (S,ϕ) is also present in f (S ′,ϕ).
Furthermore, any Bf of (v) term in f (S,ϕ) is absent in f (S ′,ϕ) only
if it is replaced by Bf (v). Since we have Bf of (v) ≤ Bf (v) for all v ,
the result follows. □

Closed Form of ∆(u | ψ ). The expected marginal gain ∆(u | ψ )
is defined by Golovin & Krause [11] as

∆(u | ψ ) = E [f (F (ψ ) ∪ {u},Φ) − f (F (ψ ),Φ) | Φ ∼ ψ ] (3)

Based on the definition given in Equation (2) and the definitions

of the variables, this has the closed form

∆(u | ψ ) = α(u | ψ )
Bf (u) +

∑
v ∈N (u)

Be (u,v)

+
∑

v ∈N (u)\F (ψ )
(1 − If of (v))p(u,v)Bf of (v)


= α(u | ψ )B(ψ ,u) (4)

where If of (v) is the indicator function returning 1 if v is already a

friend-of-friend of s and 0 otherwise.

Adaptive Submodularity For the sake of completeness, we

now present the definition of adaptive submodularity:

Definition 3 (Adaptive Submodularity [11]). A function д :

2
E × OE → R≥0 is adaptive submodular if for a pair of partial
realizationsψ ⊆ ψ ′:

∀e ∈ E \ dom(ψ ′) : ∆(e | ψ ) ≥ ∆(e | ψ ′)

Lemma 2.2. f is not adaptive submodular in general.

Proof. A trivial counter-example is∀u ∈ V : Bf (u) = 1,Bf of (u) =
0,∀(u,v) ∈ E : Be (u,v) = 0. Then, we easily have non-submodularity

because α is increasing w.r.t.ψ . This example will be shown non-

submodular by contradiction. Suppose we have ψ ′ ⊃ ψ s.t. α(u |
ψ ) , α(u | ψ ′). Begin with the definition of adaptive submodularity:

∆(u | ψ ) ≥ ∆(u | ψ ′)
By the closed form of ∆ derived previously and the selection of

Bf ,Be ,Bf of this simplifies to

α(u | ψ )Bf (u) ≥ α(u | ψ ′)Bf (u)
However, we know α(u | ψ ) < α(u | ψ ′) for this pairψ ,ψ ′. We thus

arrive at a contradiction. □

3 APPROXIMATION RATIO
Greedy methods are often chosen for their good real-world per-

formance in addition to the strong theoretical guarantee that any

solution produced is at least 1 − 1/e times as good as the optimal if

the objective is submodular [11, 20]. However, the behavior of users

observed by Boshmaf et al. [5] indicates that the objective is must

be non-submodular since it incorporates the increasing acceptance

function.
4
Therefore, we introduce a new technique for deriving

the approximation guarantee for the greedy adaptive policy.

Wang et al. [27] were among the first to provide an approxima-

tion guarantee for general non-submodular set functions in terms

of the elemental curvature: the maximum ratio between the mar-

ginal gain of an element i at any pair of sets S and S ∪ {j}. We

extend their idea to the adaptive realm with the primal curvature: a
localized definition of curvature.

Definition 4 (Adaptive Primal Curvature). The primal cur-
vature of an adaptive monotone non-decreasing function f is

∇f (i, j | ψ ) = E
[
∆(i | ψ ∪ s)
∆(i | ψ )

���� s ∈ S(j)]
4
We remark that any reasonable objective must incorporate the likelihood of accep-

tance, as doing so is a fundamental part of computing the expected value.

Session 6: Privacy, Bots and Automatic Methods HUMAN’18, July 9, 2018, Baltimore, MD, USA

195



where S(j) is the set of possible states of j and ∆ is the conditional
expected marginal gain [11].

Intuitively, the adaptive primal curvature measures the immedi-

ate change in the (expected) marginal value of i after j is added to

the solution. In the non-adaptive case (i.e. |S(j)| = 1), the elemental

curvature is the maximum primal curvature. However, this local-

ization allows us to proceed in a new direction with the proof. We

use the total primal curvature, defined below, to measure the total

change between two partial realizations.

Definition 5 (Adaptive Total Primal Curvature). Letψ ⊂
ψ ′ andψ → ψ ′ represent the set of possible state sequences leading
fromψ toψ ′. Then the adaptive total primal curvature is

Γ(i | ψ ′,ψ ) = E

∏
sj ∈Q

∇′(i, sj | ψ ∪ {s1, . . . , sj−1})

������ Q ∈ ψ → ψ ′


The following lemma clarifies the relation between total primal

curvature and the marginal gain, and the corresponding result in

Corollary 3.4 directly enables our proof of the adaptive approxima-

tion guarantee.

Lemma 3.1.

Γ(i | ψ ′,ψ ) = ∆(i | ψ ′)
∆(i | ψ )

Proof. Fix a sequenceQ ∈ ψ → ψ ′ of length r . Then, expanding
the product we obtain

∆(i | ψ ∪ {s1})
∆(i | ψ ) · ∆(i | ψ ∪ {s1, s2})

∆(i | ψ ∪ {s1})
· · · ∆(i | ψ ′)

∆(i | ψ ′ \ {sr−1})
If we take the expectation of this w.r.t. the possible sequences Q ,
we obtain the same ratio regardless of Q , and therefore the claim

holds trivially. □

This identity allows us to place a constant bound on the total

primal curvature for the MINE problem. As we will show later, this

ultimately leads to a constant approximation ratio.

Lemma 3.2. maxi,ψ ,ψ ′ Γ(i | ψ ′,ψ ) is upper bounded by

δ = max

u,ψ ,ψ ′
α(u | ψ )
α(u | ψ ′)

Proof. For any i,ψ ′,ψ , we have

Γ(i | ψ ′,ψ ) = α(i | ψ ′)B(ψ ′, i)
α(i | ψ )B(ψ , i) ≤ δ

B(ψ ′, i)
B(ψ , i)

by the derivation of the closed form in Section 2.2. B(ψ ′, i) ≤
B(ψ , i) by definition, and therefore Γ(i | ψ ′,ψ ) ≤ δ . □

Corollary 3.3. For the ETC acceptance function, δ = O(1).

Proof. Recall that the ETC acceptance function is defined as:

α(u) = ρ1 log(E [|N (u) ∩ N (s)|] + 1) + ρ0

Thus, for any u, minψ α(u | ψ ) is achieved in all partial realizations

that guarantee |N (u) ∩ N (s)| = 0 and maxψ α(u | ψ ) ≤ 1. Thus,

ρ0 ≤ α(u | ψ ) ≤ 1,∀ψ . So we have:

δ ≤
maxψ α(u | ψ )
minψ α(u | ψ )

≤ 1

ρ0

As ρ0 is a constant, δ = O(1) for the ETC acceptance function. □

This leaves the task of proving a ratio in terms of this bound.

While the following proofs hold for more general statements of the

adaptive TPC, we will prove them w.r.t. δ instead as this dramati-

cally simplifies our notation.

Corollary 3.4. Given a partial realizationψ resulting from ap-
plication of the l-element greedy policy, ψ ⊂ ψ ′, i < dom(ψ ), and
дl+1

the next element that would be selected by the greedy policy at
partial realizationψ , we have:

∆(i | ψ ′) ≤ δ∆(дl+1
| ψ )

Proof. By Lemmas 3.1 and 3.2,

∆(i | ψ ′) = Γ(i | ψ ′,ψ )∆(i | ψ ) ≤ δ∆(дl+1
| ψ )

and thus the statement holds. □

We exploit this corollary in the following lemma to explicitly

relate the difference between an arbitrary policy and the l-element

greedy policy to the expected marginal gain of adding an l + 1’st

element to the greedy solution. Note that this “arbitrary policy”

will, in practice, be an optimal policy.

Lemma 3.5.

favg(π ′) − favg(πl ) ≤ kδ∆avд(πl ,πl+1
) (5)

where πl is the greedy policy selecting l elements with l < k , π ′ selects
exactly k elements, and ∆avд(πl ,πl+1

) = favg(πl+1
) − favg(πl ).

Proof. Note that

favg(π ′) − favg(πl ) ≤ favg(πl@π ′) − favg(πl )
since favg(π ′) ≤ favg(πl@π ′) due to the adaptive monotonicity of

f . From this inequality, it is clear that the difference in the expected

values of π ′ and πl is bounded by the marginal gain of running

π ′ after πl . This involves sending at most k additional requests.

By Corollary 3.4, the marginal gain of each of these requests is

bounded above by δ∆(дl+1
| ψ ) for each possibleψ . Thus, we have:

favg(π ′) − favg(πl ) ≤ E [kδ∆(дl+1
| ψ ) | ψ ]

= kδE [∆(дl+1
| ψ ) | ψ ]

= kδE [E [f (dom(ψ ) + дl+1
,Φ) − f (dom(ψ ),Φ) | Φ ∼ ψ ] | ψ ]

= kδE [f (E(πl+1
,Φ),Φ) − f (E(πl ,Φ),Φ) | Φ]

= kδ∆avд(πl ,πl+1
)

where the second equality uses the definition of ∆(·). □

Finally, we have the main theorem providing the adaptive ap-

proximation guarantee:

Theorem 3.6.[
1 −

(
1 − 1

kδ

)k ]
favg(π∗k ) ≤ favg(πk ) (6)

Proof. By Lemma 3.5, we have

favg(π∗k ) ≤ favg(πl ) + kδ∆avд(πl ,πl+1
)

Multiply both sides by (1 − (kδ )−1)k−1−l
and sum from l = 0 to

k − 1. We directly get that the left hand side reduces to

kδ

[
1 −

(
kδ − 1

kδ

)k ]
favg(π∗k )
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The right-hand side reduces to

k−1∑
l=0

[
favg(πl ) + kδ∆avд(πl ,πl+1

)
] (

1 − 1

kδ

)k−1−l

To simplify the below equations, we will denote β = 1 − 1

kδ and

use the identity favg(πl ) =
∑l−1

i=0
∆avg(πi ,πi+1).

Consider the j + 1’st decision made by the policy π . Inside the
summation, decision πj+1 appears in the terms

βk−1−jkδ∆avg(π ,πj+1) + βk−1−(j+1)∆avg(π ,πj+1)

+ βk−1−(j+2)∆avg(π ,πj+1) + . . .

=

βk−1−jkδ +
k∑

l=j+1

βk−1−l
 ∆avg(π ,πj+1)

Applying the closed form of the geometric series, we can simplify

this coefficient to

βk−1−jkδ +
βk−1−j − 1

β − 1

= βk−1−jkδ − βk−1−jkδ + kδ

where the right-hand of this inequality comes from noting that

(1 − 1/(kδ )) − 1 = −1/(kδ ). Therefore, we have the sum
k−1∑
l=0

kδ∆avg(πl ,πl+1
) = kδ favg(π )

Rearranging terms, we arrive at the statement of the theorem. □

Corollary 3.7. Greedy maximization of an adaptive monotone
function with total primal curvature bound δ satisfies(

1 − 1/e1/δ
)
favg(π∗k ) ≤ favg(πk ) (7)

Proof. This follows immediately by noting

lim

k→∞

(
1 − 1

kδ

)k
= 1/e1/δ □

Thus, we have a constant approximation ratio of 1 − 1/e1/δ ≈
0.165 for the MINE problem under the ETC model.

3.1 The Necessity of Finite Curvature
In the statement of Theorem 3.6, we use our problem-specific bound

δ on Γ. We now show that it is necessary for any problem to have a

finite bound δ to obtain an approximation ratio unless P = NP . We

accomplish this by showing that any ρ(n)-approximation algorithm

for maximizing an arbitrary monotone non-submodular д must

solve a class of NP-hard problems exactly, but that the constraint

Γ < ∞ excludes such problems.

Theorem 3.8. There is no polynomial time algorithm for ρ(n)-
approximatemaximization of an arbitrarymonotone non-submodular
function д with ρ(n) > 0 unless P = NP .

Proof. To show this, we first construct an objective function

with infinite curvature that cannot be exactly solved in polynomial

time by reduction to SAT [15]. We then show that any approxi-

mation algorithm with ratio ρ(n) > 0 is necessarily exact. While

our proof uses discrete terminology, we note that discrete prob-

lems are a subset of adaptive problems where there is only a single

realization and therefore our proof extends to the adaptive case.

Suppose we are given a CNF formula F with C clauses each

having kl literals and containing L literals total. We show how to

construct a monotone supermodular function д which returns 1

when the formula is satisfied and 0 otherwise.

First, we construct the domain ofд. For every literal xi in F, insert
two elements Ti and Fi into set N , corresponding to assigning the

literal xi 1 and 0, respectively. Then, a satisfying assignment for F
corresponds to a set S containing either Ti or Fi for every literal xi .
For the moment, we assume that such an assignment exists.

The verifying function д is then composed of three semantic

parts, each of which returns 1 when satisfied and 0 otherwise: (1)

S contains a satisfying assignment, (2) S does not contain both Ti
and Fi for any i , and (3) S assigns every literal a value. The latter

two conditions are needed because it is possible for a formula such

as F = (x1 ∨ · · · ) ∧ (x1 ∨ · · · ) ∧ · · · to be given, which is satisfied

by the assignment corresponding to S = {T1}.
For each clause cl = xi∨x j∨· · ·∨x̄r ∨· · · , define a functionCl (S)

verifying the clause is satisfied. For each literal xi , define a function
Ai (S) verifying xi is not simultaneously assigned 0 and 1. Finally,

define a function B(S) verifying that every literal is assigned a value.
These can be constructed and evaluated exactly in polynomial time

with the following closed forms:

Cl (S) =
⌈

1

kl

(
|{Ti } ∩ S | + |{Tj } ∩ S | + · · · + |{Fr } ∩ S |

)⌉
Ai (S) = 1 −

⌊
1

2

|{Ti , Fi } ∩ S |
⌋

B(S) =
⌊

1

L
|S |

⌋
Then define д as

д(S) = B(S)
L∏
i=1

Ai (S)
C∏
l=1

Cl (S)

By construction, д is 1 for any S corresponding to a satisfying as-

signment and 0 otherwise. Further, note that ∀|S | ≤ k , this function
is monotone supermodular. To have this property everywhere, we

extend it piecewise to д′(S) = д(S)∀|S | ≤ k and д′(S) = 1∀|S | > k .
Now, suppose we have an F with exactly one satisfying assign-

ment. Then there is exactly one S∗, |S∗ | = k s.t. д′(S∗) = 1, and

∀S, |S | ≤ k : д′(S) = 0. Clearly, if a polynomial-time algorithm A
can approximate the optimal solution S∗ with ρ(n) > 0, then on this

problem it must find the optimal solution. Otherwise, it would have

ρ(n) = 0. Therefore, either A can solve SAT in polynomial time,

implying P = NP , or A does not have a non-zero approximation

ratio for the stated class of objective functions. □

Observe that the above problem does not have a finite bound δ ,
since Γ(i | S∗ \ {i}, S∗ \ {i, j}) = 1/0.5 Thus, the constraint that δ be

finite is also sufficient to exclude such cases. More generally, this

means that every technique for giving an approximation ratio for

5
We abuse our notation here. Γ(i | T , S ) is the discrete analogue of the adaptive total
primal curvature, and can be defined as the ratio of marginal gains.
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Figure 2: Benefit with and without a term rewarding boost-
ing future acceptance chances on the Slashdot network.

non-submodular maximization must also bound δ unless P = NP .6

4 EXPERIMENTAL EVALUATION
Wenow examine several key questions about the performance of the

greedy socialbot. Extensive experiments have already established

the general efficacy of the greedy policy under various acceptance

models, including the one studied in this paper, and that the choice

of acceptance model significantly impacts the potency of the attack

[18, 19]. Thus, we instead focus on investigation of particular factors

influencing the behavior of the bot. First, we establish equivalence

with the bot models studied previously – a result necessitated by

the omission of a term rewarding the bot for improving acceptance

probability from our definition of f (F ,ϕ). We then examine the

impact of the benefit model on the bot, finding the counter-intuitive

result that rewarding the bot for being merely a friend-of-friend of

a target increases the fraction of targets befriended.

We adopt the benefit model given by Li et al. [18]: for a target set
of users T , Bf (u) = 1 if u ∈ T , 0 otherwise; Bf of (u) = 1

2
Bf (u); and

Be (u,v) = 2
Tu+Tv /M where M is the maximum expected degree

of any user on the network, Tu = 1 if u ∈ T and 0 otherwise.

We additionally use their “degree incentive” function to model the

tendency of high-degree users to accept friend requests without

critical examination. We set ϵ = 0.2, which yields β ≤ 10 and

gives the performance ratio of roughly 10%. Our simulations are

implemented in Rust.
78

Unless otherwise specified, we run each

method 250 times per data point and plot the mean.

Our experiments focus on the DBLP (317k nodes, 1M edges,

13.5k ground-truth communities) and Slashdot 2008 (77k nodes,

516k edges) datasets, both taken from SNAP [17]. As location of

targets may impact the attack policy, we focus on two natural target

models in our experiment. First, a simple breadth-first-search from

a randomly chosen node, collecting 100 possible neighbors (i.e.

the BFS progresses as if each potential edge exists). This models

an adversary taking a simple topological approach to building a

target list. Alternately, the attacker could obtain a ground-truth

list of targets from an external source (e.g. an organizational list of

employees). We model this by targeting ground-truth communities,

which have been provided for the DBLP topology. These are paired

6
We remark that if one lets д′(S ) = c, c > 0 rather than setting it to 0 for non-solution

sets, then any algorithm obtains a 1/c approximation ratio.

7
https://rust-lang.org

8
Code is available at https://gitlab.com/emallson/ht2018-experiments.

(a) πα (b) π

Figure 3: Sample traces under policies πα and π with k = 50

and 100 targets on the Slashdot network. Dark nodes are tar-
geted. ×marks represent users that rejected the bot’s friend
request and circular marks the opposite. Time proceeds left
to right. Each node is placed on the first row from the top
containing a friend or is added to a new row if none exist.
Lines correspond to edges in the OSN.

with a baseline we term “Untargeted:” every user is assigned a

random bu ∈ [0, 1] and we set Bf (u) = bu . This models the attacker

wishing only to collect private data, but having some idea of which

users are more likely to give high return for their investment.

4.1 Equivalence to Prior Models
In prior work, an additional term is present in the optimization

objective that directly rewards the bot for increasing the acceptance

probability α of other nodes. Note that this term is absent from

our formulation (compare Eqn. (4) to the equivalent in e.g. [18]).

Figure 2 shows that this change does very little to alter the total

benefit gained. However, it does not rule out the possibility that the

corresponding policies encode different choices. Golovin & Krause

observe that a policy π can be viewed as a decision tree encoding

the actions to take based on the current partial realization [11].

We wish to verify whether the decision tree for the α-rewarding
policy (which we will denote πα ) is fundamentally different from

the policy encoded by Alg. 1 (simply denoted π ).
As the problem of constructing – let alone comparing – these

decision trees is quite difficult, we take the simpler approach of

qualitative comparison to check for macro-level differences in be-

havior. Figure 3 shows a sample sets of traces for each policy. We

see very similar patterns of behavior in both policies: early attempts

to establish a foothold, followed by exploitation of that foothold

to befriend other users. From these figures, it is clear that there is

not a large difference in behavior caused by omitting this term, and

therefore we assume that prior results apply to this formulation.

4.2 Befriending Targets by Encouraging
Friend-of-Friend Relations

According to Li et al., the benefit model they use is constructed to

reward the bot based on the amount of information it may obtain

from friendship: full benefit for befriending a user, part of that

benefit for friend-of-friend relations, and a small additional amount

for revealing an edge (present or not). We observe that this means

the bot is rewarded a nontrivial amount for only becoming a friend-

of-friend of targets. This leads us to ask what impact this has on

the bot’s success in infiltrating the target set.
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Figure 4: Fraction of target set T befriended by the bot as a
function of the # of requests sent on the DBLP network.
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Figure 5: Acceptance probability of each request sent by the
bot on the DBLP network.

Figure 4 shows that the “consolation prize” of Bf of (u) > 0 actu-

ally increases the fraction of targets befriended, although as seen

in Fig. 7 the amount of benefit gained remains similar. On the other

hand, Figure 5 shows that this setting leads to a lower overall prob-

ability of acceptance of requests sent by the bot. Figure 6 shows

sample traces covering the first 50 requests when a community is

targeted on DBLP. Immediately apparent are two results: the bot

having friend-of-friend benefit focuses almost all of its requests

on targeted nodes, while the one without is dramatically more

successful early in the process. We note that the mean acceptance

probability shown in Fig. 5 is similar early in the process, so these

degree of failure seen in Fig. 6b (which does not show average

behavior) is likely not representative.

However, this does illuminate the change caused by removing

friend-of-friend benefit. Without this benefit source, the higher

probability of befriending untargeted users and for their edge ben-

efit edges out the value of befriending target users. The addition

friend-of-friend benefit causes a greater number of targets to be

befriended through a pair of effects: the direct effect of greater ben-

efit for clustered targets and the secondary effect of improving the

acceptance probability of targets by befriending their neighbors.

We note that the side effect of reducing early acceptance rate

may not be worth the cost, however. The use of rejection rate in bot

detection was remarked upon by the developers of the Facebook

Immune System [24], although the overall acceptance rate seen by

Boshmaf et al. during the same time period was quite low (19.3%

in the first 6 days, moving up to 59.1% over the entire 6-week

experiment) [5]. Figure 8 shows the mean acceptance rate (defined

as the rate of successful requests, as opposed to the predicted values

shown in Fig. 5) over the lifetime of the bot. Notably, the acceptance

rate never drops as low as the sub-20% seen in the experiments of

(a) Bf of (v) = 0 (b) Bf of (v) = 1

2
Bf (v)

Figure 6: Sample traces with community targets on DBLP
both (a) without and (b) with FoF benefit.
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Figure 8: Overall acceptance
rate over the lifetime of a bot
when targeting communities
on DBLP.

Boshmaf et al. However, there is a sizable gap between the rates of

a bot operating with and without friend-of-friend benefit.

5 CONCLUSION & FUTUREWORK
In this work, we developed a novel technique for bounding the

approximation quality of a greedy socialbot conducting a recon-

naissance attack under a realistic model of user behavior. This was

then generalized to provide a bound for the much broader class of

adaptive monotone non-submodular problems given a bound on

the adaptive primal curvature (APC) of their objective functions.
We further showed that a finite bound on the APC is necessary

for any approximation guarantee to hold for any algorithm. Our

definition of curvature differs from those used in prior work, which

indicates that more study is needed to identify the exact properties

necessary to obtain an approximation ratio.

We then conducted further analysis of the behavior of a socialbot

under this realistic model. Notably, we found the counter-intuitive

result that rewarding the bot for becoming friends-of-friends of its

targets actually improved the rate at which it befriended targets

– at a small cost to overall acceptance rate. This counter-intuitive

result leads us to note that the current definition of benefit may

be sub-optimal. Further study should be devoted to finding the

optimal scheme for assigning benefit to users tomaximize particular

metrics (e.g. target friending rate). We also note that our model

of user acceptance only incorporates topological features. Future

work may explore the impact of profile and temporal features on

acceptance probability, and optimality under such features.
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