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Abstract—In this paper, we study the delay-constrained input-
queued switch where each packet has a deadline and it will
expire if it is not delivered before its deadline. Such new
scenario is motivated by the proliferation of real-time appli-
cations in multimedia communication systems, tactile Internet,
networked controlled systems, and cyber-physical systems. The
delay-constrained input-queued switch is completely different
from the well-understood delay-unconstrained one and thus
poses new challenges. We focus on three fundamental problems
centering around the performance metric of timely throughput:
(i) how to characterize the capacity region? (ii) how to design
a feasibility/throughput-optimal scheduling policy? and (iii) how
to design a network-utility-maximization scheduling policy? We
use three different approaches to solve these three fundamental
problems. The first approach is based on Markov Decision
Process (MDP) theory, which can solve all three problems.
However, it suffers from the curse of dimensionality. The second
approach breaks the curse of dimensionality by exploiting the
combinatorial features of the problem. It gives a new capacity
region characterization with only a polynomial number of linear
constraints. The third approach is based on the framework
of Lyapunov optimization, where we design a polynomial-time
maximum-weight T-disjoint-matching scheduling policy which
is proved to be feasibility/throughput-optimal. Our three ap-
proaches apply to the frame-synchronized traffic pattern but our
MDP-based approach can be extended to more general traffic
patterns.

I. INTRODUCTION

Switches, which interconnect multiple devices, are the core
of communication networks. There are mainly three types
of switch designs: output-queued switch, direct input-queued
switch, and input-queued switch using virtual output queueing.
Among them, the input-queued switch using virtual output
queueing is most widely used because it addresses the N-
speedup problem of the output-queued switch [2], [3] and the
Head-Of-Line (HOL) blocking problem of the direct input-
queued switch [4]. In this work, we study the input-queued
switch using virtual output queueing, which we simply call
input-queued switch for the sake of convenience.

Most existing works on input-queued switches consider
delay-unconstrained traffic where packets can be kept in the
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virtual output queues forever. Throughput and average delay
are two major performance metrics for delay-unconstrained
input-queued switches. The authors in [5] characterized the
capacity region for independent, identically distributed (i.i.d.)
arrivals and further proved that the maximum-weight-matching
scheduling policy is throughput-optimal in the sense that it can
support any feasible throughput requirements in the capacity
region. The authors in [6] extended these results to arbitrary
delay-unconstrained arrivals by using fluid model techniques.
To study the average delay performance, the authors in [7]
proposed another throughput-optimal scheduling policy and
showed that it attains O(log N) average delay for N ×N input-
queued switches.

However, with the proliferation of real-time applications,
the communication networks nowadays need to support more
and more delay-constrained traffic. Typical examples include
multimedia communication systems such as real-time stream-
ing and video conferencing [8], tactile Internet [9], [10],
networked controlled systems (NCSs) such as remote control
of unmanned aerial vehicles (UAVs) [11], [12], and cyber-
physical systems (CPSs) such as medical tele-operations, X-
by-wire vehilces/avionics, factory automation, and robotic
collaboration [3]. In such applications, each packet has a
hard deadline: if it is not delivered before its deadline, its
validity will expire and it will be removed from the system.
In addition, throughput, which is termed timely throughput
in the delay-constrained scenario [13], [14], [15], [8], is also
important to such applications. Taking NCSs as an example,
the control system can be stabilized if the control messages
arrive before the predetermined deadlines and the dropout
rate is below a threshold (which equivalently means that the
timely throughput is above a threshold) [16], [17]. Taking
tactile Internet as another example, the timely throughput is a
measure of reliability [10].

Since switches are the core of communication networks,
how to support delay-constrained traffic in switches becomes
critical. Note that switches can serve delay-constrained traffi
c such as tactile applications from both wireless ends and
wireline ends. There are some existing works that investigate
how to design real-time input-queued switch, e.g., [18], [19],
[3]. In [18], the authors proposed two scheduling policies
under which the delivery delay of packets is upper bounded
by a finite value. In [19], [3], the design goal is to deliver
all packets and minimize the maximum delivery delay among
all packets. Thus, existing works do not directly guarantee
the delivery of delay-constrained traffics where hard deadlines
are predetermined by the applications; and they do not allow
any packet loss. Instead, in this work, we consider how to
deliver delay-constrained traffic and focus on the performance
metric of timely throughput. More specifically, we study the
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TABLE I
OUR THREE APPROACHES TO SOLVING THE THREE FUNDAMENTAL PROBLEMS FOR DELAY-CONSTRAINED INPUT-QUEUED SWITCHES.

Approach Capacity Region Feasibility/Throughput-
Optimal Scheduling Policy

Network-Utility-Maxi.
Scheduling Policy Complexity Extend to General

Traffic Pattern
MDP-based (Sec. III) 3 3 3 Exponential 3

Combinatorial (Sec. IV) 3 7 7 Polynomial 7
Lyapunov-based (Sec. V) 7 3 7 Polynomial 7

following three fundamental problems for delay-constrained
input-queued switches:
• First, we aim to characterize the capacity region in

terms of timely throughput of all input-output pairs. The
capacity region serves as the foundation to evaluate the
performance of any scheduling policy.

• Second, we aim to design a throughput-optimal (which
is termed feasibility-optimal in the delay-constrained sce-
nario [13], [14], [15], [8]) scheduling policy, which can
support any feasible timely throughput requirements in
the capacity region. This problem is important for in-
elastic applications which have stringent minimum timely
throughput requirements.

• Third, we aim to design a scheduling policy to max-
imize the network utility with respect to the achieved
timely throughput. This problem is important for elastic
applications which do not have stringent minimum timely
throughput requirements but aim to obtain large utility.
Here an elastic application has a utility function which
increases as its achieved timely throughput increases.

To the best of our knowledge, this is the first pre-
sented study on these three fundamental problems center-
ing around timely throughput for delay-constrained input-
queued switches. We should emphasize that delay-constrained
input-queued switches are completely different from delay-
unconstrained ones. In delay-unconstrained scenarios, since
packets will never expire and can be kept in the queues forever,
the arrival traffic pattern does not make a big difference
(actually only the arrival rate matters in the capacity region
characterization and in the throughput-optimal scheduling pol-
icy design [6]). However, in delay-constrained scenarios, since
packets will expire if they are not scheduled before their
deadlines, the arrival traffic pattern has a significant impact on
timely throughput. Thus, as compared to delay-unconstrained
ones, there are new challenges to study delay-constrained
input-queued switches.

In this work, as a first step toward answering the above three
fundamental problems for delay-constrained input-queued
switches, we mainly study a special traffic pattern, called
frame-synchronized traffic pattern. Such a traffic pattern can
find applications in CPSs [20]. It was also the first focus in
delay-constrained wireless communication [13], [14], [14], [8].
We also discuss how to consider more general traffic patterns.
In this work, we use three different approaches to study
the above three fundamental problems. The three approaches
come from different angles and all have their own merits. We
summarize the results in Table I and detail them as follows:
• The first approach is based on Markov Decision Process

(MDP) theory. MDP has a strong modeling capability.
Since our system is Markovian (though deterministic), we

can use MDP to model our problem. By leveraging results
in [8], in Sec. III, we characterize the capacity region,
design a feasibility-optimal scheduling policy, and design
a network-utility-maximization scheduling policy. Due to
its strong modeling capability, the MDP-based approach
can be extended to more general traffic pattern, similar to
[8]. However, the MDP approach suffers from the curse
of dimensionality: it has an exponential complexity with
the switch size.

• The second approach exploits the problem’s combinato-
rial features. By leveraging some results in combinatorial
matrix theory, in Sec. IV, we characterize the capacity
region with only a polynomial number of linear con-
straints (see (15)). This breaks the curse of dimensionality
of the first MDP-based approach for capacity region
characterization.

• The third approach is based on the framework of Lya-
punov optimization. By leveraging the Lyapunov-drift
theorem [21], in Sec. V, we show that the problem of min-
imizing Lyapunov drift is a maximum-weight T-disjoint-
matching problem. We further design a polynomial-time
algorithm to optimally solve the maximum-weight T-
disjoint-matching problem based on the bipartite-graph
edge-coloring algorithm. We show that our maximum-
weight T-disjoint-matching scheduling policy (called T-
MWM) is feasibility-optimal.

We remark that although it is straightforward to apply the
MDP-based approach in [8] to solve our three fundamental
problems, the solutions are of exponential complexity and thus
cannot be efficiently applied to large-size switches. Therefore,
the polynomial-time capacity region characterization in (15)
and the polynomial-time feasibility-optimal T-MWM schedul-
ing policy are two main contributions of this paper. These two
results also serve as the delay-constrained counterparts of the
capacity region characterization and the throughput-optimal
maximum-weight-matching scheduling policy for the delay-
unconstrained input-queued switch in [5].

Notation. In this paper, we define set [C] , {1, 2, · · · ,C}
for any positive integer C. We use calligraphy font to denote
sets, e.g., A. We use bold math font to denote vectors and
matrices whose entries use the corresponding normal font, e.g.,
b = (bt : t ∈ [T]), R = (Ri, j : i, j ∈ [N]). We sometimes omit
the index range of vectors/matrices if it is not ambiguous in
the context, e.g., b = (bt ), R = (Ri, j). We use upper-case letter
to denote random variables, e.g., S.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

A. System Model
Input-Queued Switch. We consider an N×N input-queued

switch using virtual output queueing as shown in Fig. 1(a).
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Fig. 1. An N ×N input-queued switch using virtual output queueing (VOQ)
and its corresponding bipartite graph G = (V, E).

Each input Ii has N virtual output queues (VOQs), denoted as
VOQ(i, j), ∀ j ∈ [N]. VOQ(i, j) contains all packets from input
Ii to output O j .

Traffic Pattern. We consider a time-slotted system. We
assume a frame-synchronized traffic pattern [13]: starting from
slot 1, there is an incoming packet for each VOQ every T
slots and the deadline of any packet is also T slots. We call
T the frame length. Such a traffic pattern is shown in Fig. 2.
If a packet is delivered before its deadline, it contributes to
the throughput; otherwise, the packet is useless and will be
dropped/discarded from the system.

The frame-synchronized traffic pattern can find applications
in CPSs [20]. In addition, like the delay-constrained wireless
communication community [13], [14], [15], [8], the special
frame-synchronized traffic pattern is a good starting point to
investigate delay-constrained input-queued switches. We also
show that our first approach (the MDP-based approach) can
be extended to more general traffic patterns in Sec. III.

Scheduling Algorithm/Policy. In each slot, the switch
fabric can transmit some packets from the inputs to the outputs.
In this paper, we use the most common crossbar switch fabric.
However, due to the physical limitations of crossbar switch
fabric, each input can transmit at most one packet per slot
and each output can receive at most one packet per slot. This
is also known as the crossbar constraints [7]. The crossbar
switch is non-blocking in the sense that all packets satisfying
the crossbar constraints can be routed simultaneously in a slot.
For the N × N input-queued switch, we can construct a corre-
sponding bipartite graph G = (V, E) between the N inputs and
the N outputs where V = {I1, I2, · · · , IN } ∪ {O1,O2, · · · ,ON }
and E = {(Ii,O j) : i, j ∈ [N]}, as shown in Fig. 1(b).
Then the (deterministic) decision in each slot corresponds to
a matching1 in the bipartite graph G. More specifically, we
denote a matching as a matrix M = (Mi, j : i, j ∈ [N]), where
Mi, j = 1 if edge (Ii,O j) is in the matching (i.e., VOQ(i, j) is
selected) and Mi, j = 0 otherwise. Clearly, matching M should
satisfy2

1Recall that a matching in a graph is a set of pairwise non-adjacent edges;
namely, no two edges share a common vertex.

2With a little bit abuse of notation, here we refer matrix M as the edge set
in this matching and thus we call it matching M .

T+1T 2T+12Tt 1 3T
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Fig. 2. The frame-synchronized traffic pattern for the input-queued switch.

N∑
j=1

Mi, j ≤ 1, ∀i ∈ [N], (1a)

N∑
i=1

Mi, j ≤ 1, ∀ j ∈ [N], (1b)

Mi, j ∈ {0, 1}, ∀i, j ∈ [N], (1c)

where (1a) restricts that any input Ii can at most transmit one
packet to one output and (1b) restricts that any output O j can
at most receive one packet from one input. We denote the set
of all matchings as M, i.e.,

M , {M = (Mi, j : i, j ∈ [N]) : M satisfies (1a) − (1c)}.

The decision could also be randomized in that it could
randomly choose a matching among multiple matchings. A
scheduling algorithm/policy is the set of (possibly randomized)
decisions at all slots. We give two definitions for later analysis.

Definition 1: Two matchings M = (Mi, j) and M ′ = (M ′i, j)
are disjoint if there does not exist a position (i, j) such that
both Mi, j = 1 and M ′i, j = 1.

Definition 2: If M t = (M t
i, j) is a matching for any t ∈ [T],

we call the collection {M t : t ∈ [T]} a T-disjoint matching if
any two of them are disjoint.

B. Problem Formulations

For a scheduling policy π, we define the timely throughput
[13], [8] from input Ii to output O j as3

Rπi, j , lim inf
t→∞

E
[∑t

τ=1 Dπ
i, j,τ

]
t

, ∀i, j ∈ [N], (2)

where Dπ
i, j,τ = 1 if a packet is delivered from input Ii to

output O j at slot τ under scheduling policy π and Dπ
i, j,τ = 0

otherwise. Here the expectation is taken over the randomness
of matchings if randomized matchings are specified in the
scheduling policy π. Since all expired packets will be removed
from the system, the timely throughput Rπi, j is the per-slot
average number of delivered packets before expiration for
VOQ(i, j). Note that we allow packet dropout/expiration and
thus do not need to deliver all traffic packets. However, packet
dropout/expiration affects the timely throughput.

A rate matrix R = (Ri, j) is feasible if there exists a
scheduling policy such that the timely throughput from input

3We also call it the timely throughput of VOQ(i, j).
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Ii to output O j is at least Ri, j for all i, j ∈ [N]. We then define
the capacity region R(T) as the set of all feasible rate matrices
with frame length T .

Based on these definitions, in this paper, we study the fol-
lowing three timely-throughput-centric fundamental problems:
• How to characterize the capacity region R(T)?
• How to design a feasibility-optimal scheduling policy, i.e.,

to design a policy that can support any feasible rate matrix
R ∈ R(T)?

• How to design a scheduling policy to maximize the
network utility, i.e.,

max
R∈R(T )

N∑
i=1

N∑
j=1

Ui, j(Ri, j), (3)

where each input-output pair (i, j) has an increasing,
concave, and continuously differentiable utility function
Ui, j(Ri, j) with respect to its achieved timely throughput
Ri, j?

The capacity region problem is important because it serves
as the foundation to evaluate any scheduling policy. The
feasibility-optimal scheduling policy design problem is im-
portant for inelastic delay-constrained applications which
have stringent minimum timely throughput requirements. The
network-utility-maximization scheduling policy design prob-
lem is important for elastic delay-constrained applications
which do not have stringent minimum timely throughput
requirements but obtain larger utility for larger timely through-
put. Next we propose three different approaches to solve the
above three fundamental problems for delay-constrained input-
queued switches.

III. AN MDP-BASED APPROACH

For delay-constrained wireless communication, the authors
in [8] proposed a unified MDP-based formulation to study
three fundamental problems similar to ours. By observing our
system is also Markovian (though deterministic), we can also
use MDP theory [22] to solve our three fundamental problems.
Our MDP can be described by a tuple {S,A, {Pt }, {ri, j}},
where S is the state space, A is the action space, Pt (s′ |s, a) is
the transition probability from state s to state s′ if taking action
a at slot t, and ri, j(s, a) is the per-slot reward of VOQ(i, j) if
the state is s and the action is a.

State. For VOQ(i, j), we define its state at slot t as

Si, j,t =
{

1, if there exists a packet in VOQ(i, j) at slot t;
0, otherwise.

(4)
The system state at slot t is denoted as

St = (Si, j,t : i, j ∈ [N]). (5)

Then the state space S is the set of all {0, 1} N ×N matrices.4

The total number of states is |S| = 2N2
.

Action. Let us define

Ai, j,t =

{
1, if VOQ(i, j) is selected at slot t;
0, otherwise. (6)

4Recall that a matrix is a {0, 1} matrix if all its entries are either 0 or 1.

Then the action at slot t is denoted as

At = (Ai, j,t : i, j ∈ [N]). (7)

Due to the crossbar constraints, our action at slot t must be
a matching of G, i.e., At ∈ M. In our MDP formulation,
we further restrict our action at each slot to be a perfect
matching without loss of optimality. A perfect matching is
a matching such that any input/output is incident to an edge
in the matching. Namely, if M ∈ M is a perfect matching,
then all inequalities in (1a) and (1b) hold as equalities. The
reason that we can restrict our action to be a perfect matching
without loss of optimality is as follows: for our bipartite graph
G with N inputs and N outputs, if a matching M ∈ M is non-
perfect, then at least one input and at least one output are not
incident to the edges in matching M and thus we can add a
new edge to construct a new matching. We can keep adding
new edges to finally construct a perfect matching M ′. Since
M ′ is a superset of M , any VOQ selected in action M will
also be selected in action M ′. Thus, it suffices to consider
perfect matchings. Then the action space A is the set of all
perfect matchings. For our N × N input-queued switch, we
have in total |A| = N! perfect matchings.

Transition Probability. For our input-queued switch, we
have a deterministic transition which depends on three events:
(i) packet expiration, (ii) packet arrival, and (iii) packet deliv-
ery. For VOQ(i, j), the transition probability is as follows:
• When t , f T, f ∈ Z+, since there is no packet expiration

and no packet arrival, ∀si, j ∈ {0, 1}, we have

Pi, j,t (s′i, j |si, j, ai, j = 1) =
{

1, if s′i, j = 0;
0, if s′i, j = 1;

Pi, j,t (s′i, j |si, j, ai, j = 0) =
{

1, if s′i, j = si, j ;
0, if s′i, j , si, j .

• When t = f T for some f ∈ Z+, since the old packet
(if any) will expire and a new packet will arrive, ∀si, j ∈
{0, 1}, ai, j ∈ {0, 1}, we have

Pi, j,t (s′i, j |si, j, ai, j) =
{

1, if s′i, j = 1;
0, if s′i, j = 0.

Then by the fact that given action a = (ai, j : i, j ∈ [N]) at
slot t, the transition of each individual state si, j is independent
of all other states, the system transition from state s = (si, j :
i, j ∈ [N]) to state s′ = (s′i, j : i, j ∈ [N]) if taking action
a = (ai, j : i, j ∈ [N]) at slot t is

Pt (s′ |s, a) = ΠN
i=1Π

N
j=1Pi, j,t (s′i, j |si, j, ai, j). (8)

Note that the transition probability is not stationary because it
depends on slot t (specifically, it depends on whether t , f T
or t = f T).

Reward. The per-slot reward of VOQ(i, j) under state s =
(si, j : i, j ∈ [N]) and action a = (ai, j : i, j ∈ [N]) is

ri, j(s, a) =
{

1, if si, j = 1, ai, j = 1;
0, otherwise. (9)

After we formulate the MDP for our input-queued switch,
we can easily see that the average reward (in the lim inf sense)
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of VOQ(i, j) for a given scheduling policy in the MDP is the
timely throughput of VOQ(i, j) for the same scheduling policy
in our system. Thus, we can solve the formulated MDP to
answer the three problems in Sec. II-B. Similar to [8]. Let
xt (s, a) be the joint probability that the system is in state s
and the action is a at slot t and we then have the following
result.

Theorem 1: (i) The network utility maximization problem
in (3) can be solved by the following linear-constrained convex
optimization problem:

max
N∑
i=1

N∑
j=1

Ui, j(Ri, j) (10a)

s.t.
∑
a∈A

xt+1(s′, a) =
∑
s∈S

∑
a∈A

Pt (s′ |s, a)xt (s, a)

∀s′ ∈ S, t ∈ [T − 1] (10b)∑
a∈A

x1(s′, a) =
∑
s∈S

∑
a∈A

PT (s′ |s, a)xT (s, a)

∀s′ ∈ S (10c)

Ri, j ≤
∑T

t=1
∑

s∈S
∑

a∈A ri, j(s, a)xt (s, a)
T

∀i, j ∈ [N] (10d)∑
s∈S

∑
a∈A

xt (s, a) = 1, ∀t ∈ [T] (10e)

var. xt (s, a) ≥ 0, ∀t ∈ [T], s ∈ S, a ∈ A (10f)
Ri, j ≥ 0, ∀i, j ∈ [N]. (10g)

(ii) The capacity region R(T) can be characterized by

R(T) =
{
(Ri, j : i, j ∈ [N]) : There exists

a {xt (s, a) : t ∈ [T], s ∈ S, a ∈ A}
such that (10b)-(10g) holds for (Ri, j : i, j ∈ [N])

}
. (11)

(iii) For any {xt (s, a)} and (Ri, j) satisfying (10b)-(10g), the
following randomized cyclo-stationary (RCS) policy achieves
timely throughput Ri, j for any VOQ(i, j),{

ProbAt |St
(a |s) = xt (s,a)∑

a′∈A xt (s,a′), ∀t ∈ [T];
ProbAt |St

(a |s) = ProbAt−T |St−T (a |s), ∀t > T .
(12)

In (10), since xt (s, a) is the joint probability that the system
is in state s and the action is a at slot t, (10b) and (10c) are the
consistency condition (or probability flow balance equation)
for slots 1, 2, · · ·T − 1 and slot T , respectively. Note that in
(10c), we come back to slot 1 from slot T because we consider
a frame of T slots. The right-hand side of (10d) is the per-
slot average reward. Note that in (10d) we use inequality
because if we can support a timely throughput Ri, j , we can
always support a smaller timely throughput R′i, j < Ri, j without
affecting other VOQs’ timely throughput. However, due to the
increasing property of the utility function Ui, j(Ri, j), an optimal
solution is always achieved with equality in (10d). Eq. (10e)
says that the sum of probabilities over all states and all actions
is 1.

Part (i) of Theorem 1 shows that we can get the optimal
network utility by solving a linear-constrained convex opti-
mization problem; based on the optimal solution, part (iii)

of Theorem 1 shows that we can construct a RCS policy to
achieve such an optimal network utility. Namely, we obtain
a network-utility-maximization scheduling policy. Part (ii) of
Theorem 1 shows that the capacity region can be characterized
by a finite (though exponentially increasing with respect to
N) number of linear constraints in (10). Then for any feasible
timely throughput matrix R ∈ R(T), we can input it in (10) as
a set of given variables and then after solving problem (10)
(with any valid utility functions), we get a feasible solution;
based on this feasible solution, part (iii) of Theorem 1 again
shows that we can construct a RCS policy to achieve the
given feasible timely throughput matrix R ∈ R(T). Namely,
we obtain a feasibility-optimal scheduling policy. Therefore,
Theorem 1 shows that in principle our MDP-based approach
solves all three fundamental problems in Sec. II-B.

In addition, although we mainly study the frame-
synchronized traffic pattern, we should further remark that
our MDP-based approach can also be extended to more
general traffic patterns which might be non-framed or non-
synchronized and could have stochastic arrivals. This is similar
to [8], which extends the frame-synchronized traffic pattern to
general traffic patterns for delay-constrained wireless commu-
nication problems.

However, MDP framework suffers from the curse of di-
mensionality: the number of states is 2N2

and the number
of actions is N!, both increasing exponentially with respect to
the switch size N . Specifically, the MDP-based capacity region
characterization has O(T ·2N2 ·N!) linear equalities/inequalities.
For the MDP-based RCS scheduling policy, we need a table
of size O(T · 2N2 ·N!) to store the solution {xt (s, a)} and then
based on an observed state s in a frame, the per-frame time
complexity to obtain the action distribution ProbAt |St

(a |s) is
O(N!). To break the curse of dimensionality, next in Sec. IV,
we exploit the combinatorial features of our problem which are
hidden by our MDP-based approach and give a new capacity
region characterization with only a polynomial number of
linear constraints; and in Sec. V, we propose a polynomial-
time feasibility-optimal scheduling policy.

IV. A SIMPLE CAPACITY REGION CHARACTERIZATION

In this section, by exploiting the combinatorial features of
the problem, we give a simple capacity region characterization
in terms of only a polynomial number of linear constraints for
the delay-constrained input-queued switches. Toward that end,
we first present some preliminary definitions and results.

Definition 3 ([23]): An N × N square matrix E = (Ei, j) is
doubly substochastic if it satisfies the following conditions:

∑n
j=1 Ei, j ≤ 1, ∀i ∈ [N];∑n
i=1 Ei, j ≤ 1, ∀ j ∈ [N];

Ei, j ≥ 0, ∀i, j ∈ [N].
(13)

Denote J as the set of all doubly substochastic N × N
matrices and let k be a positive integer. Let Jk be the set of
all 1/k-bounded doubly substochastic N × N matrices, i.e.,

Jk , {E ∈ J : Ei, j ∈ [0, 1/k], ∀i, j ∈ [N]}. (14)
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Denote Hk as the set of all matrices in Jk whose entries are
either 0 or 1/k. Clearly, Hk is a finite set. We now give a
convex-hull characterization for set Jk .

Lemma 1 ([24, Theorem 1]): Jk is the convex hull of all
matrices in Hk .

Lemma 1 shows that any matrix E ∈ Jk can be expressed
as a convex combination of some matrices in Hk .

A matrix is a subpermutation matrix if it is a {0, 1} matrix
and each of its line (row or column) has at most one 1. It is
straightforward to see that matrix M is a matching (i.e., M ∈
M) if and only if M is a subpermutation matrix. In addition, a
matrix is a k-subpermutation matrix for some positive integer
k if it is a {0, 1} matrix and the sum of each line (row or
column) is at most k. We give a decomposition result for k-
subpermutation matrices.

Lemma 2 ([23, Theorem 4.4.3]): Any k-subpermutation
matrix can be expressed as the sum of k subpermutation
matrices.5

With the help of the above-mentioned results, we now give a
new capacity region characterization for our delay-constrained
input-queued switch.

Theorem 2: The capacity region R(T) is the set of all rate
matrices R = (Ri, j) satisfying the following linear inequalities:

N∑
i=1

Ri, j ≤ 1, ∀ j ∈ [N], (15a)

N∑
j=1

Ri, j ≤ 1, ∀i ∈ [N], (15b)

Ri, j ∈ [0, 1/T], ∀i, j ∈ [N]. (15c)

Proof: The necessity of this result can be easily proved.
Since any output O j can at most receive one packet per slot,
the aggregate timely throughput involving output O j is at most
1 and thus (15a) holds; since any input Ii can at most transmit
one packet per slot, the aggregate timely throughput involving
input Ii is at most 1 and thus (15b) holds; since every VOQ
has only one packet in a frame of T slots, its (per-slot) timely
throughput is at most 1/T and thus (15c) holds. Thus, any
feasible rate matrix R must satisfy (15). Then we only need
to show that any rate matrix R satisfying (15) can be achieved
by some scheduling policy.

Clearly any matrix R satisfying (15) is a 1/T-bounded
doubly substochastic matrix. Then from Lemma 1, we know
that R can be expressed as a convex combination of a finite
number of (say in total K) doubly substochastic matrices
whose entries are either 0 or 1/T , i.e.,

R =
K∑
k=1

λkRk, (16)

where λk > 0,
∑K

k=1 λk = 1 and matrix Rk is a doubly
substochastic matrix with entries being 0 or 1/T . Since Rk is

5In the original result [23, Theorem 4.4.3], the maximum line sum of the
matrix is exactly k. However, if the maximum line sum of the matrix is less
than k, [23, Theorem 4.4.3] shows that we can decompose it into less than
k subpermutation matrices. We can further add some zero matrices such that
we can decompose it into exactly k subpermutation matrices.

a doubly substochastic matrix, it has at most T entries being
1/T in each line (row or column).

We multiply matrix Rk by T and obtain matrix TRk . Clearly,
the entry of matrix TRk is either 0 or 1 and the sum of each
line (row or column) is at most T , implying that TRk is a T-
subpermutation matrix. Now according to Lemma 2, matrix
TRk can be decomposed as the sum of T subpermutation
matrices, i.e.,

TRk =

T∑
t=1

Mk,t, (17)

where Mk,t is a subpermutation matrix, which corresponds
to a matching. In addition, since the entry of matrix TRk is
either 0 or 1, all subpermutation matrices (matchings) Mk,t ’s
are pairwise disjoint (see Definition 1), implying that {Mk,t :
t ∈ [T]} is a T-disjoint-matching (see Definition 2).

Combining (16) and (17), we have

TR =
K∑
k=1

λk · TRk =

K∑
k=1

λk

T∑
t=1

Mk,t . (18)

Then we construct the following scheduling policy: in
each frame, select the T-disjoint-matching {Mk,t : t ∈ [T]}
with probability λk for any k ∈ [K]. Here when we select
the T-disjoint-matching {Mk,t : t ∈ [T]} in any frame
f = 0, 1, 2, · · · , we do the scheduling as follows:
• Perform matching Mk,1 at slot f T + 1;
• Perform matching Mk,2 at slot f T + 2;
• · · ·
• Perform matching Mk,T at slot ( f + 1)T .
For the T-disjoint-matching {Mk,t : t ∈ [T]}, if(

T∑
t=1

Mk,t

)
i, j

= (TRk)i, j = 1,

VOQ(i, j) will be scheduled in a frame; otherwise, VOQ(i, j)
will not be scheduled. Since we select all (in total K) T-
disjoint-matchings randomly according to probability distri-
bution {λk}, the probability to schedule VOQ(i, j) (which is
also the expected number of delivered packets for VOQ(i, j))
in a frame is

K∑
k=1

λk(TRk)i, j = (TR)i, j = T Ri, j, (19)

where the first equality follows from (18). Therefore, the (per-
slot) timely throughput of VOQ(i, j) is TRi, j

T = Ri, j for any
VOQ(i, j). This completes the proof.

Theorem 2 gives a new capacity region characterization (15)
with only 2N2 + 2N = O(N2) linear inequalities, much lower
than the exponential-size MDP-based characterization (which
needs O(T ·2N2 ·N!) linear equalities/inequalities). We further
make some remarks for Theorem 2.

A. Comparison with Delay-Unconstrained Results

Our capacity region characterization for delay-constrained
input-queued switches has a similar non-overbooking con-
dition (see (15a), (15b)) with that for delay-unconstrained
ones [5], [6], [25], [26], [27], except that each VOQ’s timely
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throughput is upper bounded by 1/T (see (15c)). However,
there is a fundamental difference — in delay-unconstrained
input-queued switches, the capacity region is in terms of
the (incoming) arrival rate of all VOQs, while in our delay-
constrained ones, the capacity region is in terms of the
(achieved) timely throughput of VOQs. In other words, we
allow packet loss/expiration and characterize the fundamental
limit of timely throughput in our delay-constrained input-
queued switches. In addition, we also cannot directly apply the
proof techniques for the capacity region characterization based
on Birkhoff-von Neumann decomposition approach for delay-
unconstrained input-queued switches [25], [26]. In [25], [26],
the proof of the capacity region characterization for delay-
unconstrained input-queued switches relies on two results:
• (1) For any N × N doubly substochastic matrix R, there

exists an N × N doubly stochastic matrix R′ (where
the first two inequalities in (13) hold as equalities) such
that entry-wise R ≤ R′. This was proved by John von
Neumann in [28];

• (2) Any N ×N doubly stochastic matrix can be expressed
as the convex combination of some N × N permutation
matrices. This was proved by Garrett Birkhoff in [29].

If we followed this proof technique to prove our Theorem 2,
we need the following two results:
• (1’) For any N × N 1/T-bounded doubly substochastic

matrix R, there exists an N × N 1/T-bounded doubly
stochastic matrix R′ such that entry-wise R ≤ R′;

• (2’) Any N×N 1/T-bounded doubly stochastic matrix can
be expressed as the convex combination of some N × N
doubly stochastic matrices whose entries are either 0 or
1/T .

Part (2’) holds according to [30]. However, it turns out that
part (1’) does not hold. As a counter-example, consider the
following N × N 1/T-bounded doubly substochastic matrix R
where N = 3, T = 2, and

R =
©«

0.5 0.4 0.1
0.4 0.5 0.1
0.1 0.1 0.1

ª®¬ .
If we need to find an N × N 1/T-bounded doubly stochastic
matrix R′ such that entry-wise R ≤ R′, we can only increase
R3,3, but we can at most increase up to R3,3 = 0.5 and the
resulting matrix is still not a doubly stochastic matrix. Hence,
there does not exist an N × N 1/T-bounded doubly stochastic
matrix R′ such that entry-wise R ≤ R′ and thus part (1’)
does not hold. Therefore, we cannot apply the same proof
idea of delay-unconstrained input-queued switches into our
delay-constrained ones.

Instead, we have to leverage the result in Lemma 1 which
directly gives a convex-hull characterization for 1/T-bounded
doubly substochastic matrices. This is a key step to prove
Theorem 2.

B. The Special Case of T ≥ N

If T ≥ N , we can see that the rate matrix R = (Ri, j =

1/T : i, j ∈ [N]) is in the capacity region (15), which achieves
the largest timely throughput for all VOQs. In fact, (15c)

implies (15a) and (15b) when T ≥ N . Indeed, when T ≥ N ,
we can construct a scheduling policy to transmit all packets
without any packet loss/expiration so as to attain a timely
throughput of 1/T for all VOQs. We first note that a perfect
matching can also be represented as a permutation of elements
{1, 2, · · · , N}. For example with N = 3, permutation (2, 3, 1)
means the perfect matching {(I1,O2), (I2,O3), (I3,O1)}. Then
in any frame f = 0, 1, 2, · · · , we do the following scheduling:
• Perform permutation (1, 2, · · · , N − 1, N) at slot f T + 1;
• Perform permutation (N, 1, 2, · · · , N − 1) at slot f T + 2;
• · · ·
• Perform permutation (2, · · · , N − 1, N, 1) at slot f T + N .
• Perform nothing from slot f T + N + 1 to slot ( f + 1)T .

Namely, starting with permutation (1, 2, · · · , N−1, N), we keep
doing right-circular shift for the obtained permutation, which
is similar to the idea of the “circular-shift” matrix in [18]. We
can check that any VOQ is scheduled once (and only once)
in the first N slots of any frame. Thus, all N2 packets in any
frame are delivered, implying that all packets in the system
can be delivered.

C. Lack of Scheduling Policy

Note that when we prove the achievability part in Theo-
rem 2, we construct a randomized scheduling policy based
on the distribution {λk}. Although we show the existence of
parameters {λk}, we do not know how to find such {λk}.
Thus, our constructed randomized scheduling policy is only
an existing policy but we do not have ways to implement it.

This is different from the result in delay-unconstrained
Birkhoff-von Neumann input-queued switches in [25], [26],
where the authors utilized the fact that any N × N doubly
stochastic matrix can be expressed as the convex combination
of some N × N permutation matrices [29], and more impor-
tantly they proposed an algorithm of complexity O(N4.5) to
find the convex-combination parameters {φk}. Based on {φk},
the authors in [25], [26] further implemented a throughput-
optimal scheduling policy in polynomial time.

V. A POLYNOMIAL-TIME FEASIBILITY-OPTIMAL
SCHEDULING POLICY

The combinatorial approach in Sec. IV breaks the curse of
dimensionality of the MDP-based approach for the problem of
characterizing the capacity region. In this section, we further
break the curse of dimensionality of the MDP-based approach
for the problem of designing a feasibility-optimal scheduling
policy. In particular, we leverage the framework of Lya-
punov optimization and design a polynomial-time feasibility-
optimal scheduling policy for our delay-constrained input-
queued switches.

For any VOQ(i, j), if it has a timely throughput requirement
Ri, j , we construct a virtual queue6 as shown in Fig. 3:
• The virtual queue is indexed by the frames in the real

system, denoted as f = 0, 1, 2, · · · ;

6Readers should distinguish virtual queue here from VOQ (virtual output
queue).
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Ai,j(f)=TRi,j
Bi,j(f)=1 if VOQ(i,j) is scheduled 
at frame f; otherwise Bi,j(f)=0

Qi,j(f)

Fig. 3. The constructed virtual queue.

• The arrival process of the virtual queue Ai, j( f ) is a
constant flow with size T Ri, j for any frame f ;

• The service process of the virtual queue Bi, j( f ) depends
on the scheduling policy in the real system: Bi, j( f ) = 1
if VOQ(i, j) is scheduled in frame f in the real system
and Bi, j( f ) = 0 otherwise;

• By using the standard queue dynamics in [21], the queue
is updated as (with initial queue length Qi, j(0) = 0)

Qi, j( f + 1) = max{Qi, j( f ) − Bi, j( f ), 0} + Ai, j( f ). (20)

Note that the virtual (queue) system is different from the
real system. In the real system, a packet expires at the end
of its frame. However, in the virtual queue, all arrivals will
not expire and always stay in the virtual queue. Moreover, the
time scale is also different: our virtual system is frame-based
while our real system is slot-based. We use Bi, j( f ) to connect
the virtual system and real system.

According to the queue stability theorem [21, Theorem
2.5(b)], if the virtual queue Qi, j is mean rate stable, then

lim sup
F→∞

1
F

F−1∑
f=0
E[Ai, j( f ) − Bi, j( f )] ≤ 0. (21)

Since Ai, j( f ) = T Ri, j, ∀ f , then (21) implies,

lim inf
F→∞

1
F

F−1∑
f=0
E[Bi, j( f )] ≥ T Ri, j . (22)

Note that lim infF→∞(1/F)
∑F−1

f=0 E[Bi, j( f )] is the achieved
per-frame timely throughput for VOQ(i, j) in the real system.
Hence the achieved (per-slot) timely throughput for VOQ(i, j)
in the real system is

lim inf
F→∞

1
TF

F−1∑
f=0
E[Bi, j( f )] ≥

T Ri, j

T
= Ri, j .

Thus, to achieve timely throughput Ri, j for VOQ(i, j) is
equivalent to make the virtual queue Qi, j mean rate stable.

By using the Lyapunov-drift theorem [21, Theorem 4.1],
it is standard to show that the following maximum-weight
scheduling policy can make all virtual queues mean rate
stable: in each frame f = 0, 1, 2, · · · , select a matrix B( f ) =(
Bi, j( f ) : i, j ∈ [N]

)
(which corresponds to T matchings in this

frame of in total T slots) to maximize the queue weight sum,
i.e.,

max
B( f )

N∑
i=1

N∑
j=1

Qi, j( f )Bi, j( f ). (23)

Our frame-based maximum-weight problem (23) is different
from the slot-based one for delay-unconstrained input-queued

switches [5], [6], which is exactly the classical maximum-
weight-matching problem. In (23), we need to find T match-
ings to solve the frame-based maximum-weight problem.
Recall that Bi, j( f ) = 1 if VOQ(i, j) is selected in frame f .
Even if VOQ(i, j) is scheduled more than once in frame f ,
Bi, j( f ) is still 1 and cannot increase the objective value in
(23). This implies that there is no need to schedule the same
VOQ for more than once in a frame. Thus, it suffices to find T
disjoint matchings to solve (23), i.e., to select B( f ) in frame f
is equivalent to select a T-disjoint-matching (see Definition 2)
of the bipartite graph G.

Since in each frame we need to solve the same problem (23)
(though with different queue lengths/weights), let us ignore the
frame index f . The problem to find a T-disjoint-matching with
virtual queue weights (Qi, j) to maximize the queue weight sum
can be formulated as an integer linear programming (ILP),

max
T∑
t=1

N∑
i=1

N∑
j=1

Qi, jbti, j (24a)

s.t.
N∑
i=1

bti, j ≤ 1, ∀ j ∈ [N], t ∈ [T] (24b)

N∑
j=1

bti, j ≤ 1, ∀i ∈ [N], t ∈ [T] (24c)

T∑
t=1

bti, j ≤ 1, ∀i, j ∈ [N] (24d)

var. bti, j ∈ {0, 1}, ∀i, j ∈ [N], t ∈ [T] (24e)

In (24), constraints (24b) and (24c) restrict that at any slot
t ∈ [T], we select a matching bt = (bti, j) ∈ M; constraint (24d)
restricts that all matchings selected in T slots of the frame are
pairwise disjoint, i.e., {bt : t ∈ [T]} is a T-disjoint-matching.
Based on (24), we can simply reconstruct Bi, j =

∑T
t=1 bti, j to

solve problem (23).
A nature approach to solve ILP (24) is to iteratively apply

the (per-slot) maximum-weight matching algorithm. However,
as we show in Appendix A, the greedy iterative maximum-
weight-matching algorithm is strictly suboptimal to ILP (24).
This indicates that it is nontrivial to solve ILP (24). To solve
ILP (24) optimally and efficiently, we establish equivalence
between ILP (24) and the following new ILP:

max
N∑
i=1

N∑
j=1

Qi, jci, j (25a)

s.t.
N∑
i=1

ci, j ≤ T, ∀ j ∈ [N] (25b)

N∑
j=1

ci, j ≤ T, ∀i ∈ [N] (25c)

var. ci, j ∈ {0, 1}, ∀i, j ∈ [N] (25d)

In (25), we find a set of VOQs to maximize the sum of their
queue length/weight such that each input/outout is incident to
at most T VOQs. From the perspective of bipartite graph G,
ILP (25) is to find a set of edges to maximize their weight
sum such that each node is incident to at most T edges. We
now establish the equivalence between ILP (24) and ILP (25).
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Theorem 3: The optimal values of ILPs (24) and (25) are the
same. Moreover, for any optimal solution {ci, j} to (25), we can
use the bipartite-graph edge-coloring algorithm to construct an
optimal solution {bti, j} to (24) in polynomial time.

Proof: (i) For any feasible solution {bti, j} to ILP (24), we
construct

ci, j =
T∑
t=1

bti, j .

We can easily check that {ci, j} is feasible to ILP (25) and the
objective value of ILP (25) is equal to that of ILP (24) since

N∑
i=1

N∑
j=1

Qi, jci, j =
N∑
i=1

N∑
j=1

Qi, j

T∑
t=1

bti, j =
T∑
t=1

N∑
i=1

N∑
j=1

Qi, jbti, j .

Therefore, the optimal value of ILP (25) is an upper bound of
the optimal value of ILP (24).

(ii) For any feasible solution {ci, j} to (25), we construct a
bipartite graph G′ = (V, E ′) where (Ii,O j) ∈ E ′ if ci, j = 1.
Due to (25b) and (25c), we know that the maximum degree
of all nodes in G′ is at most T . The edge-coloring problem
for a graph is to use minimum number of colors to color all
edges such that any two edges sharing a common node do not
have the same color. It is well-known that the edges of any
bipartite graph can be colored with ∆ colors [31], [32], [33]
where ∆ is the maximum node degree. Thus, our graph G′
can be colored with at most T colors. Clearly, the set of all
edges sharing the same color forms a matching of bipartite
graph G′ and all such (at most T) matchings are disjoint. For
any matching, we can represent it as (bi, j : i, j ∈ [N]) where
bi, j = 1 if edge (Ii,O j) is in the matching. We can also add
some dummy/empty matchings such that we have in total T
disjoint matchings, i.e., constructing a feasible solution {bti, j :
i, j ∈ [N], t ∈ [T]} to problem (24). Since all edges in graph
G′ is colored by those (at most T) colors, we thus have

T∑
t=1

bti, j = ci, j, ∀i, j ∈ [N]

and further
T∑
t=1

N∑
i=1

N∑
j=1

Qi, jbti, j =
N∑
i=1

N∑
j=1

Qi, j

T∑
t=1

bti, j =
N∑
i=1

N∑
j=1

Qi, jci, j

implying that the objective value of ILP (24) is equal to that
of ILP (25). Thus the optimal value of ILP (25) is a lower
bound of the optimal value of ILP (24).

Part (i) and part (ii) show that the optimal values of ILP (24)
and ILP (25) are the same. Thus, the construction in part (ii)
for any optimal solution to (25) results in an optimal solution
to (24).

It is well-known that we can color the bipartite graph G′
with minimal number of (at most T) colors in polynomial
time [31], [32], [33]. The best algorithm is that in [33]
with complexity O(N2 logT) = O(N2 log N).7 Therefore, once
we obtain an optimal solution {ci, j} to (25), we can use

7Here we require T < N . Note that from the remark given in Sec. IV-B,
we know that we can deliver all packets with a simple policy when T ≥ N .
Thus, in this section, we only need to consider T < N .

Algorithm 1 The Maximum Weight T-Disjoint-Matching Al-
gorithm (T-MWM)
Require: A timely throughput matrix R = (Ri, j) ∈ R(T)

1: for i, j = 1, 2, · · · , N do
2: Set Qi, j(0) = 0
3: end for
4: for f = 0, 1, 2, · · · do
5: Solve the relaxed LP of the vectorized version of ILP

(25) with weights {Qi, j( f ) : i, j ∈ [N]} by the simplex
algorithm and get a vertex optimal solution {ci, j}

6: Construct a bipartite graph G′ = (V, E ′) where
(Ii,O j) ∈ E ′ if ci, j = 1

7: Use the bipartite-graph edge-coloring algorithm in
[33] to color G′ and get a T-disjoint-matching
(possibly inserting some dummy/empty matchings)
{(b1

i, j), (b2
i, j), · · · , (bTi, j)}

8: for t = 1, 2, · · · ,T do
9: Perform matching (bti, j) at slot f T + t

10: end for
11: for i = 1, 2, · · · , N do
12: for j = 1, 2, · · · , N do
13: Set Bi, j( f ) =

∑T
t=1 bti, j

14: Set Qi, j( f + 1) = max{Qi, j( f ) − Bi, j( f ), 0} +T Ri, j

15: end for
16: end for
17: end for

the bipartite-graph edge-coloring algorithm to construct an
optimal solution {bti, j} to (24) in polynomial time.

Theorem 3 shows that we only need to get an optimal
solution to (25) in order to get an optimal solution {bti, j} to
(24). Then the remaining problem is whether we can solve the
new ILP (25) efficiently. Indeed, problem (25) can be solved
in polynomial time.

It was shown in [34] that the constraint matrix of the
vectorized version of (25) is totally unimodular. Thus, we
can resort to solving the relaxed LP of (25) and any vertex
optimal solution of the relaxed LP would be integral and thus
optimal to (25). For example, the most widely-used simplex
algorithm for LP outputs a vertex optimal solution. Moreover,
a recent result by Kitahara and Mizuno in [35] shows that
for an LP whose constraint matrix is totally unimodular and
constraint constant vector is integral (which is indeed our
case), the number of different vertex solutions generated by
the simplex method for this LP is polynomially bounded by
ndm| |b| |1 log(m| |b| |1)e where n is the number of variables, m
is the number of constraints and b is the constraint constant
vector. It is easy to see that n = N2, m = 2N2 + 2N , and
| |b| |1 = 2NT + N2 ≤ 3N2 for our relaxed LP of (25). Thus,
we can solve ILP (25) in polynomial time with complexity
ndm| |b| |1 log(m| |b| |1)e ≤ N2d(2N2 + 2N) · 3N2 · log((2N2 +
2N) · 3N2)e = O(N6 log N).

Readers may wonder whether we can directly solve the
relaxed LP of (24), instead of leveraging an intermediate ILP
(25). It turns out that the direct approach does not work. We
use an example in Appendix B to show that the constraint
matrix of the vectorized version of our original ILP (24) is



10

not totally unimodular. Therefore, establishing the equivalence
between ILP (24) and ILP (25) is crucial.

We summarize the proposed maximum-weight T-disjoint-
matching scheduling algorithm in Algorithm 1, which we
call T-MWM. We now give a theorem to show that our T-
MWM Algorithm is feasibility-optimal, i.e., it can achieve any
feasible timely throughput requirements R ∈ R(T).

Corollary 1: T-MWM is feasibility-optimal.
Proof: Based on Theorem 3 and [34], we conclude that

lines 5-7 of Algorithm 1 (T-MWM) solves the maximum-
weight scheduling problem (23). Thus, all virtual queues (Qi, j)
are mean rate stable according to the Lyapunov-drift theorem
[21, Theorem 4.1]. Therefore, T-MWM is feasibility-optimal.

Note that the per-frame time complexity of Algorithm 1
(T-MWM) is polynomial in the order of O(N6 log N) +
O(N2 log N) = O(N6 log N), which is much faster than the
exponential-time MDP-based policy (of order O(N!)).

Remarks. In this section, we adopt the Lyapunov-
optimization framework to design a polynomial-time
feasibility-optimal scheduling policy. We should further
remark that our virtual queue Vi, j( f ) defined in (20)
is also termed deficit in the delay-constrained wireless
communication community [13], [8], [15]. In particular,
our maximum weight scheduling policy is similar to the
largest-deficit-first (LDF) scheduling policy. However, as
compared with LDF scheduling policy which only needs
to select the flow with largest deficit in each slot, our
maximum weight scheduling policy needs to solve a more
difficult combinatorial problem, i.e., ILP (24). In addition
to the capacity region characterization in Theorem 2, our
main contribution in this section is to show that ILP (24) is
equivalent to another problem, i.e., ILP (25), which can be
solved in polynomial time.

VI. SIMULATION

In this section, we use simulation to evaluate our capacity
region and scheduling policies.

First, we show that the capacity region characterized by
the MDP-based approach in (11) and the capacity region in
(15) characterized by the combinatorial approach are the same.
We simulate a 3 × 3 switch and vary the frame length T
from 1 to 5. Since it is difficult to visualize the capacity
region (of dimension 3 × 3 = 9), we solve the network-
utility-maximization problem (3) for two different capacity
region characterizations. We adopt a linear utility function
Ui, j(Ri, j) = wi, jRi, j for each VOQ(i, j). We randomly pick
a weight matrix, which is realized as

w = (wi, j) =
©«

0.70 0.84 0.54
0.51 0.92 0.44
0.10 0.30 0.28

ª®¬ .
Note that both the MDP-based approach and the combinatorial
approach characterize the capacity region in terms of some
linear constraints. Thus, under the linear utility functions, the
network-utility maximization problem (3) becomes a linear
programming (LP), whose constraints are different under two
different capacity region characterizations.

We show the achieved maximum network utility in Fig. 4(a).
We can see that under two different capacity region charac-
terizations, the achieved maximum network utilities are the
same. Namely, the two LPs with different linear constraints
give the same optimal value. We remark that such result holds
for all our randomly generated weighted matrices, verifying
that our two different capacity region characterizations are the
same. In addition, since each VOQ has only 1 packet every T
slots, the timely throughput of any VOQ is upper bounded by
1/T and we thus plot the utility upper bound

∑N
i=1

∑N
j=1 wi, j/T

in Fig. 4(a). We can see that indeed when T ≥ N = 3, the
achieved maximum network utility attains the upper bound,
verifying our discussion in Sec. IV-B.

Second, we compare our proposed two feasibility-optimal
scheduling policies: the MDP-based algorithm (called RCS
algorithm, see (12)) and T-MWM algorithm (Algorithm 1).
We again consider a 3 × 3 switch with T = 2 and input a
feasible rate matrix,

R = (Ri, j) =
©«

0.2 0.4 0.4
0.3 0.5 0.2
0.5 0.1 0.4

ª®¬ .
We then run RCS and T-MWM. To verify that they are
feasibility-optimal, we need to show that both can achieve
the target rate matrix R. For any VOQ(i, j), we obtain the
empirical timely throughput up to slot t as

Remp
i, j (t) ,

∑t
τ=1 Di, j,τ

t
,

where Di, j,τ = 1 if a packet is delivered from input Ii to
output O j at slot τ and Di, j,τ = 0 otherwise. We thus define
the throughput gap between the empirical rate matrix Remp(t)
and the target rate matrix R as

δ(Remp(t), R) ,
N∑
i=1

N∑
j=1

max
{
Ri, j − Remp

i, j (t), 0
}
. (26)

Clearly, δ(Remp(t), R) > 0 if and only if there exists a VOQ
which does not achieve its target timely throughput, i.e.,
∃i, j ∈ [N] such that Remp

i, j (t) < Ri, j ; and δ(Remp(t), R) = 0 if
and only if every VOQ achieves the target timely throughput,
i.e., Remp

i, j (t) ≥ Ri, j, ∀i, j ∈ [N]. We show the throughput gap
for all slots in Fig. 4(b). We can see that the throughput
gap converges to 0 in both algorithms, implying that both
algorithms achieve the target rate matrix R. We remark that
such result holds for all our tried feasible rate matrices,
verifying that both algorithms are feasibility-optimal.

Finally, we compare our proposed T-MWM scheduling
policy with two baselines for the input-queued switch. The
first one is the (one-slot) maximum-weight-matching (MWM)
scheduling policy that was proposed by [5] for delay-
unconstrained input-queued switch. MWM was proved to be
throughput-optimal for delay-unconstrained traffic in [5], [6].
The second one is the clearance-time-optimal (CTO) schedul-
ing policy that was proposed by [3] for real-time input-queued
switch. The authors in [3] proved that CTO can minimize the
maximum delivery delay among all packets (i.e., the clearance
time). Note that both MWM and CTO scheduling polices are
not designed to route delay-constrained traffic where the hard
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(a) (b)

Fig. 4. Simulation for a 3 × 3 input-queued switch. (a)Verification of the
equivalence of two capacity region characterizations; (b) Evaluation for two
feasibility-optimal scheduling policies.
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Fig. 5. Compare our proposed T -MWM policy with two baselines: (one-
slot) maximum-weight-matching (MWM) scheduling policy that was proposed
by [5] for delay-unconstrained input-queued switch and the clearance-time-
optimal (CTO) scheduling policy that was proposed by [3] for real-time input-
queued switch. (a) The switch size is N = 8; (b) The frame length is T = 4.

deadline is specified by different applications. Both MWM and
CTO determine the schedule according to the length of real
VOQs, while our T-MWM determines the schedule according
to the length of virtual queues (20).

To compare these three scheduling policies in the delay-
constrained setting, for switch size N and frame length T , we
randomly select a weight matrix w and solve the network-
utility-maximization problem maxR∈R

∑
i, j∈[n] wi, jRi, j , which

gives us a feasible rate matrix R. We then apply MWM,
CTO, and T-MWM scheduling policies to obtain the empirical
timely throughput up to 10000 slots and finally we obtain the
throughput gap based on (26). We show the throughput gap
of the three policies in Fig. 5, where we fix the switch size
to be N = 8 and vary the frame length T from 1 to 10 in
Fig. 5(a) and we fix the frame length to be T = 4 and vary
the switch size N from 1 to 10 in Fig. 5(b). As we can see,
our proposed T-MWM can achieve the target rate matrix R
in any case, but neither MWM nor CTO can achieve it when
N > T . Thus, our proposed T-MWM policy outperforms both
baselines when the input-queued switch is required to deliver
delay-constrained traffic.

VII. CONCLUSION

To support delay-constrained traffic of real-time applica-
tions such as tactile Internet, networked control systems, and
cyber-physical systems, we study how to re-design the input-
queued switch, which is the core component of communi-
cation networks. We use three different approaches to solve
the three fundamental problems for delay-constrained input-
queued switches centering around the performance metric of

timely throughput. The MDP-based approach can solve all
three problems. In addition, the MDP-based approach can
also be extended to more general traffic patterns. However,
the MDP-based approach suffers from the curse of dimen-
sionality. To address this issue, we propose a combinatorial
approach to characterize the capacity region with only a
polynomial number of linear constraints and further pro-
pose a Lyapunov-based approach to design a polynomial-time
feasibility-optimal scheduling policy. In the future, it is impor-
tant to study how to design a polynomial-time network-utility-
maximization scheduling policy, how to efficiently extend to
general traffic patterns to capture more practical scenarios,
and how to implement our algorithms in practical switches. In
addition, it is interesting to study the system behaviour when
we apply our algorithms to the real communication system
which deliver real-world delay-constrained traffic.

APPENDIX

A. The Greedy Iterative Maximum-Weight Matching Algo-
rithm is Not Optimal to (24)

A nature approach to solve ILP (24) is to iteratively apply
the classical maximum-weight matching algorithm:
• Initialize an intermediate bipartite graph G̃ = G = (V, E)

and assign weight Qi, j to edge (Ii,O j) for any (i, j);
• Iterate t from 1 to T ;
• In iteration t, we apply the classical maximum-weight

matching for bipartite graph G̃ and obtain the correspond-
ing solution bt = (bti, j) where bt is a matching. For any
(i, j), remove edge (Ii,O j) in the bipartite graph G̃ if
bti, j = 1.

The final solution is a T-disjoint-matching {b1, b2, · · · , bT }.
This greedy algorithm is plausible because we iteratively

strip out the maximum-weight matching. However, it turns
out that it may be strictly suboptimal. Let us see the following
example. Let N = 3,T = 2 and the queue weight matrix is

Q = (Qi, j) =
©«

4 4 0
4 1 4
2 1 0

ª®¬ .
Then the maximum weight sum is 17, which can be achieved
by the following two disjoint matchings:

b1 = (b1
i, j) =

©«
1 0 0
0 0 1
0 1 0

ª®¬ , b2 = (b2
i, j) =

©«
0 1 0
1 0 0
0 0 0

ª®¬ .
However, when we apply the greedy algorithm, we get the
following two disjoint matchings:

b̃
1
= (b̃1

i, j) =
©«

0 1 0
0 0 1
1 0 0

ª®¬ , b̃
2
= (b̃2

i, j) =
©«

1 0 0
0 1 0
0 0 0

ª®¬ ,
which results in weight sum 10 + 5 = 15 < 17. Note that b1

is not a maximum-weight matching in iteration 1 but b̃
1

is.
This example indicates that sometimes one should not favor a
maximum-weight matching in previous iterations but instead
leave some large weights into later matchings.



12

Thus, the greedy iterative maximum-weight matching al-
gorithm may be strictly suboptimal. To some extent, it also
reveals the difficulty to solve ILP (24).

B. An Example to Show that the Constraint Matrix of the
Vectorized Version of ILP (24) Is Not Totally Unimodular

We first relax the binary variable to a real number and get
the following linear programming (LP):

max
T∑
t=1

∑
i, j∈[1,N ]

Qi, jbti, j (27a)

s.t.
N∑
i=1

bti, j ≤ 1, ∀ j ∈ [N], t ∈ [T] (27b)

N∑
j=1

bti, j ≤ 1, ∀i ∈ [N], t ∈ [T] (27c)

T∑
t=1

bti, j ≤ 1, ∀i, j ∈ [N] (27d)

var. bti, j ≥ 0, ∀i, j ∈ [N], t ∈ [T] (27e)

We then vectorize the three-dimensional variables (bti, j) ac-
cording to dimension j, i and t in order and obtain a vector
variable b. Then the constraint matrix in (27) is

C =

©«

L 0 · · · 0
0 L · · · 0
...

...
...

...
0 0 · · · L
I I · · · I

ª®®®®®®¬
, (28)

where L is the 2N×N2 incident matrix of the bipartite graph G,
0 is 2N×N2 zero matrix, and I is the N2×N2 identity matrix.
In C, we have T repeats for L and I . The first 2NT rows in C,
i.e., the row of L’s, correspond to constraints (27b) and (27c);
the second N2 rows in C, i.e., the row of I ’s, correspond to
constraint (27d).

Then (27) is vectorized as follows,

max QT b s.t. Cb ≤ 1, b ≥ 0. (29)

We now consider an example with N = 2 and T = 3.
Constraint Cb ≤ 1 can be shown as follows,

©«

1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

ª®®®®®®®®®®®¬

©«

b1
1,1

b1
1,2

b1
2,1

b1
2,2

b2
1,1

b2
1,2

b2
2,1

b2
2,2

b3
1,1

b3
1,2

b3
2,1

b3
2,2

ª®®®®®®®®®®®®®®¬
≤

©«

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ª®®®®®®®®®®®¬
Recall that a matrix is totally unimodular if the determinant
of its any square submatrix is 0, 1 or −1. Then let us take the

following submatrix C̃ with row indices (1, 3, 6, 12, 14, 15, 16)
and column indices (1, 2, 3, 7, 8, 10, 12), i.e.,

C̃ =

©«

1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 1 0 0 0 1 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1

ª®®®®®®®®®¬
(30)

It turns out that the determinate of C̃ is −2. Thus C is not
totally unimodular.

This example shows that we cannot solve ILP (24) by
solving its relaxed LP.
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