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Abstract. A method of computation for spherical Bessel functions of real and imagi- 
~aary a r g u m e n t  is  given which is especially suitable for high speed digital computers. The 
• a c c u r a c y  and convergence are examined and criterion formulas are given. A procedure 
'based on the Wronskian is used to simplify the final normalization. 

1. Introduction 

I t  is often the case when one attempts to solve a problem on a high speed 
digital computer that one finds it necessary to furnish the machine with a great 
many values of some well-known analytic function. There are essentially two 
ways to do this. One technique is to initially read a table of function values into 
the computer where it is kept in internal storage during the computation. Al- 
ternatively, the values of the table may be initially generated or the function 
values may be generated as needed within the computer. 

Extensive use has been made of a function generator in connection with the 
solutions of the spherical Bessel equation. I t  turns out that in the ease of these 
functions it is possible to formulate a method of generation which is particularly 
well adapted for machine use. The method is based upon the use of recurrence 
relations which are quite simple in form, thereby being easily coded, and yet 
give high numerical accuracy throughout the range of order and argument met 
in most applications. Of course, the use of recurrence relations implies that the 
method would be most efficiently utilized in those calculations where one re- 
quires the value of the function for many different orders at each specified value 
of the argument. 

Thus the purpose of this paper is to show how the recurrence relations may be 
used in a straightforward manner for generating in a digital computer the various 
types of spherical Bessel functions. In particular, the problem of starting the 
recurrence relations is discussed from the viewpoint that a computer program 
must be able to achieve a prescribed accuracy entirely from pre-established 
criteria. 

I t  will be realized that there are other functions whose behavior is such that 
they can be treated in a similar manner. In particular, the ratio method described 
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in this paper has been used for the computation of Legendre functions of integral 
order and argument greater than unity [1]. Similarly the cylindrical Bessel 
functions may be treated by the ratio method [2, 3]. T~aus beyond indicating in 
detail the application of the ratio method to spherical Bessel functions, the princi- 
pal result of the present paper fies in the specification of the starting criterion 
of the recurrence relations. 

2. Behavior of the Functions 
The definitions and elementary properties of the spherical Bessel functions of 

real argument are well-known [4]. We define the functions of imaginary argument 
as 

in(x) = ( - i ) ~ , ( i x ) ,  
(1) 

k,(x) = -i'~h,(ix). 

These definitions are chosen so that the functions i,  and k. are always real and 
positive for positive arguments. Hereafter in this paper x will always be used to 
denote a real positive quantity and n an integer greater than or equal to zero. 

If f .  is one of the spherical Bessel functions j , ,  n . ,  or h , ,  it obeys the re- 
cursion relation 

= f._,(x) + :.+,(x) (2) 
+ ----~--- 

and the differential equation 

I d~x2+ 1 n(n x2+ 1) l [x f~(x)]=O.  (3) 

It  follows from the differential equation that the transition line x 2 = n(n ~ 1) 
separates two regions of the x - n plane in which the functions j~ and h, have 
essentially different behavior. Below the transition fine, where n(n T 1) is less 
than x 2, the functions j,,(x) and h,~(x) behave as oscillating functions of both 
order and argument. Above the transition line, however, the behavior becomes 
monotonic and it is possible to prove the following inequalities: 

j~+l(X) < ~ for n(n .-I- 1) > 
j,(x) n + 3 '  

(4) 
h,+l(x) n -  1 

h,(x) >--x ' for n(n-~  1) > x ~, n >  1 

The proof of these inequalities follows from the behavior of the functions for 
small x and the integral relations [4]: 

f n+2 
X"+~A(X) ~ = Z ::.+l(Z) 

(5) 
J xl--'f'(~) ~ .~ --xl"-"afn__l(X ) 
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The hyperbolic functions i,~(x) and ks(x) are monotonic functions of n as 
well as of x so that  

i,~(x) > i,~+~(x) > O, 

kn+dX) > k.(x)  > O. 
(6) 

3. Computational Procedure 

We now consider the problem of computing a set of one of the functions 
j ,(x),  h,(x), in(x), k~(x) for several contiguous orders and a given value of the 
argument. We continue to require tha t  the argument be positive; this introduces 
no loss in generality since the first three functions are either even or odd in their 
argument while the fourth satisfies 

k ~ ( - x )  = - 2 i n ( x )  - (--1)nkn(X). (7) 

I t  is immediately seen that  for the two functions h~ and k . ,  which increase 
(or at  worst, oscillate) with increasing order, use of the recursion relation (2) 
is trivial. The initial values at  orders zero and one are readily calculated in terms 
of sines and cosines or exponentials. Upward recursion is an accurate process 
in this case. 

A similar method cannot be used for the remaining two functions since upward 
recursion (except in the region of the x - n plane where the jn oscillate or where 
the in have asymptotic form for large x) would bring about a rapid loss of ac- 
curacy resulting from cancellations. In both cases downward recursion is called 
for, and the computational problem reduces to tha t  of determining the initial 
conditions for the corresponding recursion relation. I t  should be noted that  
recursion in the oscillatory region of j~ is essentially a fixed-point process and 
not particularly sensitive to the direction of recursion. Similarly either direction 
of recursion of the i~ in the asymptotic region, where x is large compared to n, 
is accurate in the sense that  the upward cancellations do not seriously affect 
the accuracy. 

In  order to describe the downward recursion process by the ratio method [1], 
we will discuss the computation of the functions j~(x) for a definite value of 
x and all orders from zero to some N such that  N(N + 1) > x 2. I t  will be shown 
that  rather than accurately evaluate jN(x) and jN-l(x) to start  the process, a 
technique of very approximately starting the recursion at  a higher order will 
give a set of numbers which are accurately proportional to the jn (i.e., the ratios 
are accurate) over the desired range of n from 0 to N. 

We first choose some integer ~, which is larger than N, and two arbitrary 
positive numbers which will be denoted by j r (x) ,  j ,+l(x) .  I t  follows from the 
nonvanishing of the Wronskian that  there exist an a and/~ such that  

j~+l(x) = ~[j~+,(x) + ~n~+,(x)], 
(S) 

].(x) = a[j~(x) + f~n~(x)]. 

By using the barred quantities as initial conditions for the recursion relation 
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(2),  we can find a new number 

y~(x) = ajN(x)[1 -- ~]. (9) 

Making the special choice of ]p.-{-1 equal to zero, it follows from the inequalities 
(4) that  

e < x 2("-N+1> (N + 2 ) ! ( N  -- 2)! 
(~ + 3)~(~ - ~)~ , ( 10 )  

so that  by  choosing ~ sufficiently larger than N we can make the barred a n d  
unbarred quantities as nearly proportional as we please. In  figure 1 we give a 
plot of ~ -- N arising from expression (10) when it is taken as an equality and 
is set equM to 2 -s°. In practice, of course, the choice of v is made inside the com- 
puter by evaluating the right side of expression (10) with successively increasing 
trial values of ~ until the expression is less than a given maximum value of ~. 

Using the numbers yN(x), jN_~(x) obtained by the method just discussed, we 
can now resort to the recursion relation (2) to find a set of numbers ] , (x)  each 
element of which is accurately proportional to j , ( x )  in the interval 0 _-< n ~ N. 
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FIce. 1. P lo t  of v -- N versus  x / ( N  -'1"- ½) ar is ing f rom express ion (10) when  it  is t aken  
as an equa l i ty  and  ~ is set  equal  to 2 -3°. 
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The constant of proportionality is readily obtained from the relation 

a = (]0 - xJt) cos x + xJ0 sin x. (I1) 

The corresponding relation for the in is 

= e-lXl[( 1 + I x I ) ~0 + x~l]. (12) 

Relations (11) and (12) have the virtue of being numerically accurate for all 
finite x. This Mlows the use of a single formula for each normalization which is 
a major advantage in computer coding. 

The expressions for a are obtained by use of the Wronskian and explicit forms 
for order zero and one. Thus if In = ajn, the Wronskian of the functions of real 
argument may be written as 

~ - ~ [ J 0 ( z ) h ~ ( x )  - J~(x)ho(x)] = - i x - " ,  

where 

e '~ _ ( i  + x~ ho(x) = - i - -  hi(x) = e% ( la)  
x '  \ x ~  l 

Upon substitution expression (11.) follows directly. 
There are other normalization techniques which may be useful under special 

conditions. One might extend the recursion relation (2) to define a function 

j _ , ( x )  = -ho(x) - cos x (14) 
X 

and normalize by using the explicit form ofjo(x) orj_l(x), whichever is necessary 
since either of these functions may vanish for certain values of x. 

Alternatively, one might utilize the addition theorem for spherical Bessel 
functions which states that  

(2n + 1) [j~(x)l 2 = 1. (15) 
l,t--0 

Saffren has found this method useful in computations where the required number 
of orders is sufficient so that the indicated summation is convergent [5]. 

In a similar manner the normalization constant, a, for the in functions is 
determined from the Wronskian written as 

a -1 [~(x)kl(x) + ~l (x )ko (x ) ]  = x -~. (16) 

Substitution of the explicit forms 

~ ( x )  = e-~ k~(x) e-~ 
" T '  -- 7 (1 + x) (17) 

leads to equation (12), where the absolute value signs maintain a numerically 
accurate form for negative arguments. 

As with the j . ,  there are alternative normalization procedures. Use may be 
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made of the explicit form 

i0(x) = sinh.___x, (18) 
x 

but  this requires special numerical t reatment  for the case of arguments near or 
equal to zero. The addition theorem normalizations based on 

( - 1 ) ~ ( 2 n  + 1)[in(x)] 2 = 1 (19) 
n~0 

o r  

(2n -}- 1) i n ( x )  = e ~ (20) 
n~0 

are not entirely satisfactory since in the first the alternating signs will cause loss 
of numerical accuracy, and in the second the slow convergence for large x may  
present difficulties. 

In the process of coding the above recursive technique for the M.I .T.  Whirl- 
wind Computer  it was found necessary to introduce certain modifications. The 
reason for these changes was that  the function jn grows so rapidly with decreas- 
ing n (above the transition line) tha t  there was danger of generating numbers 
too large to be stored in the computer during the recursion process. In  order to 
avoid this difficulty we worked with the ratios ~n = jn+l / ]n  using the same recur- 
sion relation as for the ratios rn -- j n + l / j n  : 

X (21) 
~n--1 = 2 n  ~ 1 - -  X f . '  

but with the initial condition ~ equal to zero where v is defined as before. Recur- 
sion is continued downward until a ratio is reached, say ~ ,  which exceeds unity, 
indicating that  the transition line has been passed. At this point we make the 
convenient choiceJ~+l = ~x, jx = 1, and continue downward using the recursion 
relation (2). This switch avoids the possibility of computing excessively large 
ratios in the vicinity of the zeros of the function which occur below the transition 
line. Obviously no such switching from the ratio recursion relation need be made 
with the i~ functions which never oscillate. 

I t  should be noted that  the efficiency of the above computational process 
depends on the ability of the generator program in the computer to determine a 
value of ~ which is safely high enough for the accuracy desired. For this purpose 
it is also possible to make an error analysis in terms of the ratios instead of deal- 
ing directly with the functions as we have done. The analysis leads to an alter- 
nate criterion for determining the initial order v. 

We begin by examining the propagation of error in the continued fraction 
equation (21). Suppose, then that  we have ~, which differs from the ratio r ,  by 
a fractional error, en, and we ask for the resultant error, ~n-~, in r ,_ l .  Using (21) 

x _ r._l (22) 
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in the monotonic region where the ratios are less than uni ty  and assuming the 
errors are small, it follows that  

(23) e n - 1 - ~  enrn--lrn , n = > N .  

The latter expression may  be used to derive the error e~ obtained when G is 
taken as zero: 

~'~ ~ I  s(,-m _ f~(~-N), (24) e~ ~ rk - l r k  < rN --  
k=hr.4-1 

where it is assumed that  fN is accurate enough to replace r~ .  I t  should be empha- 
sized that  ulthough for typical  N the values of r~-i and r, are small compared to 
unity, expression (22) and hence (23) will not be rigorously true since e~ = 1. 
However, for typical N the convergence is rapid so tha t  the error is usually small 
in the expression (24) for eN. Since the subsequent argument will only utilize 
the inequality of expression (24), the resultant approximate upper bound for ~, 
which will be developed, will usually be a true upper bound. Thus to estab- 
lish the validity of the final result for the upper bound of r it is necessary to 
check the worst-convergent case, in particular, to check the accuracy of 

r ~ ( ' V ' N ( N  + 1)) for the maximum N to be used. 
The expression (24) may  next be manipulated into a more convenient form. 

We define ~= as the solution of 

r .  = x ( 2 5 )  
2n "4- 1 -- x ~ "  

which vanishes for vanishing x. I t  can be shown by induction from G = 0 that  
~ ,  > ~,_1 > ~ .  Hence by  replacing ~N in the inequality (24) by  the explicit 
solution for ?~ from equation (25), one arrives at  

2x v - -  N < - I n  ~N u - ( 2 6 )  
2 s i n h  -~ [ ( u  - s  - -  1)~] ' 2 N  + 1 " 

By graphical means it is easily shown that  for all positive t 

In 2 
< A -I- B C  ~ (27) 

2 sinh -* t 

where A = .10, B = .35. 
Utilizing this expression and the inequality, 

1 - -  u ~ < 1 - -  u s, ( u  ~ --< 1 )  ( 2 8 )  
1 - ( 1 / 2 ) u ~  = 

yields 

v - N  < - l o g s e ~  A _ 2(1 - u s) .J" (29) 

If the last inequality is taken as an equality with u replaced by  u~, then r~ is an 
upper bound for u. The expression for u~ may be further  improved by considering 
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FIe. 2. Plot of (~'1)=i~ - N versus x/(N -{- ½) from equation (31) when ~r is set equal 
to 2 -80. 

v~ as a function of x and N. There then exists the possibility tha t  a larger value 
of N, which we designate N ~, will yield a lower value of vl, namely (pl)~i~. 
Rather  than differentiate with respect to N the equation for ~ to determine N',  
it is algebraically simpler to consider a further weakening of inequality (29) 
which yields the following simplified equality when v is replaced by ~2 : 

[ v2 = N - -  Iog2EN A + ~ . ( 30 )  

Minimization of v~ with respect to N (subject to the constraint that  N '  __> N )  
then yields a value for N '  which roughly (and adequately) minimizes the ex- 
pression (29) for v~. When this is done one obtains the final expression 

Bu ' (2  -- u'2)7 
(V~)m~, = N ' - - l o g 2 e N  A- i -  2 ( 1 - - u  '~) .J '  (31) 

where u' = 2x /2N '  ~ 1 and N '  is either N or x - ½ ~ [ ( - log2  eN)Bx] t, the 
choice being determined by  whichever value gives the lower value of ( ~ ) ~ ,  
subject only to the constraint that  N '  ~ N. 

The quant i ty  (V~)m~n is plotted in figure 2 for the special case where EN = 2 -3°. 
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FIG. 3. Plot of (~l)ml. - N versus x/N .+ ½) from equation (33) when ~ is set equal 
to 2 - '° .  

This value was deliberately chosen for use in connection with the M.I.T. Whirl- 
wind Computer which can conveniently store floating point numbers with a 30 
binary digit mantissa. Clearly, the quantity (pl)~in is not difficult to evaluate 
inside a computer, so that it offers an alternative procedure to the use of expres- 
sion (10) described earlier. 

A very similar analysis may be performed for determining the starting order 
ul of the downward recursion process of the hyperbolic spherical Bessel functions 
i , ,  [6]. One obtains 

--ln ~, < (- - log2 , ~ ) ( A  + Bu). (32)  
v - N  < 2 s i n h  -~u 

Minimization with respect to N yields the result 

(U*)min = N' + (-- log2 ~N) (A + Bu'), (33)  

where u' = 2x/(2N'  + 1) and N' is the greater of N or - ~  + [( -log2 ,N)Bx] t. 
Figure 3 is a plot of (v,)~i. of equation (33), (e~ = 2-s°), for the range 0 =< u =<4 
where the i ,  cannot be accurately recursed upward by means of the relation 

(2n--+x l )  i . (x)  = i,~_x(x) -- i.+,(x). ( 3 4 )  
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In  conclusion it is seen that  expressions (10), (31) and (33) offer useful upper- 
bounds for the starting order p in the downward recursion processes. Thus these 
expressions offer an alternative to the other possible procedures of repeatedly 
recursing from trial v values until effective convergence is achieved or of partially 
parametizing v from an empirical determination of the function v(x, N, e~). 
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