
ar
X

iv
:1

60
2.

04
42

1v
1

 [
cs

.D
S]

 1
4

Fe
b

20
16

Randomized approximate nearest neighbor search

with limited adaptivity

Mingmou Liu ∗ Xiaoyin Pan † Yitong Yin ‡

Abstract

We study the fundamental problem of approximate nearest neighbor search in d-dimensional
Hamming space {0, 1}d. We study the complexity of the problem in the famous cell-probe
model, a classic model for data structures. We consider algorithms in the cell-probe model with
limited adaptivity, where the algorithm makes k rounds of parallel accesses to the data structure
for a given k. For any k ≥ 1, we give a simple randomized algorithm solving the approximate
nearest neighbor search using k rounds of parallel memory accesses, with O(k(log d)1/k) accesses
in total. We also give a more sophisticated randomized algorithm using O(k + (1k log d)O(1/k))
memory accesses in k rounds for large enough k. Both algorithms use data structures of size
polynomial in n, the number of points in the database.

For the lower bound, we prove an Ω(1k (log d)
1/k) lower bound for the total number of memory

accesses required by any randomized algorithm solving the approximate nearest neighbor search
within k ≤ log log d

2 log log log d rounds of parallel memory accesses on any data structures of polynomial
size. This lower bound shows that our first algorithm is asymptotically optimal for any constant
round k. And our second algorithm approaches the asymptotically optimal tradeoff between
rounds and memory accesses, in a sense that the lower bound of memory accesses for any k1
rounds can be matched by the algorithm within k2 = O(k1) rounds. In the extreme, for some

large enough k = Θ
(

log log d
log log log d

)
, our second algorithm matches the Θ

(
log log d

log log log d

)
tight bound

for fully adaptive algorithms for approximate nearest neighbor search due to Chakrabarti and
Regev [10].

1 Introduction

Nearest neighbor search is a fundamental theoretical problem in Computer Science, with enormously
many applications in diverse fields. In the nearest neighbor search problem, we are given a database
B of n points from a metric space X. The goal is to preprocess them into a data structure, such
that given any query point x ∈ X, an algorithm with accessing to the data structure can find a
database point in B that is closest to the query point x among all database points. An extensively
studied case is when the metric space is the Hamming space X = {0, 1}d.

It is conjectured that the nearest neighbor search is hard to solve by any data structures when
the dimension d is high (e.g. d ≫ log n). This conjecture is sometimes referred as a case of the
“curse of dimensionality” and is one of the central problems in the area of data structure lower

∗Department of Computer Science and Technology, Nanjing University, China. MG1533028@smail.nju.edu.cn
†Department of Computer Science and Technology, Nanjing University, China. xiaoyin.pan95@gmail.com
‡State Key Laboratory for Novel Software Technology, Nanjing University, China. Supported by NSFC grants

no. 61272081 and 61321491. Email: yinyt@nju.edu.cn.

1

http://arxiv.org/abs/1602.04421v1

bounds. It is also believed that the problem of high-dimensional nearest neighbor search remains
to be intractable while either an approximation is tolerated or the algorithm is randomized, but
not both at the same time [11].

The complexity of the nearest neighbor search problem, as well as many other data structure
problems, is well studied in the cell-probe model [24], a classic model for the complexity of data
structures. In the cell-probe model, the database is preprocessed into a data structure, stored as a
table in the main memory, and upon each query, an algorithm, called the cell-probing algorithm,
outputs an answer to the query after adaptively probing a number of table cells. The complexity
is measured by both the size of the data structure and the number of cell-probes made by the
algorithm to answer a query in the worst case. There is a substantial body of works on the cell-
probe complexity of nearest neighbor search in Hamming space [6, 7, 13,16,19–21].

When both approximation and randomization are allowed, a seminal work of Chakrabarti and
Regev [10] gives a tight bound for the complexity of nearest neighbor search in d-dimensional
Hamming space with data structures of size polynomial in n, assuming the dimension d is high
(and not too high to trivialize the problem, e.g. (log n)1.01 ≤ d ≤ 2

√
logn). This fundamental result

is stated informally as follows.

Theorem 1 (Chakrabarti and Regev [10]) Assume (log n)1.01 ≤ d ≤ 2
√
logn. The cell-probe

complexity of randomized approximate nearest neighbor search in d-dimensional Hamming space in

the cell-probe model with data structure of polynomial size is Θ
(

log log d
log log log d

)
.

On the other hand, when the table size becomes closer to be linear of n, data structures such as
locality-sensitive hashing (LSH) [2,12] or data-dependent LSH [3,4] achieve a cell-probe complexity
of Õ(dnρ) with data structures of size Õ(n1+ρ) for some 0 < ρ < 1 depending on the metric and

the approximation ratio. Compared to the Θ
(

log log d
log log log d

)
bound of Chakrabarti and Regev, the

Õ(dnρ) cell-probe complexity is much worse. The popularity in practice of the LSH-based data
structures is due to their low space cost, and the ability to be implemented in parallel.

Take locality-sensitive hashing (LSH) as an example. The algorithm of LSH is non-adaptive:
Each cell-probe relies only on the query but not on the information retrieved by other cell-probes.
This makes all cell-probes in LSH parallelizable into one round of parallel memory accesses. And
the more recent data-dependent LSH [3, 4] surpasses the classic LSH in cell-probe complexity by
being a little more adaptive: the algorithm retrieves a data-dependent hash function before making
the second round of cell-probes, while the cell-probes in the second round are independent of each
other. In contrast, the algorithm of Chakrabarti and Regev [10] is fully adaptive: Every cell-probe
must wait for the information retrieved by the previous cell-probe to proceed.

This could give us the following intuitive image: A cell-probing algorithm is getting more clever
and hence more efficient, as it is becoming more adaptive. It is then a fundamental question
to study the tradeoff between the efficiency (measured by the total number of cell-probes) and
adaptivity (measured by the number of rounds of parallel cell-probes) in the cell-probe model.
Very little was known to this fundamental question. In [8], Brody and Larsen initiated the study
of non-adaptive dynamic data structures, where the database receives both queries and updates.
They show a foundational result that for dynamic data structures, being adaptive is critical. For
static data structures, parallel cell-probes were studied in the context of low-contention data struc-
tures [5,20]. The highest cell-probe lower bound known for non-adaptive static data structure is the
Ω(log n/ log sd

n logn) cell-probe lower bound of Panigrahy, Talwar, and Wieder [19] for randomized

2

approximate nearest neighbor search on a table of size s. This lower bound becomes trivial for
tables of polynomial size. For cell-probe model with polynomial-sized data structures, the tradeoff
between the cell-probe complexity and adaptivity is highly unknown for any static data structure
problems.

Our results. In this paper, we study the complexity of randomized approximate nearest neighbor
search in the cell-probe model with limited adaptivity. We consider a natural notion of rounds for
cell-probes, where the cell-probes in the same round are adaptive to the information retrieved in
previous rounds, but non-adaptive to each other in the same round.

We give two randomized cell-probing algorithms for approximate nearest neighbor search in
d-dimensional Hamming space. For both algorithms, the data structures are of polynomial size,
and the cell-probes are organized into k rounds for any k ≥ 1 (Algorithm 1) or for all sufficiently
large k (Algorithm 2). The first algorithm is as follow.

Theorem 2 For any k ≥ 1, the approximate nearest neighbor search in d-dimensional Hamming
space can be solved in the cell-probe model with a data structure of polynomial size, using k rounds
of parallel randomized cell-probes, with O

(
k(log d)1/k

)
cell-probes in total.

The algorithm is simple and works for all k ≥ 1 number of rounds. Especially when k = 1,
the algorithm is non-adaptive. Compared to the LSH which is also non-adaptive, our algorithm
achieves a much better cell-probe complexity O(log d) by using a data structure of larger polynomial
size.

However, when the round number k becomes large, especially at the extreme when every round
has 1 cell-probe, in which case the algorithm becomes fully adaptive and has O(log log d) total
cell-probes, which is not optimal for fully adaptive algorithms by Theorem 1. This leads us to our
second more sophisticated algorithm.

Theorem 3 For large enough k, the approximate nearest neighbor search in d-dimensional Ham-
ming space can be solved in the cell-probe model with a data structure of polynomial size, using k

rounds of parallel randomized cell-probes, with O
(
k +

(
1
k log d

)O(1/k)
)
cell-probes in total.

The second algorithm is substantially more sophisticated. In the extreme, it approaches the
optimal fully adaptive algorithm in Theorem 1 in the following sense: For some sufficiently large

k = O
(

log log d
log log log d

)
, we can implement the algorithm such that every round of the algorithm contain

only 1 cell-probe.
We emphasize that these algorithms are not meant to be efficient in practice due to their

expensive space costs, rather, they are parts of a theoretical endeavor to understand the complexity
tradeoff between time and rounds on data structures of polynomial size. With this spirit, we prove
the following lower bound for the tradeoff between cell-probe complexity and round complexity for
randomized approximate nearest neighbor search.

Theorem 4 Assume (log n)1.01 ≤ d ≤ 2
√
logn and 1 ≤ k ≤ log log d

2 log log log d . Any randomized algorithm
solving the approximate nearest neighbor search in d-dimensional Hamming space in the cell-probe
model with a data structure of polynomial size using k rounds of parallel randomized cell-probes
must use Ω

(
1
k (log d)

1/k
)
cell-probes in total.

Due to this lower bound, both our algorithms achieve some optimality:

3

• Algorithm 1 is asymptotically optimal in cell-probe complexity for any constant number of
rounds.

• Algorithm 2 approaches the asymptotically optimal tradeoff between cell-probe complexity
and round complexity in the following sense: the cell-probe lower bound for any k1-round
algorithms can be approached by Algorithm 2 within k2 = O(k1) rounds.

In addition, Algorithm 2 together with our lower bound show that the cell-probe complexity of
randomized approximate nearest neighbor search undergoes a “phase transition” when the round

number is within the regime k = Θ
(

log log d
log log log d

)
: For a small k1 = Θ

(
log log d

log log log d

)
, the average

number of cell-probes per each round for any k1-round algorithm has to be a (log log d)Ω(1), whereas

for large enough k2 = Θ
(

log log d
log log log d

)
, only 1 cell-probe in each round is enough for a k2-round

algorithm.

Technique. Both our upper bounds and lower bounds rely heavily on the machineries developed
in [10].

The main ideas for the upper bounds are the dimension reduction techniques developed in the
pioneering works of [12,15] and the multi-way search in [10]. Our efforts are focused on how to apply
these techniques to give a family of algorithms approaching the smoothed tradeoff between round
and cell-probe complexity. A technical innovation of [10] is to use two kinds of approximations of
Hamming balls: an accurate approximation of hamming ball which is more expensive, and a coarse
approximation which is cheap, to support a multi-way search with a substantial number of branch-
ings, such that each branching is supported by one query to an accurate ball succeeded by several
queries to coarse balls, which altogether consume only O(1) cell-probes. Surprisingly, we discover
that a simple algorithm can achieve an optimal cell-probe complexity in any constant number of
rounds, using only the more expensive accurate approximation of Hamming balls. And for general
round numbers, the coarse approximation of balls are employed to approach the asymptotically
optimal tradeoff between rounds and cell-probes.

The lower bound is proved by the round elimination of communication protocols for the longest
prefix matching problem LPM, which can be reduced to approximate nearest neighbor search.
Usually the data structure lower bounds are proved for a decision version of the problem. For
nearest neighbor search, a natural decision version is the λ-near neighbor problem λ-NN. However,
it is folklore that with both approximation and randomization allowed, λ-NN can be solved within
O(1)-probe on a table of polynomial size. So to prove a nontrivial lower bound in this case, one must
stay with the search problem. In [10], this is done by a reduction from the longest prefix matching
LPM, a problem that critically captures the nature of searching for the nearest neighbors. In [10],
a lower bound is proved for LPM by interpreting a data structure as a communication protocol
and applying round eliminations to the communication protocol, a technique that can be traced
back to [1, 17]. Our main observation is that k rounds of cell-probes can be represented as 2k
rounds of communications. Although the observation is straightforward, to prove our lower bound
we have to apply the techniques of [10] to adapt to non-uniform message sizes in different rounds, a
setting which was rarely considered in the context of asymmetric communication complexity for data
structure lower bounds. More critically, in order to get the 1/k exponent in our Ω

(
1
k (log d)

1/k
)
lower

bound, we are forced to exploit the round elimination of [10]. In fact, assuming k = O
(

log log d
log log log d

)
,

a lower bound with form Ω
(
k + 1

kb
(log d)a/k

)
for any constants a, b > 0 is enough to imply the

4

optimal Ω
(

log log d
log log log d

)
lower bound in Theorem 1, whereas for our result, these constants a, b

matter a lot and require much delicacy in the round elimination argument.

2 Preliminaries

Approximate nearest neighbor search: We consider the problem of approximate nearest
neighbor search in the d-dimensional Hamming space ANNS

γ
d,n. Let γ > 1 be fixed. We are

given a database B which contains n points from the d-dimensional Hamming cube {0, 1}d. The
database is preprocessed into a data structure (called the table). Then given any query point
x ∈ {0, 1}d, the algorithm must access the data structure and output a database point y ∈ B which
is a γ-approximate nearest neighbor of x in B, where a point y ∈ B is called a γ-approximate near-
est neighbor of x in B if dist(x, y) ≤ γ · minz∈B dist(x, z), where dist(x, y) denotes the Hamming
distance between x and y.

Abstractly, a data structure problem can be represented as a relation ρ ⊆ A ×B × C , where
A ,B, and C specify the universes for queries, databases, and answers, respectively. Given a query
x ∈ A to a database B ∈ B, an answer z ∈ C is correct if (x,B, z) ∈ ρ. In particular, for

approximate nearest neighbor search, A = C = {0, 1}d, B =
({0,1}d

n

)
, and

ANNS
γ
d,n = {(x,B, z) ∈ A ×B × C | z ∈ B ∧ ∀y ∈ B,dist(x, z) ≤ γ · dist(x, y)} .

The cell-probe model. We adopt Yao’s cell-probe model [24] for static data structures. A
cell-probing scheme (A,T) for a data structure problem ρ ⊆ A ×B × C consists of a cell-probing
algorithm A and a code (sometimes called the table structure) T . Each database B ∈ B is mapped
by the code T : B → Σs to a codeword (called a table) TB ∈ Σ[s] of s symbols from the alphabet
Σ = {0, 1}w. The interpretation is that each database B is preprocessed and stored as a table TB

consisting of s table cells (also called a word), with each cell storing w bits. Given an address
i ∈ [s] we use TB [i] to denote the content of the i-th cell in table TB . Given a query x ∈ A ,
the cell-probing algorithm A must output a correct answer z ∈ C such that (x,B, z) ∈ ρ, after
accessing the table TB adaptively for t times, each time reading the content of one table cell. This
action of reading the content of one table cell by the cell-probing algorithm is usually called as
making a cell-probe.

The complexity of a cell-probing scheme is captured by three parameters: namely, the table size
s, the word size w, and the time cost or cell-probe complexity t.

Cell-probe model with limited adaptivity: In this work, we refine the cell-probe model by
considering the rounds of parallelizable cell-probes in cell-probing algorithms. Formally, a k-round
cell-probing algorithm A can be described by k lookup functions L1, L2, . . . , Lk and one truth table
A. Each lookup function Li maps the query x and the contents of the table cells probed before
round i, to a sequence of addresses indicating the set of table cells to probe in round i. In the
beginning, L1(x) = (p11, p

1
2, . . . , p

1
t1) ∈ [s]t1 for some t1 > 0, and for general 1 ≤ i ≤ k:

Li

(
x,
〈
pjℓ, TB [p

j
ℓ]
〉

1≤j<i
1≤ℓ≤tj

)
= (pi1, p

i
2, . . . , p

i
ti) ∈ [s]ti , for some ti > 0,

5

so that at round i, the algorithm makes ti parallel cell-probes to the the cells piℓ, 1 ≤ ℓ ≤ ti. And

finally, the truth table A maps the contents of all the probed cells 〈pjℓ, TB [p
j
ℓ]〉 1≤j≤k

1≤ℓ≤tj

, to a correct

answer z satisfying that (x,B, z) ∈ ρ. The cell-probe complexity is given by t = t1 + t2 + · · · + tk.
This formulation includes the standard definition of cell-probing scheme as a special case when
t1 = · · · = tk = 1.

Public-coin vs. private-coin cell-probing schemes: In a (private-coin) randomized cell-
probing scheme, the table is prepared by a code T deterministically as before, but the cell-probing
algorithm A is a randomized algorithm. This can be considered as that the deterministic lookup
functions L1, L2, . . . , Lk as well as the truth table A also take a sequence of random bits r ∈ {0, 1}∗
as part of the input. We say we have a randomized cell-probing scheme (A,T) for a data structure
problem ρ ⊆ A ×B × C if for every query x ∈ A and every database B ∈ B, the cell-probing
algorithm outputs a correct answer z ∈ C such that (x,B, z) ∈ ρ with probability at least 2/3.
The constant 2/3 is rather arbitrary. Note that for problems such as approximate nearest neighbor
search, where once the query x is known, a monotone order of the correctness between multiple an-
swers is fixed, any positive constant success probability is enough: we can boost it to any constant
accuracy 1− ǫ by independent repetition of the cell-probing algorithm for constant many times in
parallel, which will keep the asymptotic cell-probe complexity and the number of rounds of parallel
cell-probes.

In this paper, all of our upper bounds will be presented first as public-coin randomized cell-
probing schemes. For a public-coin randomized cell-probing scheme, the sequence of random bits
r ∈ {0, 1}∗ is shared between the cell-probing algorithm A and the table structure T , where the
table T r

B is now determined by both the database B and the random bits r. This makes no change
to the family of data structures of polynomial size: by Newman’s theorem [18], a public-coin
cell-probing scheme can be transformed to a standard randomized cell-probing scheme, where the
randomness is private to the cell-probing algorithm.

Lemma 5 If there is a k-round public-coin randomized cell-probing scheme for a data structure
problem ρ ⊆ A ×B ×C with table size s, word size w, and cell-probe complexity t, then there is a
k-round randomized cell-probing scheme for ρ with table size (log |A |+ log |B|+O(1))s, word size
w, and cell-probe complexity t.

Proof: The proof is similar to the proof of Lemma 6.5 in [10], with the observation that the
translation there also preserves the number of rounds. Without loss of generality, we assume
that for every query to every database, the k-round public-coin randomized cell-probing scheme
returns a correct answer except with an error probability at most 1/4. The k-round public-coin
randomized cell-probing scheme can be seen as a k-round public coin randomized communication
protocol between Alice for the cell-probing algorithm and Bob for the table, where Bob is non-
adaptive thus is only response to each individual message received in the current round according
to its input B in a consistent way (as a code). By Newman’s theorem, the number of public random
bits can be reduced to ℓ = log(log |A | + log |B| + O(1)) while the error probability is raised to
1/3. This does not change the structure of the protocol, so it can be translated back to a k-round
public-coin randomized cell-probing scheme for ρ with the same time and space complexity as
before and with ℓ public random bits. We create a table T r

B for every possible sequence of random
bits r ∈ {0, 1}ℓ according to the public-coin cell-probing scheme. This gives us a big table of

6

size s · 2ℓ = s(log |A | + log |B| + O(1)), and the random bits is made private to the cell-probing
algorithm.

Notations. We use dist(·, ·) to denote Hamming distance. We write log for binary logarithm and
ln for natural logarithm.

3 Approximate nearest neighbor search in k rounds

In this section, we will give two algorithms that solve the approximate nearest neighbor search
problem ANNS

γ
d,n within k rounds on a table of size nO(1) and word size O(d):

1. a simple k-round randomized cell-probing scheme with O(k(log d)1/k) cell-probes;

2. a more sophisticated k-round randomized cell-probing scheme with O(k + (1k log d)
c/k) cell-

probes, for any constant c > 2.

We will also include a folklore result in the current framework to show that if the problem is relaxed
a little to the approximate near -neighbor search problem (instead of the nearest neighbor search),
then on a table of polynomial size with word size O(d), the problem can be solved with O(1)
cell-probes by a non-adaptive (i.e. 1-round) randomized cell-probing scheme.

Public-coin vs. private-coin in the cell-probe model. All our three algorithms will be first
presented as public-coin cell-probing schemes, where the random bits are shared between the cell-
probing algorithm and the table, and then transformed by Lemma 5 to the standard randomized
cell-probing schemes, where the random bits are private to the cell-probing algorithm, with the
same round and cell-probe complexity and a polynomial overhead to the table size. In particular,
for ANNSγd,n we have the following proposition.

Proposition 6 If there is a k-round public-coin randomized cell-probing scheme for ANNS
γ
d,n with

table size s, word size w, and cell-probe complexity t, there exists a k-round randomized cell-probing
scheme for ANNS

γ
d,n with table size O(dn · s), word size w, and cell-probe complexity t.

Common setup for the algorithms. We consider only constant approximation ratio γ > 1,
so without lost of generality, we can assume that γ < 4, since for larger γ our algorithms will
only have better approximation. Let α ,

√
γ, and hence 1 < α < 2. Let x ∈ {0, 1}d denote the

query point and B ⊆ {0, 1}d, |B| = n, denote the database. We always assume that n > d. For
0 ≤ i ≤ ⌈logα d⌉}, let

Bi = {y ∈ B | dist(x, y) ≤ αi}, (1)

be the set of all database points within distance αi of x.

Definition 7 Let c1, c2 > 64/(1−e(1−α)/2)2 be constants and 1 < s < ln lnn. For 0 ≤ i ≤ ⌈logα d⌉,
let Mi, Ni be the independent random Boolean matrices such that each entry is sampled i.i.d. from

7

Bernoulli(1
4αi), with Mi of size (c1 log n)×d and Ni of size (c2s log n)×d. For 0 ≤ j ≤ i ≤ ⌈logα d⌉,

we define the sets

Ci =
{
z ∈ B | dist(Mix,Miz) ≤ δ(αi, α) · c1 log n

}
, (2)

Di,j =
{
z ∈ Ci | dist(Njx,Njz) ≤ δ(αj , α) · (c2 log n)/s

}
, (3)

where δ(β, α) = 1
2

(
1− 1

2β

)β [
1−

(
1− 1

2β

)(α−1)·β
]
.

The following lemma proved in [10] shows that Ci are approximations of the balls Bi, and Di

are also approximations in a weaker sense.

Lemma 8 (Chakrabarti and Regev [10]) The following events hold simultaneously with prob-
ability at least 3/4:

1. Bi ⊆ Ci ⊆ Bi+1 for all i.

2. For all 0 ≤ j ≤ i ≤ ⌈logα d⌉, at most a fraction n−1/s of Bj is not in Di,j and at most a
fraction n−1/s of Ci \Bj+1 is in Di,j.

3.1 A simple k-round protocol for ANNS

Theorem 9 (Theorem 2, restated) Let γ > 1 be any constant. For n > d and k ≥ 1, ANNSγd,n
has a k-round randomized cell-probing scheme with O

(
k(log d)1/k

)
cell-probes, table size nO(1) and

word size O(d).

As mentioned earlier, the solution will be presented as a public-coin cell-probing scheme, which
by Proposition 6, is then transformed to a standard randomized cell-probing scheme with the same
cell-probe complexity and number of rounds on a table of polynomial size.

Without lost of generality, assume that γ < 4 and let α ,
√
γ. Let x ∈ {0, 1}d denote the query

point and B ⊆ {0, 1}d, |B| = n, denote the database. Recall that Bi, as defined in 1, are the sets
of all database points within distance αi of x.

There are two degenerate cases. The first case is when B0 is not empty, which means x ∈ B.
This case can be solved as a membership query of x in the set B, by the perfect hashing with
1 cell-probe to a table of size O(n2), with the random hash function as public randomness. The
second degenerate case is when B1 is not empty, which means the query point x is within distance
1 from B. This can also be solved as a membership query of x in the 1-neighborhood N1(B) =
{y ∈ {0, 1}d | ∃z ∈ B,dist(y, z) ≤ 1} of B, which contains at most (d + 1)n points, by the same
method, using 1 cell-probe to a table of quadratic size with public randomness.

Note that these two instances of perfect hashing can run separately and in parallel to each
other, and to the main data structure solving the non-degenerate cases, so that if a query x finds
itself within B or within distance 1 from B, then the algorithm terminates and outputs the nearest
neighbor. This will cost a polynomial addition to the table size and 2 more queries in the first
round, but make no change to the number of rounds. For the rest, we can assume the following.

Assumption 1 B0 = B1 = ∅.

8

The goal of the main data structure is to find an i such that Bi is empty but Bi+2 is not and
output a point in Bi+2, assuming that B0 = B1 = ∅. Such a point is clearly a γ-approximate
nearest neighbor of x.

For 0 ≤ i ≤ ⌈logα d⌉, let Mi be the random (c1 log n) × d matrices sampled independently as
in Definition 7 and Ci ⊆ B the subsets of database points constructed from Mi as in Definition 7.
The random matrices Mi are treated as the public randomness shared between the cell-probing
algorithm and the table. The table who possesses the database B may construct Ci from Mix for
every possible x ∈ {0, 1}d (in fact, for every Mix ∈ {0, 1}c1 logn = [nc1]), while the cell-probing
algorithm who possesses the query point x may compute the product Mix from the actual query
point x.

By Lemma 8, the following assumption holds with probability at least 3/4:

Assumption 2 Bi ⊆ Ci ⊆ Bi+1 for all i.

With this assumption, the algorithm only needs to find an i such that Ci 6= ∅ but Ci−1 = ∅. Since
Bi−1 ⊆ Ci−1 = ∅ and Bi+1 ⊇ Ci 6= ∅, any point in Ci is a γ-approximation nearest neighbor of x.

Table construction. We construct ⌈logα d⌉ + 1 tables T0, . . . , T⌈logα d⌉. Each table Ti contains

2c1 logn = poly(n) many cells, where each cell corresponds to a string j ∈ {0, 1}c1 logn, so the total
number of cells in all these tables is a polynomial of n. Here c1 is the constant factor in the number
of rows of Mi. Due to the public randomness, the table contents may depend on both the database
B and the public random matrices Mi.

For every 0 ≤ i ≤ ⌈logα d⌉ and every j ∈ {0, 1}c1 logn, the content of the j-th cell Ti[j] in the
i-th table Ti is given as follows:

• If there exists a datapoint z ∈ B such that dist(j,Miz) ≤ δ(αi, α) ·c1 log n, the cell Ti[j] stores
an arbitrary one of such z.

• If otherwise there is no such datapoint, Ti[j] stores a special symbol indicating the EMPTY.

Note that Mix ∈ {0, 1}c1 logn is a valid address for the cells in a table Ti. And for every i, the table
cell Ti[Mix] stores a point from Ci if Ci is not empty, or Ti[Mix] = EMPTY if Ci = ∅.

Cell-probing algorithm. The algorithm possesses the query point x and the public random
matrices Mi. Set τ = c′(log d)1/k, for a constant c′ ≥ logα 4 so that

τ ·
(τ
2

)k−1
≥ ⌈logα d⌉.

The cell-probing algorithm consists of at most (k − 1) shrinking rounds, succeeded by one final
completion round. And if k = 1, the algorithm is non-adaptive and just consists of a completion
round. In every round the algorithm makes at most τ parallel cell-probes to the table. The total
number of cell-probes is at most (τ − 1)(k − 1) + τ = O(k(logα d)

1/k). The pseudocode of the
cell-probing algorithm is given in Algorithm 1.

The algorithm finds a γ-approximate nearest neighbor of x by a multi-way search: it maintains
two integers l and u, initially l = 0 and u = ⌈logα d⌉. At each round l and u are updated,
satisfying the invariant that l < u, Cl = ∅ and Cu 6= ∅. This invariant is satisfied initially since by
Assumption 1 and 2 we have C0 ⊆ B1 = ∅ and C⌈logα d⌉ ⊇ B⌈logα d⌉ = B. For 0 ≤ r ≤ τ , we denote

ρ(r) , ⌊l + r
τ (u− l)⌋. The cell-probing algorithm proceeds as follows:

9

Algorithm 1 Simple k-round cell-probing algorithm for ANNSγd,n

Set τ ← (log d)1/k logα 4;
initialize l← 0 and u← logα d;
while u− l ≥ τ do ⊲ shrinking rounds

let ρ(r)← ⌊l + r
τ (u− l)⌋ for 0 ≤ r ≤ τ − 1;

retrieve Tρ(r)[Mρ(r)x] for 1 ≤ r ≤ τ − 1;
if ∃ 1 ≤ r ≤ τ − 1 s.t. Tρ(r)[Mρ(r)x] 6= EMPTY then

let r∗ be the smallest such r;
else

r∗ ← τ ;
end if
update l← ρ(r∗ − 1) and u← ρ(r∗);

end while
retrieve Ti[Mix] for all l + 1 ≤ i ≤ u; ⊲ completion round
i∗ ← min{l + 1 ≤ i ≤ u : Ti[Mix] 6= EMPTY};
return Ti∗ [Mi∗x];

1. In each shrinking round: the algorithm reads the contents of Tρ(r)[Mρ(r)x] for all 1 ≤ r ≤ τ−1
in parallel, and finds those r such that Tρ(r)[Mρ(r)x] 6= EMPTY, which means Cρ(r) 6= ∅. Let
r∗ be the smallest such r, or let r∗ = τ if no such r exists. Update l to ρ(r∗ − 1) and u to
ρ(r∗). The new gap between l and u is ρ(r∗)− ρ(r∗ − 1), which is at most (u− l)/τ + 1.

2. Once the gap u − l drops below τ , the algorithm enters the completion round: it reads the
cells Ti[Mix] for all l+1 ≤ i ≤ u in parallel, finds the smallest i such that Ti[Mix] 6= EMPTY,
and outputs the point stored in that cell. Such i must exist since we know Cu 6= ∅. Note that
the output point is from a nonempty Ci such that Ci−1 = ∅. With Assumption 2, it must be
a γ-approximate nearest neighbor of x.

Note that in every shrinking round, l and u are updated to l′ and u′ respectively so that u′ − l′ ≤
(u − l)/τ + 1 ≤ 2(u − l)/τ as long as u − l ≥ τ . And once u − l < τ , the algorithm enters the
completion round. Recall that τ ·(τ/2)k−1 ≥ ⌈logα d⌉. Hence, there can be at most (k−1) shrinking
rounds.

3.2 A k-round protocol for ANNS for large k

Theorem 10 (Theorem 3, restated) Let γ > 1 and c > 2 be any constants. For n > d and

k > 5c2/(c− 2), ANNSγd,n has a k-round randomized cell-probing scheme with O
(
k +

(
1
k log d

)c/k)

cell-probes, table size nO(1), and word size O(d).

As before the algorithm is also presented as a public-coin cell-probing scheme, and is transformed
into a standard randomized cell-probing scheme by Proposition 6.

This more sophisticated algorithm reuses several components of the simple algorithm in Theo-
rem 9. For 0 ≤ i ≤ ⌈logα d⌉, the sets Bi and Ci, and the random matrices Mi are constructed in
the same way as before. The degenerate cases when B0 or B1 is not empty are also handled in the
same as before, so we proceed by assuming Assumption 1.

10

Set s ,
(
1
4 − 1

2c

)
k − 1

4 > 1. We assume that k = o(ln ln d), because for some sufficiently large
k = O(ln ln d/ ln ln ln d), it can be verified that our algorithm already makes O(1) cell-probes per
round on average, so there is no need to consider larger number of rounds after that. Hence, we
have 1 < s < ln ln d < ln lnn.

Let Nj be the random (c2s log n) × d matrices sampled independently as in Definition 7 and
Di,j ⊆ B the subsets of database points constructed from Mi and Nj as in Definition 7. Now
the public randomness shared between the cell-probing algorithm and the table are the random
matrices Mi and Nj for 0 ≤ j ≤ i ≤ ⌈logα d⌉. We make another assumption.

Assumption 3 For all 0 ≤ j ≤ i ≤ ⌈logα d⌉, at most a fraction n−1/s of Bj is not in Di,j and
that at most a fraction n−1/s of Ci \ Bj+1 is in Di,j.

By Lemma 8, the error probability of an algorithm that succeeds by assuming both Assumption 2
and Assumption 3 is at most 1/4.

Table construction. We reuse the ⌈logα d⌉+1 tables T0, . . . , T⌈logα d⌉ constructed in Theorem 9.

In addition, we further construct (⌈logα d⌉+1)×2c1 logn auxiliary tables T̃i,j for 0 ≤ i ≤ ⌈logα d⌉ and
j ∈ {0, 1}c1 logn. The address of each cell in an auxiliary table T̃i,j corresponds to a concatenation
w = 〈l, u, w0, w1, . . . , ws〉 of:

• a pair of lower and upper thresholds 0 ≤ l ≤ u ≤ ⌈logα d⌉;

• a special index 1 ≤ w0 ≤ s;

• s short strings w1, . . . , ws ∈ {0, 1}
c2
s

logn.

Altogether these correspond to at most (logα d)s2
c2 logn = poly(n) cells in each auxiliary table. The

total number of cells in all tables remains to be a polynomial of n.
For 0 ≤ i ≤ ⌈logα d⌉, j ∈ {0, 1}c1 logn, and any address w = 〈l, u, w0, w1, . . . , ws〉 of cells in

auxiliary table T̃i,j, the content of the cell T̃i,j [w] is given as follows: For 1 ≤ r ≤ s, define
ρ(r) , ⌊l + r−1

s−1(u − l)⌋. Let j = Mix and wr = Nρ(r)x for 1 ≤ r ≤ s. We construct the sets
Ci,Di,ρ(1), . . . ,Di,ρ(s) since we now have complete information about the sets.

• If there exists an 1 ≤ r ≤ w0 such that |Di,ρ(r)| > n−1/s|Ci|, then the cell T̃i,j[w] stores the
smallest such r.

• If otherwise there is no such r, the cell T̃i,j[w] stores s+ 1.

Cell-probing algorithm. Set τ = c′(1k log d)
c/k for some constant c′ ≥ logα 4 so that

(τ
2

)k−1

2
−2s
≥
⌈
logα d

k

⌉
.

The cell-probing algorithm contains at most (k − 1)/2 shrinking phases, succeeded by one final
completion round. Each shrinking phase contains at most two rounds. In every shrinking phase the

11

algorithm makes at most τ−1
s +2 cell-probes to the table, and in the completion round it makes at

most max{3τ, k} parallel cell-probes. Thus the total number of cell-probes is at most

k − 1

2

(⌈
τ − 1

s

⌉
+ 2

)
+max(3τ, k) = O

(
k +

(
1

k
logα d

)c/k
)
. (4)

The algorithm maintains two integers l and u, initially l = 0 and u = ⌈logα d⌉. At each shrinking
phase l and u are updated, satisfying the invariant that l < u, Cl = ∅ and Cu 6= ∅. This invariant
is satisfied initially since we have C0 ⊆ B1 = ∅ and C⌈logα d⌉ ⊇ B⌈logα d⌉ = B.

The aim of the algorithm is at each shrinking phase to shrink the gap u − l by a factor of
O(τ) or to shrink the size of Cu. When the gap u− l drops below max{3τ, k} the algorithm enters
the completion round, where sets Cl, . . . , Cu are searched simultaneously by at most max{3τ, k}
parallel cell-probes in one round. We claim that at each shrinking phase, the algorithm updates l
and/or u in such a way that either u′ − l′ ≤ (u − l)/τ + 3 or |Cu′ | ≤ n−1/2s|Cu|, where l′ and u′

denote the updated values of l and u, respectively.
For 0 ≤ r ≤ τ − 1, we denote ρ(r) , ⌊l + r

τ (u − l)⌋. The cell-probing algorithm proceeds as
follows:

1. In shrinking phase: among sets Du,ρ(1), . . . ,Du,ρ(τ−1), the algorithm will first find the smallest

r such that |Du,ρ(r)| > n−1/s|Cu|. To find such r, the algorithm first arranges these sets into
⌈(τ −1)/s⌉ groups where each group contains up to at most s sets, with each group consumes
one parallel cell-probe as follows: for every 1 ≤ j ≤ ⌈(τ − 1)/s⌉, let the concatenation
wj = 〈lj , uj, wj

0, w
j
1, . . . , w

j
s〉 be constructed as:

• the lower and upper thresholds for the current group: lj = ρ(1+(j−1)s) and uj = ρ(js);

• wj
0 gives the number of sets Du,ρ(r) in the current group: normally it is just s except

for the last group due to the rounding, so wj
0 = τ − 1 − s

⌊
τ−1
s

⌋
if j = ⌈(τ − 1)/s⌉ and

s ∤ τ − 1, and wj
0 = s if otherwise;

• for q = 1, 2, . . . , wj
0, let w

j
q = Nρ(1+(j−1)s+q−1)x.

The algorithm reads the contents of cells Tu[Mux] and T̃u,Mux[w
j] for all 1 ≤ j ≤ ⌈(τ−1)/s⌉ in

parallel. Let j∗ be the smallest j such that T̃u,Mux[w
j] 6= s+1, or j∗ = (τ−1)/s+1 if no such j

exists. If j∗ = (τ−1)/s+1, let r∗ = τ . Otherwise let r∗ = (j∗−1)s+ T̃u,Mux[w
j∗]. Remember

that T̃u,Mux[w
j] = s + 1 means that all |Du,lj |, . . . , |Du,ρ(1+(j−1)s+w0−1)| ≤ n−1/s|Cu|. Hence

such r∗ is the smallest r ∈ [τ] such that |Du,ρ(r)| > n−1/s|Cu|, or r∗ = τ if no such r exists.
There are three cases:

(a) If r∗ = 1 (CASE 1), the algorithm updates u to ρ(1) + 1, leaving l unchanged, skips the
second round and moves to the next phase.

(b) Otherwise, the algorithm reads the content of cell Tρ(r∗−1)−1[Mρ(r∗−1)−1x]. If the cell is
EMPTY (CASE 2), it updates l to ρ(r∗ − 1) − 1 and if further r∗ < τ , updates u to
ρ(r∗) + 1.

(c) If Tρ(r∗−1)−1[Mρ(r∗−1)−1x] 6= EMPTY (CASE 3), the algorithm updates u to ρ(r∗−1)−1,
leaving l unchanged.

12

Algorithm 2 k-round cell-probing algorithm for ANNSγd,n for large k

Set τ ← (1k log d)
c/k logα 4;

initialize l← 0 and u← logα d;
while u− l ≥ max{3τ, k} do ⊲ shrinking phases

for r ∈ [τ], let ρ(r)← ⌊l + r
τ (u− l)⌋;

for j = 1 to ⌈(τ − 1)/s⌉ do ⊲ computing addresses
lj ← ρ(1 + (j − 1)s) and uj ← ρ(js);
if j = ⌈(τ − 1)/s⌉ and s ∤ τ − 1 then

wj
0 ← τ − 1− s⌊ τ−1

s ⌋;
else

wj
0 ← s;

end if
wj
q ← Nρ(1+(j−1)s+q−1)x for 1 ≤ q ≤ wj

0;
end for
retrieve Tu[Mux];
retrieve T̃u,Mux[w

j] for 1 ≤ j ≤ ⌈(τ − 1)/s⌉; ⊲ 1st round in shrinking phase

if ∃ 1 ≤ j ≤ ⌈(τ − 1)/s⌉ s.t. T̃u,Mux[w
j] 6= s+ 1 then

let j∗ be the smallest such j;
r∗ ← (j∗ − 1)s+ T̃u,Mux[w

j∗];
else

r∗ ← τ ;
end if
if r∗ = 1 then

update u← ρ(1) + 1;
else

retrieve Tρ(r∗−1)−1[Mρ(r∗−1)−1]x; ⊲ 2nd round in shrinking phase
if Tρ(r∗−1)−1[Mρ(r∗−1)−1]x = EMPTY then

update l← ρ(r∗ − 1)− 1;
if r∗ < τ then

update u← ρ(r∗) + 1;
end if

else
update u← ρ(r∗ − 1)− 1;

end if
end if

end while
retrieve Ti[Mix] for all l + 1 ≤ i ≤ u; ⊲ completion round
i∗ = min{l + 1 ≤ i ≤ u : Ti[Mix] 6= EMPTY};
return Ti∗ [Mi∗x].

13

2. Once the gap u − l drops below max{3τ, k}, the algorithm enters the completion round:
it reads the cells Ti[Mix] for all l + 1 ≤ i ≤ u in parallel, finds the smallest i such that
Ti[Mix] 6= EMPTY, and outputs the point stored in that cell. Such i must exist since we
know Cu 6= ∅. Note that the output point is from a nonempty Ci such that Ci−1 = ∅. With
Assumption 2, it must be a γ-approximate nearest neighbor of x.

The pseudocode of the cell-probing algorithm is given in Algorithm 2.
We now verify that at each time when the l and u are updated, the invariant that l < u, Cl = ∅

and Cu 6= ∅ is satisfied. First, in all three cases l < u is obviously satisfied after update.

• Since in CASE 1 and CASE 3 the lower threshold l is not changed, Cl stays empty. And in
CASE 2, Tρ(r∗−1)−1[Mρ(r∗−1)−1x] = EMPTY implies that the set Cl = Cρ(r∗−1)−1 is empty.

• In CASE 3, since Tρ(r∗−1)−1[Mρ(r∗−1)−1x] 6= EMPTY, the set Cu = Cρ(r∗−1)−1 is nonempty.
In CASE 2 when r∗ = τ the upper threshold u is not changed so that Cu stays nonempty.
For the remaining cases, since |Du,ρ(r∗)| > n−1/s|Cs|, by Assumption 3, the set Du,ρ(r∗) must
contains at least one point from Bρ(r∗)+1. Since Bρ(r∗)+1 ⊆ Cρ(r∗)+1, the set Cu = Cρ(r∗)+1 is
nonempty.

And note that in CASE 1 and CASE 2, the gap between the updated values of l and u is at most
(⌊l + r∗

τ (l − u)⌋ + 1) − (⌊l + r∗−1
τ (l − u)⌋ − 1) ≤ l−u

τ + 3, and in CASE 3, the size of the new Cu

is |Cρr∗−1−1| ≤ |Bρr∗−1
| ≤ |Du,ρr∗−1

|/(1 − n−1/s) ≤ 2|Du,ρr∗−1
| ≤ 2n−1/s|Cu|. Therefore, in each

shrinking phase, either u′ − l′ ≤ (u − l)/τ + 3 or |Cu′ | ≤ n−1/2s|Cu|, where l′ and u′ denote the
updated values of l and u, respectively.

Notice that as Cu stays nonempty, there are most 2s shrinking phases in which |Cu| drops. On
the other hand, as long as u− l ≥ max(3τ, k), we have (u− l)/τ +3 ≤ 2(u− l)/τ . Since we choose

our τ to satisfy
logα d

k ≤ (τ/2)(k−1)/2−2s, there can be at most (k − 1)/2 − 2s shrinking phases in
which (u − l) shrinks by a factor of 2/τ . Hence, overall there can be at most (k − 1)/2 shrinking
phases. Each shrinking phase contains at most 2 rounds, where the algorithm makes ⌈ τ−1

s ⌉ + 1
parallel cell-probes in the first round and one cell-probe in the second round of that phase, and at
last in the completion round the algorithm makes max(3τ, k) parallel cell-probes. The total number
of cell-probes is as given by (4).

3.3 A 1-probe protocol for λ-ANN

The algorithms presented in previous sections are for the search of the nearest neighbors. These
highlighted words seem to be critical to this non-trivial cell-probe complexity on a table of poly-
nomial size when both randomization and approximation are allowed.

Consider a well-known decision version of the problem: the approximate λ-near neighbor prob-
lem λ-ANNγ

d,n. Let γ > 1, λ > 0 be fixed. A point y ∈ {0, 1}d is a λ-near neighbor to x ∈ {0, 1}d if

dist(x, y) ≤ λ. Given a query point x ∈ {0, 1}d and a database B ⊆ {0, 1}d, the problem λ-ANNγ
d,n

asks to distinguish between the two cases: (1) there is a database point y ∈ B which is a λ-near
neighbor to x, and (2) there is no database point y ∈ B which is a γλ-near neighbor to x. For
other cases, the answer can be arbitrary. This problem has been extensively studied in the context
of lower bounds for nearest neighbor search [6, 7, 16,20,21].

The following is a folklore result: if randomization is allowed then λ-ANNγ
d,n can be solved with

1-probe on a table of polynomial size. We actually show this for a slightly stronger search problem,

14

the approximate λ-near neighbor search problem λ-ANNSγd,n, where if it is the case that there is a
λ-near neighbor in the database, a database point which is a γλ-near neighbor is output.

Theorem 11 Let γ > 1 be any constant. For n > d, λ-ANNSγd,n has a randomized cell-probing

scheme for with 1 cell-probe, table size nO(1), and word size O(d).

Proof: Here we still present a public-coin cell-probing scheme. Apparently the same generic
translation in Proposition 6 also holds for the λ-ANNSγd,n problem.

Still let α =
√
γ. The table is prepared precisely as in Theorem 9, with the public random

matrices Mi shared between the cell-probing algorithm and the table, and the points from sets Ci

which approximate the balls Bi of database points storing in the table.
For the cell-probing algorithm, let i = ⌈logα λ⌉. Thus αi ≥ λ and αi+1 ≤ γλ. The cell-probing

algorithm reads the cell Ti[Mix] returns the content if it contains a point or returns a NO if it is
EMPTY. As argued before, this cell stores a point from Ci if Ci is not empty. Note that if there
exist database points which are within distance λ from x, then Bi is not empty. By Assumption 2,
Bi ⊆ Ci ⊆ Bi+1, thus Ci is not empty. In this case a point in Ci must be returned, which is a
γλ-near neighbor to x. If no database point is a γλ-near neighbor to x, then Bi+1 is empty, and due
to Assumption 2, so is Ci, therefore the algorithm may only find Ti[Mix] = EMPTY and return
with a NO.

4 Lower Bounds

In this section, we prove the following lower bound for k-round randomized approximate nearest
neighbor search.

Theorem 12 (Theorem 4, restated) For any finite c1, c2 > 0, there exists a c3 > 0 such that
the following holds. Let n, d ≥ 1 be sufficiently large integers such that d ≤ 2

√
logn and n ≤ 2d

0.99
.

Let 1 ≤ k ≤ log log d
2 log log log d be an integer. If ANNSγd,n has a k-round randomized cell-probing scheme

with table size s ≤ nc1, word size w ≤ dc2 , such that every query is correctly answered within t total
cell-probes in k rounds with probability at least 7/8, then t > c3

k (logγ d)
1/k.

The proof follows the framework given in [10]. The framework consists of three main compo-
nents:

1. A reduction from LPM
Σ
m,n to ANNS

γ
d,n: As observed by Theorem 11, it is impossible to prove

the lower bound by considering the decision version of ANNSγd,n. The longest prefix match

problem LPM
Σ
m,n captures the nature of ANNSγd,n very well, and meanwhile, is convenient for

applying the round eliminations.

2. A round elimination lemma for communication protocols for LPMΣ
m,n: Cell-probing schemes

are represented as communication protocols. Eliminating a round in any communication
protocol for LPMΣ

m,n gives a weaker protocol for the same problem of a smaller scale.

3. Applying the round elimination to LPM
Σ
m,n until there is no round left yet the problem is still

nontrivial.

15

Here a simple observation for the k-round cell-probing schemes is that k rounds of cell-probes can be
simulated by 2k rounds of communications. Applying the above framework with this observation,
for the first two component, we redo the reduction with a new choice of parameters, and reprove
the round elimination lemma for general communication protocols with non-uniform message sizes
in different rounds.

In fact, these variations can be handled routinely by carefully going through the original proofs
with new parameters and/or more generic settings. The most delicate part of our lower bound is
our execution of the third step in above framework, which involves an exploitation of the power of
round eliminations. This part is in the proof of our main lower bound Theorem 24.

4.1 Reduction from longest prefix match

In [10], a reduction from another data structure problem, the longest prefix matching LPM
Σ
m,n, to

ANNS
γ
d,n is constructed.

Definition 13 (longest prefix match) For integers m,n ≥ 1 and a finite alphabet Σ we define
the longest prefix match problem LPM

Σ
m,n as the data structure problem that given a query x ∈ Σm

and a database B ⊆ Σm, |B| = n, an answer z ∈ B must be returned to satisfy that z has the
longest common prefix with x among all y ∈ B.

The reduction in [10] maps instances of LPMΣ
m,n to instances of ANNSγd,n without going through

the computation model, so it also applies to k-round cell-probing schemes. In order to prove our
more refined lower bound, we need to guarantee the same reduction to hold for a more critical
parameterization.

Fix the parameters for the problem ANNS
γ
d,n. We define η and β as follows:

η , 1− log log γ

log log d
and β , 1− c4

log log d
, (5)

where c4 = 2 log 201. Note that it holds that

γ = 2(log d)
1−η

. (6)

Lemma 14 (reduction from LPM
Σ
m,n to ANNS

γ
d,n) Let d be a sufficiently large integer, let η and

β be as defined in (5) so that γ satisfies (6), and set m , ⌊(log d)ηβ⌋. Let Σ be an alphabet of size
⌈2d0.99⌉. If ANNSγd,n has a k-round randomized cell-probing scheme with cell-probe complexity t and

success probability 7/8, using table size s and word size w, then so does LPM
Σ
m,n.

Next we explain how to modify the reduction in [10] to prove this lemma.
A family of Hamming balls in {0, 1}d is said to be γ-separated if the distance between any two

points belonging to distinct balls in the family is more than γ times the diameter of any ball in the
family. The following lemma is due to Chakrabarti et al. [9].

Lemma 15 (rephrased from Lemma 3.2 in [9]) Let d ≥ 1 be a large enough integer, and let
γ > 1. Inside a Hamming ball of radius r (where d0.995 ≤ r ≤ d) in {0, 1}d there exists a γ-separated
family of ⌈2d0.99⌉ balls, each of radius r/(8γ).

16

Lemma 16 (improved from Lemma 2.3 in [10]) Let d ≥ 1 be a large enough integer, and let
γ = 2(log d)

1−η ≥ 3, as defined in (6). There exists a rooted tree T whose vertices are Hamming
balls in {0, 1}d and which satisfies the following properties:

1. If v is a child of u in T , then as Hamming balls v ⊂ u.

2. Each non-leaf vertex of T has exactly ⌈2d0.99⌉ children.

3. Each depth-i vertex (the root being a depth-0 vertex) has radius d/(8γ)i.

4. The depth-i vertices form a γ-separated family of Hamming balls, which means the distance
between any two points belonging to distinct balls in the family is more than γ times the
diameter of any ball in the family.

5. The leaves of T are at depth ⌊(log d)ηβ⌋, where η is as defined in (5).

Proof: The proof is almost identical to the proof of Lemma 2.3 in [10], which follows a construction

due to Chakrabarti et al. [9]. Note that the balls at leaves have radius of at least d/(8γ)⌊(log d)ηβ⌋.
By our choices of η and β as defined in (5), it can be verify that for large enough d,

d

(8γ)⌊(log d)ηβ⌋ ≥ d0.995.

Then by Lemma 15, we have the suitable tree T by a natural recursive construction.

Given this tree T , the reduction from LPM
Σ
m,n with the new string length m = ⌊(log d)βη⌋ to

ANNS
γ
d,n can be constructed by reusing the mapping from LPM

Σ
m,n instances to ANNS

γ
d,n instances

described in the proof of Lemma 2.4 in [10] as a blackbox.

4.2 Round elimination for communication protocols

We now consider communication protocols between two players Alice and Bob in Yao’s model of
communication complexity [23]. We refer the readers to the nice textbook by Kushilevitz and
Nisan [14] for formal definitions of various concepts, e.g. private-coin protocols.

We assume Alice and Bob send messages to each other alternatively. We use two vectors
A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk) to respectively denote the lengths of messages sent by
Alice and Bob in each round.

Definition 17 Let A = (a1, a2, . . . , ak) ∈ Rk
≥0 and B = (b1, b2, . . . , bk) ∈ Rk

≥0. An 〈A,B, 2k〉A-
protocol is a 2k-round communication protocol, in which Alice and Bob send messages to each other
alternatively, with Alice sending the first message, with the size of Alice’s i-th message being exactly
⌊ai⌋ bits, and the size of Bob’s i-th message being exactly ⌊bi⌋ bits. The superscript “A” indicates
that Alice sends the first message.

For A = (a1, . . . , ak−1) ∈ Rk−1
≥0 and B = (b1, . . . , bk) ∈ Rk

≥0, we call such a protocol an

〈A,B, 2k − 1〉B-protocol if the first message is sent by Bob.

A data structure problem ρ ⊆ A ×B×C is naturally a communication problem: Alice is give
a query x ∈ A as input, Bob is given a database B ∈ B as input, and Alice is asked to output a
correct answer z ∈ C satisfying (x,B, z) ∈ ρ after communicating with Bob. As observed in [17],
any cell-probing scheme is actually a communication protocol, with Alice being the cell-probing
algorithm and Bob being the table.

17

Proposition 18 If a data structure problem ρ has a randomized cell-probing scheme using table
size s and word size w bits, such that every query is answered correctly within t total cell-probes in
k rounds with probability 1 − ǫ, then ρ has a private-coin 〈A,B, 2k〉A-protocol with ai = ti⌈log s⌉
and bi = tiw for every 1 ≤ i ≤ k, for some t1, t2, . . . , tk ≥ 0 that t =

∑k
i=1 ti, such that Alice

outputs a correct answer with probability at least 1− ǫ.

Here the natural interpretation is that each round of ti many parallel cell-probes can be simulated
by two rounds of communications: Alice sends the addresses of the ti cells, each of ⌈log s⌉ bits, to
Bob, and Bob responds by sending back the contents of these ti cells, each of w bits.

Let A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk′) be two vectors, and c ∈ R be a number. We
introduce some notations:

• let cA = (ca1, ca2, . . . , cak);

• denote by (A,B), or simply AB, the concatenation: AB = (a1, . . . , ak, b1, . . . , bk′);

• denote by (c,A) the concatenation of (c) and A: (c,A) = (c, a1, a2, . . . , ak)

• denote by Ai− the suffix of A starting at position i: Ai− = (ai, ai+1, . . . , ak).

The following is the round elimination lemma for LPMΣ
m,n that plays a central role in proving

the lower bound. The lemma is generalized from a simpler round elimination lemma in [10] to
adapt to the non-uniform amount of information communicated in each round.

Lemma 19 (round elimination lemma for LPM
Σ
m,n) Let m,n, p, q be positive integers such that

2p | m, q | n, and n ≤ |Σ|. Let 0 < ǫ, δ < 1 and A,B ∈ Rk
≥0. There is a universal constant C > 0

such that the followings hold. Assume that k ≥ 1 and 2a1
p ≥ C. If LPMΣ

m,n has a private-coin

〈A,B, 2k〉A-protocol with error probability ǫ, then LPM
Σ
m/2p,n/q has a private-coin 〈A′,B′, 2k−2〉A-

protocol with error probability ǫ′, where

A′ =

(
1 +

2a1
δpa2

)
A2−, B′ = B2−, and ǫ′ = ǫ+ 2δ +

√
b12

2a1
δp /q.

The rest of Section 4.2 is dedicated to the proof of this lemma. The proof is almost identical to
the one in [10], except for the part dealing with non-uniform message sizes. We include the proof
here for the completeness of the paper.

We only need to show that the following two propositions.

Part I. Assume that k ≥ 1 and 2a1/p ≥ C. If LPMΣ
m,n has a private-coin 〈A,B, 2k〉A-protocol with

error probability ǫ, then LPM
Σ
m/p,n has a private-coin 〈A′,B′, 2k − 1〉B-protocol with error

probability ǫ+ 2δ, where

A′ =

(
1 +

2a1
δpa2

)
A2− and B′ =

(
b12

2a1
δp ,B2−

)
. (7)

Part II. Assume that n ≤ |Σ|. If LPMΣ
m,n has a private-coin 〈A, (b0,B), 2k + 1〉B-protocol with error

probability ǫ, then LPM
Σ
m−1,n/q has a private-coin 〈A,B, 2k〉A-protocol with error probability

ǫ+
√

b0/q.

18

The round elimination lemma (Lemma 19) follows by combining these two propositions together,
and weakening the resulting statement from m/p−1 to m/2p. The proofs of these two propositions
will follow the same routine as in [10], with a generalization to deal with non-uniform message sizes.

The following is a typical proposition in the context of round elimination of communication
protocols. Here we prove a version which is suitable for our setting.

Lemma 20 (message switching lemma) Let P be a deterministic 〈A,B, 2k〉A-protocol with
k ≥ 1. Then there exists a deterministic 〈A′,B′, 2k − 1〉B-protocol, where A′ = (1 + a1/a2)A

2−

and B′ = (b12
a1 ,B2−), that computes the exact same problem as P .

Proof: There are at most 2a1 different messages that Alice may send as the first message. Bob
starts the new protocol by sending his at most 2a1 different responses as in P . If k = 1, the new
protocol stops after this. Otherwise, let Alice’s first message be the concatenation of her first two
messages in P . And then the protocol continues just as in P . This increases the sizes of Alice’s
messages (in fact only her first message in the new protocol) by a factor of at most (1 + a1/a2).

We need to define some concepts for the information complexity of communications. Let P be
a communication protocol and D a joint distribution on the possible inputs to Alice and Bob. Let
err(P,D) denote the probability of P being error under input distribution D. Let DA denote the
marginal distribution of D on Alice’s inputs and DB the marginal distribution on Bob’s inputs.

Definition 21 (information cost) The information cost of a private-coin protocol P with re-
spect to input distribution D, denoted icost(P,D), is defined to be the mutual information I(X :
msg(P,X)), where X is a random input drawn from DA (if Alice starts P) or DB (if Bob starts
P), and msg(P, x) denotes the first message in protocol P if the sender’s input is x.

The next two generic lemmas hold for general communication protocols with non-uniform sizes
of messages, which apply to our setting.

Lemma 22 (uninformative message lemma [22]) Let P be a private-coin 〈A,B, 2k〉A-protocol
for a communication problem ρ. Then for any input distribution D, there is a deterministic
〈A2−,B, 2k − 1〉B-protocol P ′ for ρ such that err(P ′,D) ≤ err(P,D) +

√
icost(P,D).

Lemma 23 (message compression lemma [10]) Let P be a private-coin 〈A,B, 2k〉A-protocol
for a communication problem ρ. Then for any input distribution D and any a > 0, there is a
deterministic 〈(a,A2−),B, 2k〉A-protocol P ′ for ρ such that err(P ′,D) ≤ err(P,D)+(2·icost(P,D)+
C)/a, where C > 0 is a universal constant.

Now we are ready to show the two propositions that support the round elimination lemma.
This is done by going through the same proof in [10] with a different parameterization.

Proof of Part I. Assume that LPMΣ
m,n has private-coin 〈A,B, 2k〉A-protocol with error probabil-

ity ǫ for a k ≥ 1. We then construct a private-coin 〈A′,B′, 2k− 1〉B-protocol with error probability
ǫ + 2δ for LPM

Σ
m/p,n where A′ and B′ are given in (7), when 2a1/p ≥ C for a universal constant

C > 0.
Let S , Σm/p. By Yao’s min-max principle, it suffices to give a deterministic protocol for

LPM
Σ
m/p,n with the same message lengths and distributional error on any input distribution D on

S × Sn. Fix an input distribution D over S × Sn. Define the following distributions:

19

I: Let I defenote the distribution over [p]× S∗ obtained as follows: choose i ∈ [p] uniformly at
random and draw σ ∈ Si−1 from Di−1

A . Recall that DA denote the marginal distribution on
Alice’s inputs.

Di,σ: Let s be some arbitrarily fixed element in S. For each pair (i, σ) of I we define a distribution
Di,σ on Sp × (Sp)n as follows: draw a sample (x, y) from D, independently draw p− i strings
Xi+1, · · · ,Xp from DA, then output (σxXi+1 · · ·Xp, σys

p−i). Note that y is a set of string,
and the σysp−i denote the set of strings {στsp−i : τ ∈ y}.

D̃: Finally, let D̃ be the distribution on Sp × (Sp)n obtained by drawing a (i, σ) from I and
outputting a sample from Di,σ.

By the easy direction of Yao’s min-max principle, there is a deterministic 〈A,B, 2k〉A-protocol P
for LPMΣ

m,n with distributional error at most ǫ under distribution D̃. By definition,

Ei,σ[err(P,Di,σ)] = err(P, D̃) ≤ ǫ,

where the expectation is taken over (i, σ) which is sampled from I.
Let X = X1X2 · · ·Xp be distributed according to D̃A = Dp

A. Then by definition,

icost(P, D̃) = I(X : msg(P,X))

=
∑

i∈[p]
I(Xi : msg(P,X)|X1 · · ·Xi−1) (chian rule)

=
∑

i∈[p]
Eσ[I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)]

= p · Ei,σ[I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)].

Note that icost(P, D̃) ≤ a1, since Alice’s first message is of length a1. Hence

Ei,σ[I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)] ≤ a1
p
.

Due to the linearity of expectation,

Ei,σ

[
err(P,Di,σ) +

2 · I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)

2a1/(δp)

]

=Ei,σ[err(P,Di,σ)] +
2Ei,σ[I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)]

2a1/(δp)

≤ǫ+ 2a1/p

2a1/(δp)
= ǫ+ δ.

By the averaging principle, there is an integer i ∈ [p] and a string σ ∈ Si−1 such that

err(P,Di,σ) +
2 · I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ)

2a1/(δp)
≤ ǫ+ δ.

Fix the pair (i, σ) to satisfy above. We can now construct a private-coin protocol Q′′ for LPMΣ
m/p,n

which uses P as a black box. It works as follows: given an input (x, y) ∈ S × Sn, Alice constructs

20

a string x̃ , σxXi+1 · · ·Xp where the Xj ’s are random strings drawn independently from DA using
her private-coins, and Bob constructs the set of strings ỹ , σysp−i. They then run protocol P on
input (x̃, ỹ) and output the i-th block of the output of P . Note that (x̃, ỹ) is distributed according
to Di,σ if (x, y) is distributed according to D. Clearly, due to the definition of LPM, Q′′ works as
P works. Therefore,

err(Q′′,D) ≤ err(P,Di,σ).

Moreover,
icost(Q′′,D) = I(Xi : msg(P,X)|X1 · · ·Xi−1 = σ).

Applying the message compression lemma (Lemma 23) toQ′′, we have a deterministic 〈(2a1/(δp),A2−),B, 2k〉A-
protocol Q′ for LPMΣ

m/p,n, whose error on distribution D is bounded as

err(Q′,D) ≤ err(Q′′,D) + (2 · icost(Q′′,D) +C)/(2a1/(δp))

≤ ǫ+ δ + δ
C

2a1/p
.

Recall that we assume 2a1/p ≥ C. The above error is bounded by ǫ+ 2δ.
Applying the message switching lemma (Lemma 20) to Q′, we have a deterministic 〈A′,B′, 2k−

1〉B-protocol Q with error probability ǫ+2δ for LPMΣ
m/p,n whereA′ andB′ are given in (7). Applying

this to every joint distribution D over the inputs with Yao’s min-max lemma, we prove the first
proposition supporting the round elimination lemma.

Proof of Part II. Assume that n ≤ |Σ| and LPM
Σ
m,n has a private-coin 〈A, (b0,B), 2k + 1〉B-

protocol with error probability ǫ. Let S , Σm−1. For an arbitrary input distribution D on S×Sn/q,
we show the existence of a deterministic 〈A,B, 2k〉A-protocol for LPMΣ

m−1,n/q with error ǫ+
√
b0/q

on distribution D. By Yao’s min-max principle, this is sufficient.
Since q | n implies that q ≤ n ≤ |Σ|, we can fix q distinct strings s1, · · · , sq ∈ Σ. We now define

two distributions based on D.

Di: For each i ∈ [q], let Di be the distribution on ΣS× (ΣS)n obtained as follows: independently
draw q samples (x1, y1), · · · , (xq, yq) from D, and output (sixi, s1y1 ∪ · · · ∪ sqyq).

D̃: We also contruct a distribution D̃ on ΣS × (ΣS)n as follows: choose i ∈ [q] uniformly at
random, and output a sample from Di.

By the easy direction of Yao’s min-max principle there is a deterministic 〈A, (b0,B), 2k + 1〉B-
protocol P for LPMΣ

m,n with error at most ǫ on input distribution D̃. By definition,

Ei[err(P,Di)] = err(P, D̃) ≤ ǫ.

Let Y = Y1Y2 · · · Yq be distributed according to D̃B , where D̃B is the marginal distribution of

D̃ on Bob’s inputs. We have

icost(P, D̃) = I(Y : msg(P, Y))

≥
∑

i∈[q]
I(Yi : msg(P, Y)), (Yi’s are independent)

= q · Ei[I(Yi : msg(P, Y))].

21

Note that icost(P, D̃) ≤ b0 since Bob’s first message is of length b0. Hence

Ei[I(Yi : msg(P, Y))] ≤ b0
q
.

Due to the linearity of expectation,

Ei[err(P,Di) + I(Yi : msg(P, Y))]

=Ei[err(P,Di)] +Ei[I(Yi : msg(P, Y))]

≤ǫ+ b0/q.

By the averaging principle and the concavity of the square root function, there is an i ∈ [q] such
that

err(P,Di) +
√

I(Yi : msg(P, Y)) ≤ ǫ+
√

b0/q.

Fix the i as above. We can now define a private-coin protocol Q′ for LPMΣ
m−1,n/q which uses P as

a black box. It works as follows: given an input (x, y) ∈ S×Sn/q, Alice constructs a string x̃ , six
and Bob constructs the set of strings ỹ , s1y1∪ · · · ∪ si−1yi−1∪ siy∪ si+1yi+1∪ · · · ∪ sqyq where the
yj’s are random sets of strings drawn independently from DB using his private-coins. They then
run protocol P on input (x̃, ỹ) and output the second block of the output of P . Note that the (x̃, ỹ)
is distributed according to Di if (x, y) is distributed according to D. Clearly, due to the definition
of LPM, Q′ works as P works. Therefore,

err(Q′,D) ≤ err(P,Di).

Moreover,
icost(Q′,D) = I(Yi : msg(P, Y)).

Applying the uninformative message lemma (Lemma 22) to Q′, we have a deterministic 〈A,B, 2k〉A-
protocol Q for LPMΣ

m−1,n/q with error at most ǫ+
√

b0/q on distribution D. Applying this to every
joint distribution D over the inputs with Yao’s min-max lemma, we prove the second proposition
supporting the round elimination lemma.

4.3 Proof of the lower bound

We now prove the communication lower bound for LPMΣ
m,n, by the round elimination tool we setup

in previous sections.

Theorem 24 (communication lower bound for LPM) For any c1, c2 > 0, there exists a c3 >
0 such that the followings hold. Let n, d ≥ 1 be sufficiently large integers, and suppose that d ≤
2
√
logn and n ≤ 2d

0.99
. Let γ ≥ 3 and m = ⌊(log d)ηβ⌋, where η and β are as defined in (5). Let

Σ be a set of cardinality ⌈2d0.99⌉. Let 1 ≤ k ≤ log log d
2 log log log d be an integer. Let A,B ∈ Rk

>0 be in the

form that ai = c1ti log n and bi = tid
c2 for some ti > 0 for every 1 ≤ i ≤ k. If LPMΣ

m,n has a

private-coin 〈A,B, 2k〉A-protocol, then t ,
∑k

i=1 ti >
c3
k (logγ d)

1/k.

Proof: Although A = (a1, a2, . . . , ak) and B = (b1, b2, . . . , bk), we additionally define

ak+1 , a1, bk+1 , b1, and tk+1 , t1. (8)

22

We set δ = 1
4k , p = 1

2m
1/k, and further define

c5 , max
1≤i≤k

log
(
bi/δ

2
)

log n

m1/k

kti+1
.

By definitions of β and η in (5), we have

ηβ = 1− c4 + log log γ

log log d
+

c4 log log γ

(log log d)2
,

and

m = (log d)ηβ =
(log d)2c4 log log γ/ log log d

2c4 log γ
= Θ(logγ d).

Therefore, assuming that d ≤ 2
√
logn and γ ≥ 3, we have

c5 = max
i∈[k]

O

(
(log d)1/k(log k + log d)

kti+1 log n

)

= O

(
(log d)2

log n

)
= O(1),

where the constant factor depends on c2.
Furthermore, since k ≤ log log d

2 log log log d , it can be verified that

m > k2k. (9)

Now we define

ξ ,
m1/k

k
= Θ

(
(logγ d)

1/k

k

)
.

We start our proof by assuming LPM
Σ
m,n has a private-coin 〈A,B, 2k〉A-protocol with error proba-

bility 1/8 and
t = c3ξ = ξ/(c5 + 16c1e

16),

and derive an impossible result, which will prove that t > c3ξ. For notational convenience, we
ignore divisibility issues.

With the above assumption, we make the following claim.

Claim 25 For any non-negative integer i ≤ k, LPM
Σ
mi,ni

has a private-coin 〈Ai,Bi, 2(k − i)〉A-
protocol with error probability 1

8 + 3iδ, where

mi =
mai+1

(2p)ia1
,

ni = n1− 1

t

∑
j≤i tj+1 ,

Ai =
i∏

j=1

(
1 +

2aj
aj+1δp

)
A(i+1)−,

Bi = B(i+1)−.

23

We prove this claim by induction on i. For i = 0, the claim holds by our assumption. For induction
hypothesis: assume the claim for an i < k. We then prove the claim for i+ 1.

We choose pi+1 =
ai+1

ai+2
p and qi+1 = nti+2/t. We claim that

2pi+1 ≤ mi =
mai+1

(2p)ia1
. (10)

When i + 1 = k, this is obviously true, because 2pk
mk−1

= 2akp
ak+1

a1(2p)k−1

mak
= 1 since ak+1 = a1 and

2p = m1/k, thus 2pk = mk−1; and when i < k − 1, we have 2pi+1

mi
= a1(2p)i

mai+2
≤ a1

ai+2m1/k because

2p = m1/k, and a1
ai+2
≤ ti ≤ t ≤ m1/k (or otherwise t > m1/k = Ω((logγ d)

1/k) and there is nothing

to prove). Therefore, 2pi+1 ≤ mi holds for all i.
It is also obvious that

qi+1 ≤ n1− 1

t

∑i
j=1

tj+1 ≤ |Σ|. (11)

On the other hand, the quantity
2ai,1
pi+1

, where ai,1 = ai+1
∏i

j=1(1 +
2aj

aj+1δp
) is the first entry of

Ai, is bounded as below:

2ai+1

pi+1

i∏

j=1

(
1 +

2aj
aj+1δp

)
≥ 2ai+2

p
≥ 2c1ti+2 log n

1
2m

1/k
>

2c1 log n

(log d)1/k
,

which is ω(1) for d ≤ 2
√
logn. Therefore, it holds that

2ai,1
pi+1

> C for the first entry ai,1 of Ai, where

C is the universal constant in Lemma 19. Together with (10) and (11), the condition of the round
elimination lemma (Lemma 19) is satisfied. We now apply the round elimination lemma to the
protocol assumed by the induction hypothesis, to obtain a private-coin 〈Ai+1,Bi+1, 2(k− i− 1)〉A-
protocol for LPMΣ

mi+1,ni+1
with error probability 1

8 + 3δ + 2δ + δ′, where

δ′ =

√
bi+1

qi+1
exp

ai+1 ln 2

δpi+1

i∏

j=1

(
1 +

2aj
aj+1δp

)
 .

We then show that δ′ ≤ δ. Note that this will finish our induction and prove Claim 25.
By (9), we have δp/2 = 1

16m
1/k/k > k

16 , thus

i∏

j=1

(
1 +

2aj
aj+1δp

)
≤

k∏

j=1

(
1 +

2aj
aj+1δp

)

≤
(
1 +

2

δp

)k

(Lagrange multipliers)

≤ e16.

Therefore,

δ′ ≤
√

bi+1

qi+1
2

e16ai+1

δpi+1 =
√

bi+1n
8e16c1ti+2k/m1/k−ti+2/2t.

24

Recall that t = c3ξ = ξ/(c5 + 16c1e
16) and c5 = max1≤i≤k

log(bi/δ2)
logn

m1/k

kti+1
. We have

c5 ≥
m1/k log(bi+1/δ

2)

kti+2 log(n)

⇐⇒ 16c1e
16 − m1/k log(δ2/bi+1)

kti+2 log(n)
≤ 16c1e

16 + c5 =
1

c3

⇐⇒
(
16c1e

16 − 1

c3

)
ti+2k

m1/k
≤ log(δ2/bi+1)

log n

⇐⇒ 16e16c1ti+2k

m1/k
− ti+2

t
≤ log(δ2/bi+1)

log n

⇐⇒ δ′2 ≤ n16e16c1ti+2k/m
1/k−ti+2/tbi+1 ≤ δ2.

And we prove that δ′ ≤ δ. Claim 25 is proved.
Now let i = k in Claim 25. We have a private-coin protocol without message exchange between

Alice and Bob but solving LPM
Σ
1,1 with error probability at most 1

8 +
3
4 . However, this is impossible

due to the following claim.

Claim 26 Any private-coin protocol for LPM
Σ
1,1 without message exchange can succeed with prob-

ability at most 1/|Σ| in the worst case.

By Yao’s min-max principle, it is sufficient to prove the lower bound for deterministic protocols
on a uniform random inputs. Note that the only thing a deterministic Alice can do without
communication is to pick a string in Σ and output it, but this can only succeed with probability
at most 1/|Σ| for a random input.

Theorem 24 together with the translation from cell-probing scheme to communication protocol
(Proposition 18) and the reduction from LPM

Σ
m,n to ANNS

γ
d,n (Lemma 14) prove the k-round cell-

probe lower bound for ANNSγd,n (Theorem 12), the main result of this section.

References

[1] M. Ajtai. A lower bound for finding predecessors in yao’s cell probe model. Combinatorica,
8(3):235–247, 1988.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, pages 459–468. IEEE, 2006.

[3] A. Andoni, P. Indyk, H. L. Nguyen, and I. Razenshteyn. Beyond locality-sensitive hashing.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1018–1028. SIAM, 2014.

[4] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near neigh-
bors. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Comput-
ing, pages 793–801. ACM, 2015.

25

[5] J. Aspnes, D. Eisenstat, and Y. Yin. Low-contention data structures. In Proceedings of the
twenty-second annual ACM symposium on Parallelism in algorithms and architectures, pages
345–354. ACM, 2010.

[6] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and related problems in
the cell probe model. In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 388–396. ACM, 2000.

[7] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional nearest neighbor
search and related problems. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing, pages 312–321. ACM, 1999.

[8] J. Brody and K. G. Larsen. Adapt or die: Polynomial lower bounds for non-adaptive dynamic
data structures. Theory OF Computing, 11(19):471–489, 2015.

[9] A. Chakrabarti, B. Chazelle, B. Gum, and A. Lvov. A lower bound on the complexity of
approximate nearest-neighbor searching on the hamming cube. In Discrete and Computational
Geometry, pages 313–328. Springer, 2003.

[10] A. Chakrabarti and O. Regev. An optimal randomized cell probe lower bound for approximate
nearest neighbor searching. SIAM Journal on Computing, 39(5):1919–1940, 2010.

[11] P. Indyk. Nearest neighbors in high-dimensional spaces. 2004.

[12] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 604–613. ACM, 1998.

[13] T. Jayram, S. Khot, R. Kumar, and Y. Rabani. Cell-probe lower bounds for the partial match
problem. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 667–672. ACM, 2003.

[14] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 2006.

[15] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[16] D. Liu. A strong lower bound for approximate nearest neighbor searching. Information Pro-
cessing Letters, 92(1):23–29, 2004.

[17] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmetric
communication complexity. In Proceedings of the twenty-seventh annual ACM symposium on
Theory of computing, pages 103–111. ACM, 1995.

[18] I. Newman. Private vs. common random bits in communication complexity. Information
processing letters, 39(2):67–71, 1991.

[19] R. Panigrahy, K. Talwar, and U. Wieder. A geometric approach to lower bounds for approx-
imate near-neighbor search and partial match. In Foundations of Computer Science, 2008.
FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 414–423. IEEE, 2008.

26

[20] R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor search via metric
expansion. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium
on, pages 805–814. IEEE, 2010.

[21] M. Pǎtraşcu and M. Thorup. Higher lower bounds for near-neighbor and further rich problems.
In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages
646–654. IEEE, 2006.

[22] P. Sen. Lower bounds for predecessor searching in the cell probe model. In Computational
Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, pages 73–83. IEEE, 2003.

[23] A. C.-C. Yao. Some complexity questions related to distributive computing (preliminary re-
port). In Proceedings of the eleventh annual ACM symposium on Theory of computing, pages
209–213. ACM, 1979.

[24] A. C.-C. Yao. Should tables be sorted? Journal of the ACM (JACM), 28(3):615–628, 1981.

27

	1 Introduction
	2 Preliminaries
	3 Approximate nearest neighbor search in k rounds
	3.1 A simple k-round protocol for ANNS
	3.2 A k-round protocol for ANNS for large k
	3.3 A 1-probe protocol for -ANN

	4 Lower Bounds
	4.1 Reduction from longest prefix match
	4.2 Round elimination for communication protocols
	4.3 Proof of the lower bound

