
c© 2019 Doris Xin

ACCELERATING HUMAN-IN-THE-LOOP MACHINE LEARNING

BY

DORIS XIN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Assistant Professor Aditya Parameswaran

ABSTRACT

Machine learning workflow development is a process of trial-and-error: developers iterate

on workflows by testing out small modifications until the desired accuracy is achieved. Un-

fortunately, existing machine learning systems focus narrowly on model training—a small

fraction of the overall development time—and neglect to address iterative development. We

propose Helix, a machine learning system that optimizes the execution across iterations—

intelligently caching and reusing, or recomputing intermediates as appropriate. Helix cap-

tures a wide variety of application needs within its Scala DSL, with succinct syntax defining

unified processes for data preprocessing, model specification, and learning. We demonstrate

that the reuse problem can be cast as a Max-Flow problem, while the caching problem

is NP-Hard. We develop effective lightweight heuristics for the latter. Empirical evalua-

tion shows that Helix is not only able to handle a wide variety of use cases in one unified

workflow but also much faster, providing run time reductions of up to 19× over state-of-the-

art systems, such as DeepDive or KeystoneML, on four real-world applications in natural

language processing, computer vision, social and natural sciences.

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND OVERVIEW 4
2.1 A Brief Overview of Workflows . 4
2.2 Common Practices in Iteration . 5
2.3 System Architecture . 6
2.4 The Workflow Lifecycle . 8
2.5 Example Workflow . 9

CHAPTER 3 PROGRAMMING INTERFACE . 11
3.1 Operations in ML Workflows . 11
3.2 HML . 15
3.3 Scope and Limitations . 20

CHAPTER 4 COMPILATION AND REPRESENTATION 21
4.1 The Workflow DAG . 21
4.2 Tracking Changes . 21

CHAPTER 5 OPTIMIZATION . 23
5.1 Preliminaries . 23
5.2 Optimal Execution Plan . 24
5.3 Optimal Materialization Plan . 29
5.4 Workflow DAG Pruning . 34

CHAPTER 6 EMPIRICAL EVALUATION . 36
6.1 Systems and Baselines for Comparison . 36
6.2 Workflows . 37
6.3 Running Experiments . 39
6.4 Metrics . 40
6.5 Evaluation vs. State-of-the-Art Systems . 40
6.6 Evaluation vs. Simpler Helix Versions . 43
6.7 Memory Usage by Helix . 44

CHAPTER 7 RELATED WORK . 50

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 54

REFERENCES . 55

iii

CHAPTER 1: INTRODUCTION

From emergent applications like precision medicine, voice-controlled devices, and driverless

cars, to well-established ones like product recommendations and credit card fraud detection,

machine learning continues to be the key driver of innovations that are transforming our ev-

eryday lives. At the same time, developing machine learning applications is time-consuming

and cumbersome. To this end, a number of efforts attempt to make machine learning more

declarative and to speed up the model training process [1].

However, the majority of the development time is in fact spent iterating on the machine

learning workflow by incrementally modifying steps within, including (i) preprocessing: al-

tering data cleaning or extraction, or engineering features; (ii) model training: tweaking

hyperparameters, or changing the objective or learning algorithm; and (iii) postprocessing:

evaluating with new data, or generating additional statistics or visualizations. These itera-

tions are necessitated by the difficulties in predicting the performance of a workflow a priori,

due to both the variability of data and the complexity and unpredictability of machine learn-

ing. Thus, developers must resort to iterative modifications of the workflow via

“trial-and-error” to improve performance. A recent survey reports that less than

15% of development time is actually spent on model training [2], with the bulk of the time

spent iterating on the machine learning workflow.

Example 1.1 (Gene Function Prediction) Consider the following example from our bioin-

formatics collaborators who form part of a genomics center at the University of Illinois [3].

Their goal is to discover novel relationships between genes and diseases by mining scientific

literature. To do so, they process published papers to extract entity—gene and disease—

mentions, compute embeddings using an approach like word2vec [4], and finally cluster the

embeddings to find related entities. They repeatedly iterate on this workflow to improve the

quality of the relationships discovered as assessed by collaborating clinicians. For example,

they may (i) expand or shrink the literature corpus, (ii) add in external sources such as

gene databases to refine how entities are identified, and (iii) try different NLP libraries for

tokenization and entity recognition. They may also (iv) change the algorithm used for com-

puting word embedding vectors, e.g., from word2vec to LINE [5], or (v) tweak the number

of clusters to control the granularity of the clustering. Every single change that they make

necessitates waiting for the entire workflow to rerun from scratch—often multiple hours on

a large server for each single change, even though the change may be quite small.

As this example illustrates, the key bottleneck in applying machine learning is iteration—

every change to the workflow requires hours of recomputation from scratch, even though the

1

change may only impact a small portion of the workflow. For instance, normalizing a feature,

or changing the regularization would not impact the portions of the workflow that do not

depend on it—and yet the current approach is to simply rerun from scratch.

One approach to address the expensive recomputation issue is for developers to explicitly

materialize all intermediates that do not change across iterations, but this requires writing

code to handle materialization and to reuse materialized results by identifying changes be-

tween iterations. Even if this were a viable option, materialization of all intermediates is

extremely wasteful, and figuring out the optimal reuse of materialized results is not straight-

forward. Due to the cumbersome and inefficient nature of this approach, developers often

opt to rerun the entire workflow from scratch.

Unfortunately, existing machine learning systems do not optimize for rapid iteration. For

example, KeystoneML [6], which allows developers to specify workflows at a high-level ab-

straction, only optimizes the one-shot execution of workflows by applying techniques such

as common subexpression elimination and intermediate result caching. On the other ex-

treme, DeepDive [7], targeted at knowledge-base construction, materializes the results of all

of the feature extraction and engineering steps, while also applying approximate inference

to speed up model training. Although this näıve materialization approach does lead to reuse

in iterative executions, it is wasteful and time-consuming.

We present Helix, a declarative, general-purpose machine learning system that optimizes

across iterations. Helix is able to match or exceed the performance of KeystoneML and

DeepDive on one-shot execution, while providing gains of up to 19× on iterative execution

across four real-world applications. By optimizing across iterations, Helix allows data

scientists to avoid wasting time running the workflow from scratch every time they make

a change and instead run their workflows in time proportional to the complexity of the

change made. Helix is able to thereby substantially increase developer productivity while

simultaneously lowering resource consumption.

Developing Helix involves two types of challenges—challenges in iterative execution op-

timization and challenges in specification and generalization.

Challenges in Iterative Execution Optimization. A machine learning workflow can

be represented as a directed acyclic graph, where each node corresponds to a collection of

data—the original data items, such as documents or images, the transformed data items,

such as sentences or words, the extracted features, or the final outcomes. This graph, for

practical workflows, can be quite large and complex. One simple approach to enable iterative

execution optimization (adopted by DeepDive) is to materialize every single node, such that

the next time the workflow is run, we can simply check if the result can be reused from the

2

previous iteration, and if so, reuse it. Unfortunately, this approach is not only wasteful in

storage but also potentially very time-consuming due to materialization overhead. Moreover,

in a subsequent iteration, it may be cheaper to recompute an intermediate result, as opposed

to reading it from disk.

A better approach is to determine whether a node is worth materializing by considering

both the time taken for computing a node and the time taken for computing its ancestors.

Then, during subsequent iterations, we can determine whether to read the result for a node

from persistent storage (if materialized), which could lead to large portions of the graph

being pruned, or to compute it from scratch. In this paper, we prove that the reuse plan

problem is in PTIME via a non-trivial reduction to Max-Flow using the Project

Selection Problem [8], while the materialization problem is, in fact, NP-Hard.

Challenges in Specification and Generalization. To enable iterative execution opti-

mization, we need to support the specification of the end-to-end machine learning workflow

in a high-level language. This is challenging because data preprocessing can vary greatly

across applications, often requiring ad hoc code involving complex composition of declarative

statements and UDFs [9], making it hard to automatically analyze the workflow to apply

holistic iterative execution optimization.

We adopt a hybrid approach within Helix: developers specify their workflow in an in-

tuitive, high-level domain-specific language (DSL) in Scala (similar to existing

systems like KeystoneML), using imperative code as needed for UDFs, say for feature

engineering. This interoperability allows developers to seamlessly integrate existing JVM

machine learning libraries [10, 11]. Moreover, Helix is built on top of Spark, allowing data

scientists to leverage Spark’s parallel processing capabilities. We have developed a GUI on

top of the Helix DSL to further facilitate development [12].

Helix’s DSL not only enables automatic identification of data dependencies and data flow,

but also encapsulates all typical machine learning workflow designs. Unlike DeepDive [7],

Helix is not restricted to regression or factor graphs, allowing data scientists to use the most

suitable model for their tasks. All of the functions in Scikit-learn’s (a popular ML toolkit)

can be mapped to functions in the DSL [13], allowing Helix to easily capture applications

ranging from natural language processing, to knowledge extraction, to computer vision.

Moreover, by studying the variation in the dataflow graph across iterations, Helix is able

to identify reuse opportunities across iterations. Our work is a first step in a broader agenda

to improve human-in-the-loop ML [14].

3

CHAPTER 2: BACKGROUND AND OVERVIEW

In this section, we provide a brief overview of machine learning workflows, describe the

Helix system architecture and present a sample workflow in Helix that will serve as a

running example.

A machine learning (ML) workflow accomplishes a specific ML task, ranging from simple

ones like classification or clustering, to complex ones like entity resolution or image cap-

tioning. Within Helix, we decompose ML workflows into three components: data prepro-

cessing (DPR), where raw data is transformed into ML-compatible representations, learn-

ing/inference (L/I), where ML models are trained and used to perform inference on new

data, and postprocessing (PPR), where learned models and inference results are processed

to obtain summary metrics, create dashboards, and power applications. We discuss spe-

cific operations in each of these components in Chapter 3. As we will demonstrate, these

three components are generic and sufficient for describing a wide variety of supervised, semi-

supervised, and unsupervised settings.

2.1 A BRIEF OVERVIEW OF WORKFLOWS

A machine learning (ML) workflow accomplishes a specific ML task, ranging from sim-

ple ones like classification or clustering, to complex ones like entity resolution or image

captioning. The more complex tasks are often broken down into smaller subtasks; e.g., im-

age captioning is broken down into identifying objects or actions via classification, followed

by generating sentences using a language model [15]. Within Helix, we decompose ML

workflows into three components: data preprocessing (DPR), learning/inference (L/I), and

postprocessing (PPR). These three components are generic and adapt to a wide variety of

supervised, semi-supervised, and unsupervised settings, as we will demonstrate in Section ??.

Let R be the raw input data for the ML workflow.

Data Pre-processing (DPR). During data preprocessing, R is transformed, through a

series of operations, into some representation D ∈ X , where X is the input for model

training. The transformation from R to D can involve a variety of operations, such as

fine-grained feature definition from individual attributes (e.g., number of vowels in a word),

joining in other data sources (e.g., user information into log data), parsing (e.g., a document

to words), and aggregation (e.g., aggregating ad clicks).

Learning/Inference (L/I). During learning, an algorithm is run on D to obtain a model

f : X → Y , such as a linear classifier, decision tree, or cluster centers, where Y denotes

4

(a)

0 1 2 3 4 5 6 7

CV

NLP

WWW

NS

SS

DPR

L/I

PPR

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of Papers with Characteristic

Fine-
grained

Eval.

DNN

Domain
Knowledge

Feature

Multiple
Data

Sources

CV

NLP

NS

SS

WWW

Figure 2.1: (a) The average DRP, L/I, and PPR iterations for each domain; (b) Fraction of
papers with each characteristic by domain.

the space of the target outputs for the ML task. Then, during inference1, this model f is

used to process new data from X . For example, in spam classification, f decides whether

a new email is spam; in clustering, f assigns a datapoint to a specific (set of) cluster(s);

in image captioning, f generates a text caption for an image; and in word embeddings, f

maps a string containing a word onto a vector. We treat learning and inference as a unified

component because data processed by the DPR component can either be used for learning,

or, in the case a model has already been learned, inference. As shown in the examples above,

this observation is valid for both supervised and unsupervised learning.

Post-processing (PPR). Finally, an ML workflow usually contains additional operations

on the output model or inference results. This could include model evaluation, visualizations,

or other application-specific activities. We refer to these operations as postprocessing.

2.2 COMMON PRACTICES IN ITERATION

ML workflow development is anecdotally regarded to be highly iterative [16, 17]. However,

there is limited quantitative evidence to characterize iteration in ML workflow development.

To this end, we analyzed a sample of applied ML papers. More details can be found in

Xin et al. [18]; we provide a brief summary here. We collected statistics from papers from

five application domains: computer vision (CV), natural language processing (NLP), web

applications (WWW), natural sciences (NS), and social sciences (SS). The statistics collected

pertain to the frequency of operations in the three workflow components introduced above.

While academic papers present only a partial view of the development process, our survey

nevertheless sheds light on common practices for iteration.

Each iteration is categorized by the workflow components modified in that iteration, e.g.,

an iteration in which the user changes learning parameters is an L/I iteration. Figure 2.1(a)

1We use the term as defined in the ML community; this term is not to be confused with statistical
inference, which is concerned with estimating distributions based on data.

5

shows the average number of DRP, L/I and PPR iterations for each application domain.

Overall, the average (max) numbers of DPR, L/I, and PProc iterations are 1.3 (4), 1.2 (5),

and 2.6 (5), respectively. The global average number of iterations is 5.1 across all domains;

SS and NS exceed the global average; WWW is on par with the global average; CV and

NLP fall below the global average. CV workflows have fewer DPR iterations, due to the

fact that all surveyed CV papers study the same preprocessed datasets, and often use deep

neural networks (DNNs). We found that by convention, CV and NLP papers report only the

final model parameters and not the entire model tuning process, hence the below-average

number of L/I iterations. NS papers tend to report on a larger number of models (e.g.,

SVM, Random Forest) since the applicability of a model class to the problem investigated

presents value to future researchers (SVM is the most popular choice by a large margin).

In addition, we highlight four interesting characteristics discovered during our survey in

Figure 2.1(b). First, WWW and SS are much more likely to incorporate multiple data sources

in creating an ML model. Here, we focus on cases where a single model relies on multiple

data sources, not the case where models are evaluated on multiple datasets. For WWW,

this often entails joining log data with user profiles; SS often considers both the social

network and auxiliary information such as geographic features. Second, except in CV, most

domains still rely upon features handcrafted by domain experts. Third, contrary to common

belief, DNNs are not ubiquitous, especially in SS and WWW, due in part to limited data

and computing resources availability, and to the lack of human interpretability of outputs.

Lastly, in addition to reporting aggregate metrics, authors often conduct fine-grained case

studies on specific datapoints to study the limitations of their approach. Almost every CV

paper contains case studies since images lend themselves to visualization. Furthermore, NS

papers often study specific high-impact features to derive new scientific insights.

We use iteration trends and insights presented in Figure 2.1 to guide our system design

and empirical evaluation.

2.3 SYSTEM ARCHITECTURE

The Helix system consists of a domain specific language (DSL) in Scala as the program-

ming interface, a compiler for the DSL, and an execution engine, as shown in Figure 2.2.

The three components work collectively to minimize the execution time for both the current

iteration and subsequent iterations :

1. Programming Interface. Helix provides a single Scala interface named Workflow

for programming the entire workflow; the Helix DSL also enables embedding of imperative

6

Program
m

ing
Interface

Scala DSL

Workflow
 object App extends Workflow {
 data refers_to FileSource(train="trainData", test="testData")
 …
 }

Intermediate Code Gen.

Workflow DAG

Optimized DAG

C
om

pilation
Execution

Execution Engine

SparkApp-Specific
Libraries

...

DAG Optimizer

Data

Mat.
Optimizer

Figure 2.2: Helix System architecture. A program written by the user in the Helix DSL,
known as a Workflow, is first compiled into an intermediate DAG representation, which is
optimized to produce a physical plan to be run by the execution engine. At runtime, the
execution engine selectively materializes intermediate results to disk.

code in declarative statements. Through just a handful of extensible operator types, the

DSL supports a wide range of use cases for both data preprocessing and machine learning.

2. Compilation. A Workflow is internally represented as a directed acyclic graph (DAG)

of operator outputs. The DAG is compared to the one in previous iterations to determine

reusability (Chapter 4). The DAG Optimizer uses this information to produce an optimal

physical execution plan that minimizes the one-shot runtime of the workflow, by selectively

loading previous results via a Max-Flow-based algorithm (Section 5.1–5.2).

3. Execution Engine. The execution engine carries out the physical plan produced

during the compilation phase, while communicating with the materialization operator to

materialize intermediate results, to minimize runtime of future executions. The execution

engine uses Spark [19] for data processing and domain-specific libraries such as CoreNLP [20]

and Deeplearning4j [21] for custom needs.

Helix defers operator pipelining and scheduling for asynchronous execution to Spark.

Operators that can run concurrently are invoked in an arbitrary order, executed by Spark

via Fair Scheduling. While by default we use Spark in the batch processing mode, it can

be configured to perform stream processing using the same APIs as batch. We discuss

optimizations for streaming in Chapter 5.

7

Figure 2.3: Roles of system components in the Helix workflow lifecycle.

2.4 THE WORKFLOW LIFECYCLE

Given the system components described in the previous section, Figure 2.3 illustrates

how they fit into the lifecycle of ML workflows. Starting with W0, an initial version of the

workflow, the lifecycle includes the following stages:

1. DAG Compilation. The Workflow Wt is compiled into a DAG GWt of operator

outputs.

2. DAG Optimization. The DAG optimizer creates a physical plan GOPT
Wt

to be exe-

cuted by pruning and ordering the nodes in GWt and deciding whether any computation

can be replaced with loading previous results from disk.

3. Materialization Optimization. During execution, the materialization optimizer

determines which nodes in GOPT
Wt

should be persisted to disk for future use.

4. User Interaction. Upon execution completion, the user may modify the workflow

from Wt to Wt+1 based on the results. The updated workflow Wt+1 fed back to Helix

marks the beginning of a new iteration, and the cycle repeats.

Without loss of generality, we assume that a workflow Wt is only executed once in each

iteration. We model a repeated execution of Wt as a new iteration where Wt+1 = Wt.

Distinguishing two executions of the same workflow is important because they may have

different run times—the second execution can reuse results materialized in the first execution

for a potential run time reduction.

8

msExt

clExt

1. object Census extends Workflow {
2. // Declare variable names (for consistent reference) omitted.
3. data refers_to new FileSource(train="dir/train.csv", test="dir/test.csv")
4. data is_read_into rows using CSVScanner(Array("age", "education", ...))
5. ageExt refers_to FieldExtractor("age")
6~9. // Declare other field extractors like ageExt.
 + msExt refers_to FieldExtractor("marital_status")
10. target refers_to FieldExtractor("target")
11. ageBucket refers_to Bucketizer(ageExt, bins=10)
12. eduXocc refers_to InteractionFeature(Array(eduExt, occExt))
13.- rows has_extractors(eduExt, ageBucket, eduXocc, clExt, target)
 + rows has_extractors(eduExt, ageBucket, eduXocc, msExt, target)
14. income results_from rows with_labels target
15. incPred refers_to new Learner(modelType="LR"”, regParam=0.1)
16. predictions results_from incPred on income
17. checkResults refers_to new Reducer((preds: DataCollection) => {
18. // Scala UDF for checking prediction accuracy omitted. })
19. checkResults uses extractorName(rows, target)
20. checked results_from checkResults on testData(predictions)
21. checked is_output()
22. }

a) Census Workflow Program b) Optimized DAG for original workflow

D
PR

L/
I

c) Optimized DAG for modified workflow

data

rows

ageBucketeduXocc

income

predictions

checked

eduExt target
raceExt

occExt
clExt ageExt

data

rows

eduXocc

income

predictions

checked

ageBucket

msExteduExt targetraceExt

occExt clExt ageExt

PP
R

Figure 2.4: Example workflow for predicting income from census data.

2.5 EXAMPLE WORKFLOW

We demonstrate the usage of Helix with a simple example ML workflow for predicting

income using census data from Kohavi [22], shown in Figure 2.4a); this workflow will serve

as a running example throughout the paper. Details about the individual operators will be

provided in subsequent sections. We overlay the original workflow with an iterative update,

with additions annotated with + and deletions annotated with −, while the rest of the

lines are retained as is. We begin by describing the original workflow consisting of all the

unannotated lines plus the line annotated with − (deletions).

Original Workflow: DPR Steps. First, after some variable name declarations, the user

defines in line 3-4 a data collection rows read from a data source data consisting of two

CSV files, one for training and one for test data, and names the columns of the CSV files

age, education, etc. In lines 5-10, the user declares simple features that are values from

specific named columns. Note that the user is not required to specify the feature type,

which is automatically inferred by Helix from data. In line 11 ageBucket is declared as a

derived feature formed by discretizing age into ten buckets (whose boundaries are computed

by Helix), while line 12 declares an interaction feature, commonly used to capture higher-

order patterns, formed out of the concatenation of eduExt and occExt.

Once the features are declared, the next step, line 13, declares the features to be extracted

from and associated with each element of rows. Users do not need to worry about how these

features are attached and propagated; users are also free to perform manual feature selection

here, studying the impact of various feature combinations, by excluding some of the feature

extractors. Finally, as last step of data preprocessing, line 14 declares that an example

collection named income is to be made from rows using target as labels. Importantly, this

step converts the features from human-readable formats (e.g., color=red) into an indexed

9

vector representation required for learning.

Original Workflow: L/I & PPR Steps. Line 15 declares an ML model named incPred

with type “Logistic Regression” and regularization parameter 0.1, while line 16 specifies that

incPred is to be learned on the training data in income and applied on all data in income to

produce a new example collection called predictions. Line 17-18 declare a Reducer named

checkResults, which outputs a scalar using a UDF for computing prediction accuracy. Line

19 explicitly specifies checkResults’s dependency on target since the content of the UDF is

opaque to the optimizer. Line 20 declares that the output scalar named checked is only to

be computed from the test data in income. Lines 21 declares that checked must be part of

the final output.

Original Workflow: Optimized DAG. The Helix compiler first translates verbatim the

program in Figure 2.4a) into a DAG, which contains all nodes including raceExt and all

edges (including the dashed edge) except the ones marked with dots in Figure 2.4b). This

DAG is then transformed by the optimizer, which prunes away raceExt (grayed out) because

it does not contribute to the output, and adds the edges marked by dots to link relevant

features to the model. DPR involves nodes in purple, and L/I and PPR involve nodes in

orange. Nodes with a drum to the right are materialized to disk, either as mandatory output

or for aiding in future iterations.

Updated Workflow: Optimized DAG. In the updated version of the workflow, a new

feature named msExt is added (below line 9), and clExt is removed (line 13); correspondingly,

in the updated DAG, a new node is added for msExt (green edges), while clExt gets pruned

(pink edges). In addition, Helix chooses to load materialized results for rows from the

previous iteration allowing data to be pruned, avoiding a costly parsing step. Helix also

loads ageBucket instead of recomputing the bucket boundaries requiring a full scan. Helix

materializes predictions in both iterations since it has changed. Although predictions is not

reused in the updated workflow, its materialization has high expected payoff over iterations

because PPR iterations (changes to checked in this case) are the most common as per our

survey results shown in Figure 2.1(c). This example illustrates that

1. Nodes selected for materialization lead to significant speedup in subsequent iterations.

2. Helix reuses results safely, deprecating old results when changes are detected (e.g.,

predictions is not reused because of the model change).

3. Helix correctly prunes away extraneous operations via dataflow analysis.

10

CHAPTER 3: PROGRAMMING INTERFACE

To program ML workflows with high-level abstractions, Helix users program in a lan-

guage called HML, an embedded DSL in Scala. An embedded DSL exists as a library in

the host language (Scala in our case), leading to seamless integration. LINQ [23], a data

query framework integrated in .NET languages, is another example of an embedded DSL.

In Helix, users can freely incorporate Scala code for user-defined functions (UDFs) directly

into HML. JVM-based libraries can be imported directly into HML to support application-

specific needs. Development in other languages can be supported with wrappers in the same

style as PySpark [24].

3.1 OPERATIONS IN ML WORKFLOWS

In this section, we argue that common operations in ML workflows can be decomposed into

a small set of basis functions F . We first introduce F and then enumerate its mapping onto

operations in Scikit-learn [25], one of the most comprehensive ML libraries, thereby demon-

strating coverage. In Section 3.2, we introduce HML, which implements the capabilities

offered by F .

As mentioned in Chapter 2, an ML workflow consists of three components: data prepro-

cessing (DPR), learning/inference (L/I), and postprocessing (PPR). They are captured by

the Transformer, Estimator, and Predictor interfaces in Scikit-learn, respectively. Similar

interfaces can be found in many ML libraries, such as MLLib [26], TFX [27], and Key-

stoneML.

Data Representation. Conventionally, the input space to ML, X , is a d-dimensional

vector space, Rd, d ≥ 1, where each dimension corresponds to a feature. Each datapoint

is represented by a feature vector (FV), x ∈ Rd. For notational convenience, we denote a

d-dimensional FV, x ∈ Rd, as xd. While inputs in some applications can be easily loaded

into FVs, e.g., images are 2D matrices that can be flattened into a vector, many others

require more complex transformations, e.g., vectorization of text requires tokenization and

word indexing. We denote the input dataset of FVs to an ML algorithm as D.

DPR. The goal of DPR is to transform raw input data into D. We use the term record,

denoted by r, to refer to a data object in formats incompatible with ML, such as text and

JSON, requiring preprocessing. Let S = {r} be a data source, e.g., a csv file, or a collection

of text documents. DPR includes transforming records from one or more data sources from

one format to another or into FVs Rd′ ; as well as feature transformations (from Rd to Rd′).

11

DPR operations can thus be decomposed into the following categories:

• Parsing r 7→ (r1, r2, . . .): transforming a record into a set of records, e.g., parsing an

article into words via tokenization.

• Join (r1, r2, . . .) 7→ r: combining multiple records into a single record, where ri can

come from different data sources.

• Feature Extraction r 7→ xd: extracting features from a record.

• Feature Transformation T : xd 7→ xd′ : deriving a new set of features from the input

features.

• Feature Concatenation (xd1 ,xd2 , . . .) 7→ x
∑

i di : concatenating features extracted in

separate operations to form an FV.

Note that sometimes these functions need to be learned from the input data. For example,

discretizing a continuous feature xi into four even-sized bins requires the distribution of xi,

which is usually estimated empirically by collecting all values of xi in D. We address this

use case along with L/I next.

L/I. At a high-level, L/I is about learning a function f from the input D, where f : X →
Rd′ , d′ ≥ 1. This is more general than learning ML models, and also includes feature trans-

formation functions mentioned above. The two main operations in L/I are 1) learning, which

produces functions using data from D, and 2) inference, which uses the function obtained

from learning to draw conclusions about new data. Complex ML tasks can be broken down

into simple learning steps captured by these two operations, e.g., image captioning can be

broken down into object identification via classification, followed by sentence generation

using a language model [15]. Thus, L/I can be decomposed into:

• Learning D 7→ f : learning a function f from the dataset D.

• Inference (D, f) 7→ Y : using the ML model f to infer feature values, i.e., labels, Y
from the input FVs in D.

Note that labels can be represented as FVs like other features, hence the usage of a single D
in learning to represent both the training data and labels to unify the abstraction for both

supervised and unsupervised learning and to enable easy model composition.

PPR. Finally, a wide variety of operations can take place in PPR, using the learned models

and inference results from L/I as input, including model evaluation, data visualization,

and other application-specific activities. The most commonly supported PPR operations

12

Scikit-learn DPR, L/I Composed Members of F
fit(X[, y]) learning (D 7→ f)

predict proba(X) inference ((D, f) 7→ Y)

predict(X)
inference, optionally followed by
transformation

fit predict(X[, y]) learning, then inference

transform(X)
transformation or inference, de-
pending on whether operation is
learned via prior call to fit

fit transform(X) learning, then inference

Scikit-learn PPR Composed Members of F

eval: score(ytrue, ypred)
join ytrue and ypred into a single
dataset D, then reduce

eval: score(op, X, y) inference, then join, then reduce

selection: fit(p1, . . . , pn)
reduce, implemented in terms of
learning, inference, and reduce (for
scoring)

Table 3.1: Scikit-learn DPR, L/I, and PPR coverage in terms of F .

in general purpose ML libraries are model evaluation and model selection, which can be

represented by a computation whose output does not depend on the size of the data D. We

refer to a computation with output sizes independent of input sizes as a reduce:

• Reduce (D, s′) 7→ s: applying an operation on the input dataset D and s′, where s′ can

be any non-dataset object. For example, s′ can store a set of hyperparameters over

which reduce optimizes, learning various models and outputting s, which can represent

a function corresponding to the model with the best cross-validated hyperparameters.

3.1.1 Comparison with Scikit-learn

A dataset in Scikit-learn is represented as a matrix of FVs, denoted by X. This is concep-

tually equivalent to D = {xd} introduced earlier, as the order of rows in X is not relevant.

Operations in Scikit-learn are categorized into dataset loading and transformations, learn-

ing, and model selection and evaluation [28]. Operations like loading and transformations

that do not tailor their behavior to particular characteristics present in the dataset D map

trivially onto the DPR basis functions ∈ F introduced at the start of Section 3.1, so we

focus on comparing data-dependent DPR and L/I, and model selection and evaluation.

13

Scikit-learn Operations for DPR and L/I. Scikit-learn objects for DPR and L/I im-

plement one or more of the following interfaces [29]:

• Estimator, used to indicate that an operation has data-dependent behavior via a

fit(X[, y]) method, where X contains FVs or raw records, and y contains labels if the

operation represents a supervised model.

• Predictor, used to indicate that the operation may be used for inference via a pre-

dict(X) method, taking a matrix of FVs and producing predicted labels. Additionally,

if the operation implementing Predictor is a classifier for which inference may produce

raw floats (interpreted as probabilities), it may optionally implement predict proba.

• Transformer, used to indicate that the operation may be used for feature transforma-

tions via a transform(X) method, taking a matrix of FVs and producing a new matrix

Xnew.

An operation implementing both Estimator and Predictor has a fit predict method, and

an operation implementing both Estimator and Transformer has a fit transform method, for

when inference or feature transformation, respectively, is applied immediately after fitting to

the data. The rationale for providing a separate Estimator interface is likely due to the fact

that it is useful for both feature transformation and inference to have data-dependent behav-

ior determined via the result of a call to fit. For example, a useful data-dependent feature

transformation for a Naive Bayes classifier maps word tokens to positions in a sparse vector

and tracks word counts. The position mapping will depend on the vocabulary represented

in the raw training data. Other examples of data-dependent transformations include feature

scaling, descretization, imputation, dimensionality reduction, and kernel transformations.

Coverage in terms of basis functions F . The first part of Table 3.1 summarizes the mapping

from Scikit-learn’s interfaces for DPR and L/I to (compositions of) basis functions from F .

In particular, note that there is nothing special about Scikit-learn’s use of separate interfaces

for inference (via Predictor) and data-dependent transformations (via Transformer); the

separation exists mainly to draw attention to the semantic separation between DPR and

L/I.

Scikit-learn Operations for PPR. Scikit-learn interfaces for operations implementing

model selection and evaluation are not as standardized as those for DPR and L/I. For

evaluation, the typical strategy is to define a simple function that compares model outputs

with labels, computing metrics like accuracy or F1 score. For model selection, the typical

strategy is to define a class that implements methods fit and score. The fit method takes

a set of hyperparameters over which to search, with different models scored according to

14

the score method (with identical interface as for evaluation in Scikit-learn). The actual

model over which hyperparameter search is performed is implemented by an Estimator that

is passed into the model selection operation’s constructor.

Coverage in terms of basis functions F . As summarized in the second part of Table 3.1,

Scikit-learn’s operations for evaluation may be implemented via compositions of (optionally)

inference, joining, and reduce ∈ F . Model selection may be implemented via a reduce

that internally uses learning basis functions to learn models for the set of hyperparameters

specified by s′, followed by composition with inference and another reduce ∈ F for scoring,

eventually returning the final selected model.

3.2 HML

HML is a declarative language for specifying an ML workflow DAG. The basic building

blocks of HML are Helix objects, which correspond to the nodes in the DAG. Each Helix

object is either a data collection (DC) or an operator. Statements in HML either declare

new instances of objects or relationships between declared objects. Users program the entire

workflow in a single Workflow interface, as shown in Figure 2.4a). The complete grammar for

HML in Backus-Naur Form is shown in Figure 3.1, and the semantics of all of the expressions

is shown in Table 3.2. Here, we describe high-level concepts including DCs and operators

and discuss the strengths and limitations of HML in Section 3.3.

3.2.1 Data Collections

A data collection (DC) is analogous to a relation in a RDBMS; each element in a DC is

analogous to a tuple. The content of a DC either derives from disk, e.g., data in Line 3

in Figure 2.4a), or from operations on other DCs, e.g., rows in Line 4 in Figure 2.4a). An

element in a DC can either be a semantic unit, the data structure for DPR, or an example,

the data structure for L/I.

A DC can only contain a single type of element. DCSU and DCE denote a DC of semantic

units and a DC of examples, respectively. The type of elements in a DC is determined by

the operator that produced the DC and not explicitly specified by the user. We elaborate

on the relationship between operators and element types in Section 3.2.2, after introducing

the operators.

Semantic units. Recall that many DPR operations require going through the entire dataset

to learn the exact transformation or extraction function. For a workflow with many such

15

Figure 3.1: Helix syntax in Extended Backus-Naur Form. <string> denotes a legal String
object in Scala; <*-obj> denotes the correct syntax for instantiating object of type *;
<Scala expr> denotes any legal Scala expression. A Helix Workflow can be comprised of
any combination of Helix and Scala expressions, a direct benefit of being an embedded
DSL.

16

P
h
ra

se
U
sa

g
e

O
p
e
ra

ti
o
n

E
x
a
m
p
le

re
fe

rs
to

st
ri
n
g

re
fe

rs
to

H
e
l
ix

o
bj
ec
t

R
eg

is
te

r
a
H
e
l
ix

o
bj
ec
t

to
a

st
ri
n
g

n
am

e
“e

x
t1

”
re

fe
rs

to
E

x
tr

ac
to

r(
..

.)

is
re

a
d

in
to

..
.

u
si

n
g

D
C
i[
S
U

]
is

re
ad

in
to

D
C
j
[S
U

]
u

si
n

g
sc
a
n
n
er

A
p

p
ly

sc
a
n
n
er

on
D
C
i

to
ob

-
ta

in
D
C
j

“s
en

te
n

ce
”

is
re

ad
in

to
“w

or
d

”
u

si
n

g
w

h
it

es
p

ac
eT

ok
en

iz
er

h
as

ex
tr

a
ct

o
rs

D
C

[S
U

]
h

as
ex

tr
ac

to
rs

ex
-

tr
a
ct
o
r+

A
p

p
ly

ex
tr

ac
to

rs
to

D
C

“w
or

d
”

h
as

ex
tr

ac
to

rs
(“

ex
t1

”,
“e

x
t2

”)

on
sy
n
th
es
iz
er
/
le
a
rn
er
/
re
d
u
ce
r

on
D
C

[∗
]+

A
p

p
ly

sy
n
th
es
iz
er
/
le
a
rn
er

on
in

p
u

t
D

C
(s

)
to

p
ro

d
u

ce
an

ou
tp

u
t

D
C

[E
]

“m
at

ch
”

on
(“

p
er

so
n

ca
n

d
id

at
e”

,
“k

n
ow

n
p

er
so

n
s”

)

re
su

lt
s

fr
o
m

D
C
i[
E

]
re

su
lt

s
fr

om
D
C
j
[∗

]
[w

it
h

la
b

el
ex
tr
a
ct
o
r
]

W
ra

p
ea

ch
el

em
en

t
in

D
C
i

in
an

E
x
am

p
le

an
d

op
ti

on
al

ly
la

-
b

el
s

th
e

E
x
am

p
le

s
w

it
h

th
e

ou
tp

u
t

of
ex
tr
a
ct
o
r.

“i
n

co
m

e”
re

su
lt

s
fr

om
“r

ow
s”

w
it

h
la

b
el

“t
ar

ge
t”

D
C

[E
]/

S
ca

la
r

re
su

lt
s

fr
om

cl
a
u
se

S
p

ec
if

y
th

e
n

am
e

fo
r
cl
a
u
se

’s
ou

tp
u

t
D

C
[E

].
“l

ea
rn

ed
”

re
su

lt
s

fr
om

“L
”

on
“i

n
co

m
e”

u
se

s
sy
n
th
es
iz
er
/
le
a
rn
er
/
re
d
u
ce
r

u
se

s
ex
tr
a
ct
o
rs
+

S
p

ec
if

y
sy
n
th
es
iz
er
/
le
a
rn
er

’s
d

ep
en

d
en

cy
on

th
e

ou
tp

u
t

of
ex
tr
a
ct
o
rs
+

to
p

re
ve

n
t

p
ru

n
-

in
g

or
u

n
ca

ch
in

g
of

in
te

rm
e-

d
ia

te
re

su
lt

s
d

u
e

to
op

ti
m

iz
a-

ti
on

.

“m
at

ch
”

u
se

s
(“

ex
t1

”,
“e

x
t2

”)

is
o
u

tp
u

t
D
C

[∗
]/
re
su
lt

is
ou

tp
u

t
R

eq
u

ir
es

D
C
/
re
su
lt

to
b

e
m

a-
te

ri
al

iz
ed

.
“l

ea
rn

ed
”

is
ou

tp
u

t

T
ab

le
3.

2:
U

sa
ge

an
d

fu
n
ct

io
n
s

of
ke

y
p
h
ra

se
s

in
H

M
L

.
D
C

[A
]
d
en

ot
es

a
D

C
w

it
h

n
am

e
D
C

an
d

el
em

en
ts

of
ty

p
e
A
∈
{S
U
,E
},

w
it

h
A

=
∗

in
d
ic

at
in

g
b

ot
h

ty
p

es
ar

e
le

ga
l.
x

+
in

d
ic

at
es

th
at
x

ap
p

ea
rs

on
e

or
m

or
e

ti
m

es
.

W
h
en

ap
p

ea
ri

n
g

in
th

e
sa

m
e

st
at

em
en

t,
on

ta
ke

s
p
re

ce
d
en

ce
ov

er
re

su
lt

s
fr

om
.

17

operations, processing D to learn each operator separately can be highly inefficient. We

introduce the notion of semantic units (SU) to compartmentalize the logical and physical

representations of features, so that the learning of DPR functions can be delayed and batched.

Formally, each SU contains an input i, which can be a set of records or FVs, a pointer

to a DPR function f , which can be of type parsing, join, feature extraction, feature trans-

formation, or feature concatenation, and an output o, which can be a set of records or FVs

and is the output of f on i. The variables i and f together serve as the semantic, or logical,

representation of the features, whereas o is the lazily evaluated physical representation that

can only be obtained after f is fully instantiated.

Examples. Examples gather all the FVs contained in the output of various SUs into a single

FV for learning. Formally, an example contains a set of SUs S, and an optional pointer to

one of the SUs whose output will be used as the label in supervised settings, and an output

FV, which is formed by concatenating the outputs of S. In the implementation, the order of

SUs in the concatenation is determined globally across D, and SUs whose outputs are not

FVs are filtered out.

Sparse vs. Dense Features. The combination of SUs and examples affords Helix a great

deal of flexibility in the physical representation of features. Users can explicitly program

their DPR functions to output dense vectors, in applications such as computer vision. For

sparse categorical features, they are kept in the raw key-value format until the final FV

assembly, where they are transformed into sparse or dense vectors depending on whether

the ML algorithm supports sparse representations. Note that users do not have to commit

to a single representation for the entire application, since different SUs can contain different

types of features. When assembling a mixture of dense and spare FVs, Helix currently

opts for a dense representation but can be extended to support optimizations considering

space and time tradeoffs.

Unified learning support. HML provides unified support for training and test data by

treating them as a single DC, as done in Line 4 in Figure 2.4a). This design ensures that

both training and test data undergo the exact same data preprocessing steps, eliminating

bugs caused by inconsistent data preprocessing procedures handling training and test data

separately. Helix automatically selects the appropriate data for training and evaluation.

However, if desired, users can handle training and test data differently by specifying separate

DAGs for training and testing. Common operators can be shared across the two DAGs

without code duplication.

18

3.2.2 Operators

Operators in Helix are designed to cover the functions enumerated in Section 3.1, using

the data structures introduced above. A Helix operator takes one or more DCs and outputs

DCs, ML models, or scalars. Each operator encapsulates a function f , written in Scala, to be

applied to individual elements in the input DCs. As noted above, f can be learned from the

input data or user defined. Like in Scikit-learn, HML provides off-the-shelf implementations

for common operations for ease of use. We describe the relationships between operator

interfaces in HML and F enumerated in Section 3.1 below.

Scanner. Scanner is the interface for parsing ∈ F and acts like a flatMap, i.e., for each

input element, it adds zero or more elements to the output DC. Thus, it can also be used

to perform filtering. The input and output of Scanner are DCSUs. CSVScanner in Line 4 of

Figure 2.4a) is an example of a Scanner that parses lines in a CSV file into key-value pairs

for columns.

Synthesizer. Synthesizer supports join ∈ F , for elements both across multiple DCs and

within the same DC. Thus, it can also support aggregation operations such as sliding windows

in time series. Synthesizers also serve the important purpose of specifying the set of SUs

that make up an example (where output FVs from the SUs are automatically assembled into

a single FV). In the simple case where each SU in a DCSU corresponds to an example, a

pass-through synthesizer is implicitly declared by naming the output DCE, such as in Line

14 of Figure 2.4a).

Learner. Learner is the interface for learning and inference ∈ F , in a single operator. A

learner operator L contains a learned function f , which can be populated by learning from

the input data or loading from disk. f can be an ML model, but it can also be a feature

transformation function that needs to be learned from the input dataset. When f is empty,

L learns a model using input data designated for model training; when f is populated, L

performs inference on the input data using f and outputs the inference results into a DCE.

For example, the learner incPred in Line 15 of Figure 2.4a) is a learner trained on the “train”

portion of the DCE income and outputs inference results as the DCE predictions.

Extractor. Extractor is the interface for feature extraction and feature transformation ∈ F .

Extractor contains the function f applied on the input of SUs, thus the input and output to

an extractor are DCSUs. For functions that need to be learned from data, Extractor contains

a pointer to the learner operator for learning f .

Reducer. Reducer is the interface for reduce ∈ F and thus the main operator interface for

PPR. The inputs to a reducer are DCE and an optional scalar and the output is a scalar,

where scalars refer to non-dataset objects. For example, checkResults in Figure 2.4a) Line

19

17 is a reducer that computes the prediction accuracy of the inference results in predictions.

3.3 SCOPE AND LIMITATIONS

Coverage. In Section 3.1, we described how the set of basis operations F we propose

covers all major operations in Scikit-learn, one of the most comprehensive ML libraries. We

then showed in Section 3.2 that HML captures all functions in F . While HML’s interfaces

are general enough to support all the common use cases, users can additionally manually

plug into our interfaces external implementations, such as from MLLib [26] and Weka [30],

of missing operations. Note that we provide utility functions that allow functions to work

directly with raw records and FVs instead of HML data structures to enable direct application

of external libraries. For example, since all MLLib models implement the train (equivalent

to learning) and predict (equivalent to inference) methods, they can easily be plugged into

Learner in Helix. We demonstrate in Chapter 6 that the current set of implemented

operations is sufficient for supporting applications across different domains.

Limitations. Since Helix currently relies on its Scala DSL for workflow specification, pop-

ular non-JVM libraries, such as TensorFlow [31] and Pytorch [32], cannot be imported easily

without significantly degrading performance compared to their native runtime environment.

Developers with workflows implemented in other languages will need to translate them into

HML, which should be straightforward due to the natural correspondence between Helix

operators and those in standard ML libraries, as established in Section 3.2. That said, our

contributions in materialization and reuse apply across all languages. In the future, we plan

on abstracting the DAG representation in Helix into a language-agnostic system that can

sit below the language layer for all DAG based systems, including TensorFlow, Scikit-learn,

and Spark.

The other downside of HML is that ML models are treated largely as black boxes. Thus,

work on optimizing learning, e.g., [33, 34], orthogonal to (and can therefore be combined

with) our work, which operates at a coarser granularity.

20

CHAPTER 4: COMPILATION AND REPRESENTATION

In this section, we describe the Workflow DAG, the abstract model used internally by

Helix to represent a Workflow program. The Workflow DAG model enables operator-level

change tracking between iterations and end-to-end optimizations.

4.1 THE WORKFLOW DAG

At compile time, Helix’s intermediate code generator constructs a Workflow DAG from

HML declarations, with nodes corresponding to operator outputs, (DCs, scalars, or ML

models), and edges corresponding to input-output relationships between operators.

Definition 4.1 For a Workflow W containing Helix operators F = {fi}, the Workflow

DAG is a directed acyclic graph GW = (N,E), where node ni ∈ N represents the output of

fi ∈ F and (ni, nj) ∈ E if the output of fi is an input to fj.

Figure 2.4b) shows the Workflow DAG for the program in Figure 2.4a). Nodes for operators

involved in DPR are colored purple whereas those involved in L/I and PPR are colored

orange. This transformation is straightforward, creating a node for each declared operator

and adding edges between nodes based on the linking expressions, e.g., A results from B

creates an edge (B,A). Additionally, the intermediate code generator introduces edges not

specified in the Workflow between the extractor and the synthesizer nodes, such as the edges

marked by dots (•) in Figure 2.4b). These edges connect extractors to downstream DCs in

order to automatically aggregate all features for learning. One concern is that this may lead

to redundant computation of unused features; we describe pruning mechanisms to address

this issue in Section 5.4.

4.2 TRACKING CHANGES

As described in Section 2.4, a user starts with an initial workflow W0 and iterates on this

workflow. Let Wt be the version of the workflow at iteration t ≥ 0 with the corresponding

DAG Gt
W = (Nt, Et); Wt+1 denotes the workflow obtained in the next iteration. To describe

the changes between Wt and Wt+1, we introduce the notion of equivalence.

Definition 4.2 A node nt
i ∈ Nt is equivalent to nt+1

i ∈ Nt+1, denoted as nt
i ≡ nt+1

i , if a)

the operators corresponding to nt
i and nt+1

i compute identical results on the same inputs and

21

b) nt
j ≡ nt+1

j ∀ nt
j ∈ parents(nt

i), n
t+1
j ∈ parents(nt+1

i). We say nt+1
i ∈ Nt+1 is original if it

has no equivalent node in Nt.

Equivalence is symmetric, i.e., nt′
i ≡ nt

i ⇔ nt
i ≡ nt′

i , and transitive, i.e., (nt
i ≡ nt′

i ∧ nt′
i ≡

nt′′
i)⇒ nt

i ≡ nt′′
i . Newly added operators in Wt+1 do not have equivalent nodes in Wt; neither

do nodes in Wt that are removed in Wt+1. For a node that persists across iterations, we

need both the operator and the ancestor nodes to stay the same for equivalence. Using this

definition of equivalence, we determine if intermediate results on disk can be safely reused

through the notion of equivalent materialization:

Definition 4.3 A node nt
i ∈ Nt has an equivalent materialization if nt′

i is stored on disk,

where t′ ≤ t and nt′
i ≡ nt

i.

One challenge in determining equivalence is deciding whether two versions of an operator

compute the same results on the same input. For arbitrary functions, this is undecidable as

proven by Rice’s Theorem [35]. The programming language community has a large body of

work on verifying operational equivalence for specific classes of programs [36, 37, 38]. Helix

currently employs a simple representational equivalence verification—an operator remains

equivalent across iterations if its declaration in the DSL is not modified and all of its ancestors

are unchanged. Incorporating more advanced techniques for verifying equivalence is future

work.

To guarantee correctness, i.e., results obtained at iteration t reflect the specification for

Wt and are computed from the appropriate input, we impose the constraint:

Constraint 4.1 At iteration t+ 1, if an operator nt+1
i is original, it must be recomputed.

With Constraint 4.1, our current approach to tracking changes yields the following guarantee

on result correctness:

Theorem 4.1 Helix returns the correct results if the changes between iterations are made

only within the programming interface, i.e., all other factors, such as library versions and

files on disk, stay invariant, i.e., unchanged, between executions at iteration t and t+ 1.

First, note that the results for W0 are correct since there is no reuse at iteration 0.

Suppose for contradiction that given the results at t are correct, the results at iteration t+ 1

are incorrect, i.e., ∃ nt+1
i s.t. the results for nt

i are reused when nt+1
i is original. Under the

invariant conditions in Theorem 4.1, we can only have nt+1
i 6≡ nt

i if the code for ni changed

or the code changed for an ancestor of ni. Since Helix detects all code changes, it identifies

all original operators. Thus, for the results to be incorrect in Helix, we must have reused

nt
i for some original nt+1

i . However, this violates Constraint 4.1. Therefore, the results for

Wt are correct ∀ t ≥ 0.

22

CHAPTER 5: OPTIMIZATION

In this section, we describe Helix’s workflow-level optimizations, motivated by the ob-

servation that workflows often share a large amount of intermediate computation between

iterations; thus, if certain intermediate results are materialized at iteration t, these can be

used at iteration t + 1. We identify two distinct sub-problems: Opt-Exec-Plan, which

selects the operators to reuse given previous materializations (Section 5.2), and Opt-Mat-

Plan, which decides what to materialize to accelerate future iterations (Section 5.3). We

finally discuss pruning optimizations to eliminate redundant computations (Section 5.4). We

begin by introducing common notation and definitions.

5.1 PRELIMINARIES

When introducing variables below, we drop the iteration number t from Wt and Gt
W when

we are considering a static workflow.

Operator Metrics. In a Workflow DAG GW = (N,E), each node ni ∈ N corresponding

to the output of the operator fi is associated with a compute time ci, the time it takes to

compute ni from inputs in memory. Once computed, ni can be materialized on disk and

loaded back in subsequent iterations in time li, referred to as its load time. If ni does not

have an equivalent materialization as defined in Definition 4.3, we set li = ∞. Root nodes

in the Workflow DAG, which correspond to data sources, have li = ci.

Operator State. During the execution of workflow W , each node ni assumes one of the

following states:

• Load, or Sl, if ni is loaded from disk;

• Compute, or Sc, ni is computed from inputs;

• Prune, or Sp, if ni is skipped (neither loaded nor computed).

Let s(ni) ∈ {Sl, Sc, Sp} denote the state of each ni ∈ N . To ensure that nodes in the

Compute state have their inputs available, i.e., not pruned, the states in a Workflow DAG

GW = (N,E) must satisfy the following execution state constraint:

Constraint 5.1 For a node ni ∈ N , if s(ni) = Sc, then s(nj) 6= Sp for every nj ∈
parents(ni).

23

Workflow Run Time. A node ni in state Sc, Sl, or Sp has run time ci, li, or 0, respectively.

The total run time of W w.r.t. s is thus

T (W, s) =
∑
ni∈N

I {s(ni) = Sc} ci + I {s(ni) = Sl} li (5.1)

where I {} is the indicator function.

Clearly, setting all nodes to Sp trivially minimizes Equation 5.1. However, recall that

Constraint 4.1 requires all original operators to be rerun. Thus, if an original operator ni is

introduced, we must have s(ni) = Sc, which by Constraint 5.1 requires that S(nj) 6= Sp ∀nj ∈
parents(ni). Deciding whether to load or compute the parents can have a cascading effect

on the states of their ancestors. We explore how to determine the states for each nodes to

minimize Equation 5.1 next.

5.2 OPTIMAL EXECUTION PLAN

The Optimal Execution Plan (OEP) problem is the core problem solved by Helix’s DAG

optimizer, which determines at compile time the optimal execution plan given results and

statistics from previous iterations.

Problem 5.1 (Opt-Exec-Plan) Given a Workflow W with DAG GW = (N,E), the

compute time and the load time ci, li for each ni ∈ N , and a set of previously materialized

operators M , find a state assignment s : N → {Sc, Sl, Sp} that minimizes T (W, s) while

satisfying Constraint 4.1 and Constraint 5.1.

Let T ∗(W) be the minimum execution time achieved by the solution to OEP, i.e.,

T ∗(W) = min
s

T (W, s) (5.2)

Since this optimization takes place prior to execution, we must resort to operator statistics

from past iterations. This does not compromise accuracy because if a node ni has an equiva-

lent materialization as defined in Definition 4.2, we would have run the exact same operator

before and recorded accurate ci and li. A node ni without an equivalent materialization, such

as a model with changed hyperparameters, needs to be recomputed (Constraint 4.1).

Deciding to load certain nodes can have cascading effects since ancestors of a loaded node

can potentially be pruned, leading to large reductions in run time. On the other hand,

Constraint 5.1 disallows the parents of computed nodes to be pruned. Thus, the decisions to

load a node ni can be affected by nodes outside of the set of ancestors to ni. For example, in

24

n4Sl

n1

Sp

n2

Sp

n3

Sp

n6

Scn7

Sc

n8

Sl

n5Sl ϕ
b4

a4

X

b1

a1

b2

a2
b3

a3

b6

X

a6

X
b7X

a7X

b8

a8 X

b5

a5 X

Figure 5.1: Transforming a Workflow DAG to a set of projects and dependencies. Check-
marks (X) in the RHS DAG indicate a feasible solution to PSP, which maps onto the node
states (Sp, Sc, Sl) in the LHS DAG.

the DAG on the left in Figure 5.1, loading n7 allows n1−6 to be potentially pruned. However,

the decision to compute n8, possibly arising from the fact that l8 � c8, requires that n5 must

not be pruned.

Despite such complex dependencies between the decisions for individual nodes, Prob-

lem 5.1 can be solved optimally in polynomial time through a linear time reduction to the

project-selection problem (PSP), which is an application of Max-Flow [8].

Problem 5.2 Proj-Selection-Problem (PSP) Let P be a set of projects. Each project

i ∈ P has a real-valued profit pi and a set of prerequisites Q ⊆ P . Select a subset A ⊆ P

such that all prerequisites of a project i ∈ A are also in A and the total profit of the selected

projects,
∑

i∈A pi, is maximized.

Reduction to the Project Selection Problem. We can reduce an instance of Prob-

lem 5.1 x to an equivalent instance of PSP y such that the optimal solution to y maps to

an optimal solution of x. Let G = (N,E) be the Workflow DAG in x, and P be the set of

projects in y. We can visualize the prerequisite requirements in y as a DAG with the projects

as the nodes and an edge (j, i) indicating that project i is a prerequisite of project j. The

reduction, ϕ, depicted in Figure 5.1 for an example instance of x, is shown in Algorithm 5.1.

For each node ni ∈ N , we create two projects in PSP: ai with profit −li and bi with profit

li − ci. We set ai as the prerequisite for bi. For an edge (ni, nj) ∈ E, we set the project

ai corresponding to node ni as the prerequisite for the project bj corresponding to node nj.

Selecting both projects ai and bi corresponding to ni is equivalent to computing ni, i.e.,

s(ni) = Sc, while selecting only ai is equivalent to loading ni, i.e., s(ni) = Sl. Nodes with

neither projects selected are pruned. An example solution mapping from PSP to OEP is

shown in Figure 5.1. Projects a4, a5, a6, b6, a7, b7, a8 are selected, which cause nodes n4, n5, n8

to be loaded, n6 and n7 to be computed, and n1, n2, n3 to be pruned.

25

Algorithm 5.1: OEP via Reduction to PSP

Input: GW = (N,E), {li}, {ci}
1 P ← ∅;
2 for ni ∈ N do
3 P ← P ∪ {ai} ; // Create a project ai
4 profit[ai]← −li ; // Set profit of ai to −li
5 P ← P ∪ {bi} ; // Create a project bi
6 profit[bi]← li − ci ; // Set profit of bi to li − ci

// Add ai as prerequisite for bi.;
7 prerequisite[bi]← prerequisite[bi] ∪ ai;
8 for (ni, nj) ∈ {edges leaving from ni} ⊆ E do

// Add ai as prerequisite for bj.;
9 prerequisite[bj]← prerequisite[bj] ∪ ai;
// A is the set of projects selected by PSP;

10 A← PSP(P, profit[], prerequisite[]);
11 for ni ∈ N do // Map PSP solution to node states

12 if ai ∈ A and bi ∈ A then
13 s[ni]← Sc;
14 else if ai ∈ A and bi 6∈ A then
15 s[ni]← Sl;
16 else
17 s[ni]← Sp;

18 return s[] ; // State assignments for nodes in GW.

Overall, the optimization objective in PSP models the “savings” in OEP incurred by

loading nodes instead of computing them from inputs. We create an equivalence between

cost minimization in OEP and profit maximization in PSP by mapping the costs in OEP to

negative profits in PSP. For a node ni, picking only project ai (equivalent to loading ni) has

a profit of −li, whereas picking both ai and bi (equivalent to computing ni) has a profit of

−li + (li− ci) = −ci. The prerequisites established in Line 7 that require ai to also be picked

if bi is picked are to ensure correct cost to profit mapping. The prerequisites established in

Line 9 corresponds to Constraint 5.1. For a project bi to be picked, we must pick every aj

corresponding to each parent nj of ni. If it is impossible (lj = ∞) or costly to load nj, we

can offset the load cost by picking bj for computing nj. However, computing nj also requires

its parents to be loaded or computed, as modeled by the outgoing edges from bj. The fact

that ai projects have no outgoing edges corresponds to the fact loading a node removes its

dependency on all ancestor nodes.

Theorem 5.1 Given an instance of Opt-Exec-Plan x, the reduction in Algorithm 5.1

produces a feasible and optimal solution to x.

26

For clarity, we first formulate Opt-Exec-Plan as an integer linear program before pre-

senting the proof itself.

Integer Linear Programming Formulation. Problem 5.1 can be formulated as an inte-

ger linear program (ILP) as follows. First, for each node ni ∈ G, introduce binary indicator

variables Xai and Xbi defined as follows:

Xai = I {s(ni) 6= Sp}

Xbi = I {s(ni) = Sc}

That is, Xai = 1 if node ni is not pruned, and Xbi = 1 if node ni is computed. Note that it is

not possible to have Xai = 0 and Xbi = 1. Also note that these variables uniquely determine

node ni’s state s(ni).

With the {Xai} and {Xbi} thus defined, our ILP is as follows:

minimize
Xai , Xbi

|N |∑
i=1

Xaili +Xbi(ci − li) (5.3a)

subject to Xai −Xbi ≥ 0, 1 ≤ i ≤ |N |, (5.3b)∑
nj∈Pa(ni)

Xaj −Xbi ≥ 0, 1 ≤ i ≤ |N |, (5.3c)

Xai , Xbi ∈ {0, 1}, 1 ≤ i ≤ |N | (5.3d)

Constraint 5.3b prevents the assignment Xai = 0 (ni is pruned) and Xbi = 1 (ni is computed),

since a pruned node cannot also be computed by definition. Constraint 5.3c is equivalent to

Constraint 5.1 — if Xbi = 1 (ni is computed), any parent nj of ni must not be pruned, i.e.,

Xaj = 1, in order for the sum to be nonnegative. Constraint 5.3d requires the solution to be

integers.

This formulation does not specify a constraint corresponding to Constraint 4.1. Instead,

we enforce Constraint 4.1 by setting the load and compute costs of nodes that need to be

recomputed to specific values, as inputs to Problem 5.1. Specifically, we set the load cost to

∞ and the compute cost to −ε for a small ε > 0. With these values, the cost of a node in

Sl, Sp, Sc are ∞, 0,−ε respectively, which makes Sc a clear choice for minimizing Eq(5.3a).

Although ILPs are, in general, NP-Hard, the astute reader may notice that the constraint

matrix associated with the above optimization problem is totally unimodular (TU), which

means that an optimal solution for the LP-relaxation (which removes constraint 5.3d in the

problem above) assigns integral values to {Xai} and {Xbi}, indicating that it is both optimal

and feasible for the problem above as well [39]. In fact, it turns out that the above problem is

27

the dual of a flow problem; specifically, it is a minimum cut problem [40, 41]. This motivates

the reduction introduced in Section 5.2.

Main proof. The proof for Theorem 5.1 follows directly from the two lemmas proven below.

Recall that given an optimal solution A to PSP, we obtain the optimal state assignments for

OEP using the following mapping:

s(ni) =

Sc if ai ∈ A and bi ∈ A

Sl if ai ∈ A and bi 6∈ A

Sp if ai 6∈ A and bi 6∈ A

(5.4)

Lemma 5.1 A feasible solution to PSP under ϕ also produces a feasible solution to OEP.

We first show that satisfying the prerequisite constraint in PSP leads to satisfying Con-

straint 5.1 in Opt-Exec-Plan. Suppose for contradiction that a feasible solution to PSP

under ϕ does not produce a feasible solution to OEP. This implies that for some node ni ∈ N
s. t. s(ni) = Sc, at least one parent nj has s(nj) = Sp. By the inverse of Eq (5.4), s(ni) = Sc

implies that bi was selected, while s(nj) = Sp implies that neither aj nor bj was selected. By

construction, there exists an edge aj → bi. The project selection entailed by the operator

states leads to a violation of the prerequisite constraint. Thus, a feasible solution to PSP

must produce a feasible solution to OEP under ϕ.

Lemma 5.2 An optimal solution to PSP is also an optimal solution to OEP under ϕ.

Let Yai be the indicator for whether project ai is selected, Ybi for the indicator for bi, and

p(xi) be the profit for project xi. The optimization object for PSP can then be written as

max
Yai ,Ybi

|N |∑
i=1

Yaip(ai) + Ybip(bi) (5.5)

Substituting our choice for p(ai) and P (bi), Eq (5.5) becomes

max
Yai ,Ybi

|N |∑
i=1

−Yaili + Ybi(li − ci) (5.6)

= max
Yai ,Ybi

−
|N |∑
i=1

(Yai − Ybi)li + Ybici (5.7)

The mapping established by Eq (5.4) is equivalent to setting Xai = Yai and Xbi = Ybi .

28

Thus the maximization problem in Eq (5.7) is equivalent to the minimization problem in Eq

(5.3a), and we obtain an optimal solution to OEP from the optimal solution to PSP.

Computational Complexity. For a Workflow DAG GW = (NW , EW) in OEP, the re-

duction above results in O (|NW |) projects and O (|EW |) prerequisite edges in PSP. PSP

has a straightforward linear reduction to Max-Flow [8]. We use the Edmonds-Karp algo-

rithm [42] for Max-Flow, which runs in time O (|NW | · |EW |2).
Impact of change detection precision and recall. The optimality of our algorithm for

OEP assumes that the changes between iteration t and t+ 1 have been identified perfectly.

In reality, this maybe not be the case due to the intractability of change detection, as

discussed in Section 4.2. An undetected change is a false negative in this case, while falsely

identifying an unchanged operator as deprecated is a false positive. A detection mechanism

with high precision lowers the chance of unnecessary recomputation, whereas anything lower

than perfect recall leads to incorrect results. In our current approach, we opt for a detection

mechanism that guarantee correctness under mild assumptions, at the cost of some false

positives such as a+ b 6≡ b+ a.

5.3 OPTIMAL MATERIALIZATION PLAN

The Opt-Mat-Plan (OMP) problem is tackled by Helix’s materialization optimizer:

while running workflow Wt at iteration t, intermediate results are selectively materialized for

the purpose of accelerating execution in iterations > t. We now formally introduce OMP and

show that it is NP-hard even under strong assumptions. We propose an online heuristic

for OMP that runs in linear time and achieves good reuse rate in practice (as we will show

in Chapter 6), in addition to minimizing memory footprint by avoiding unnecessary caching

of intermediate results.

Materialization cost. We let si denote the storage cost for materializing ni, representing

the size of ni on disk. When loading ni back from disk to memory, we have the following

relationship between load time and storage cost: li = si/(disk read speed). For simplicity,

we also assume the time to write ni to disk is the same as the time for loading it from disk,

i.e., li. We can easily generalize to the setting where load and write latencies are different.

To quantify the benefit of materializing intermediate results at iteration t on subsequent

iterations, we formulate the materialization run time TM(Wt) to capture the tradeoff between

the additional time to materialize intermediate results and the run time reduction in iteration

t + 1. Although materialized results can be reused in multiple future iterations, we only

consider the (t + 1)th iteration since the total number of future iterations, T , is unknown.

29

Since modeling T is a complex open problem, we defer the amortization model to future

work.

Definition 5.1 Given a workflow Wt, operator metrics ci, li, si for every ni ∈ Nt, and a

subset of nodes M ⊆ Nt, the materialization run time is defined as

TM(Wt) =
∑
ni∈M

li + T ∗(Wt+1) (5.8)

where
∑

ni∈M li is the time to materialize all nodes selected for materialization, and T ∗(Wt)

is the optimal workflow run time obtained using the algorithm in Section 5.2, with M mate-

rialized.

Equation 5.8 defines the optimization objective for OMP.

Problem 5.3 (Opt-Mat-Plan) Given a Workflow Wt with DAG Gt
W = (Nt, Et) at iter-

ation t and a storage budget S, find a subset of nodes M ⊆ Nt to materialize at t in order

to minimize TM(Wt), while satisfying the storage constraint
∑

ni∈M si ≤ S.

Let M∗ be the optimal solution to OMP, i.e.,

argmin
M⊆Nt

∑
ni∈M

li + T ∗(Wt+1) (5.9)

As discussed in [18], there are many possibilities for Wt+1, and they vary by application

domain. User modeling and predictive analysis of Wt+1 itself is a substantial research topic

that we will address in future work. This user model can be incorporated into OMP by using

the predicted changes to better estimate the likelihood of reuse for each operator. However,

even under very restrictive assumptions about Wt+1, we can show that Opt-Mat-Plan is

NP-Hard, via a simple reduction from the Knapsack problem.

Theorem 5.2 Opt-Mat-Plan is NP-hard.

We show that OMP is NP-hard under restrictive assumptions about the structure of Wt+1

relative to Wt, which implies the general version of OMP is also NP-hard.

In our proof we make the simplifying assumption that all nodes in the Workflow DAG are

reusable in the next iteration:

nt
i ≡ nt+1

i ∀nt
i ∈ Nt, n

t+1
i ∈ Nt+1 (5.10)

30

0 l0 ← ε� mini si

1 2 . . . N

li ← si
ci ← pi + 2si

Figure 5.2: OMP DAG for Knapsack reduction.

Under this assumption, we achieve maximum reusability of materialized intermediate results

since all operators that persist across iterations t and t + 1 are equivalent. We use this

assumption to sidestep the problem of predicting iterative modifications, which is a major

open problem by itself.

Our proof for the NP-hardness of OMP subject to Eq(5.10) uses a reduction from the

known NP-hard Knapsack problem.

Problem 5.4 (Knapsack) Given a knapsack capacity B and a set N of n items, with each

i ∈ N having a size si and a profit pi, find S∗ =

argmax
S⊆N

∑
i∈S

pi (5.11)

such that
∑

i∈S∗ si ≤ B.

For an instance of Knapsack, we construct a simple Workflow DAG W as shown in Fig-

ure 5.2. For each item i in Knapsack, we construct an output node ni with li = si and

ci = pi + 2si. We add an input node n0 with l0 = ε < min si that all output nodes depend

on. Let Yi ∈ {0, 1} indicate whether a node ni ∈ M in the optimal solution to OMP in Eq

(5.9) and Xi ∈ {0, 1} indicate whether an item is picked in the Knapsack problem. We use

B as the storage budget, i.e.,
∑

i∈∈{0,1} Yili ≤ B.

Theorem 5.3 We obtain an optimal solution to the Knapsack problem for Xi = Yi ∀i ∈
{1, 2, . . . , n}.

First, we observe that for each ni, T
∗(W) will pick min(li, ci) given the flat structure of the

DAG. By construction, min(li, ci) = li in our reduction. Second, materializing ni helps in

the first iteration only when it is loaded in the second iteration. Thus, we can rewrite Eq

(5.9) as

argmin
Y∈{0,1}N

N∑
i=1

Yili +

(
N∑
i=1

Yili + (1− Yi)ci

)
(5.12)

where Y = (Y1, Y2, . . . , YN). Substituting in our choices of li and ci in terms of pi and si in

(5.12), we obtain argminY∈{0,1}N
∑N

i=1−Yipi. Clearly, satisfying the storage constraint also

31

Algorithm 5.2: Streaming OMP

Data: Gw = (N,E), {li}, {ci}, {si}, storage budget S
1 M ← ∅;
2 while Workflow is running do
3 O ← FindOutOfScope(N);
4 for ni ∈ O do
5 if C(ni) > 2li and S − si ≥ 0 then
6 Materialize ni;
7 M ←M ∪ {ni};
8 S ← S − si

satisfies the budget constraint in Knapsack by construction. Thus, the optimal solution to

OMP as constructed gives the optimal solution to Knapsack.

Streaming constraint. Even when Wt+1 is known, solving Opt-Mat-Plan optimally

requires knowing the run time statistics for all operators, which can be fully obtained only

at the end of the workflow. Deferring materialization decisions until the end requires all

intermediate results to be cached or recomputed, which imposes undue pressure on mem-

ory and cripples performance. Unfortunately, reusing statistics from past iterations as in

Section 5.2 is not viable here because of the cold-start problem—materialization decisions

need to be made for new operators based on realistic statistics. Thus, to avoid slowing down

execution with high memory usage, we impose the following constraint.

Definition 5.2 Given a Workflow DAG Gw = (N,E), ni ∈ N is out-of-scope at runtime if

all children of ni have been computed or reloaded from disk, thus removing all dependencies

on ni.

Constraint 5.2 Once ni becomes out-of-scope, it is either materialized immediately or re-

moved from cache.

OMP Heuristics. We now describe the heuristic employed by Helix to approximate OMP

while satisfying Constraint 5.2.

Definition 5.3 Given Workflow DAG Gw = (N,E), the cumulative run time for a node ni

is defined as

C(ni) = t(ni) +
∑

nj∈ancestors(ni)

t(nj) (5.13)

where t(ni) = I {s(ni) = Sc} ci + I {s(ni) = Sl} li.

32

Algorithm 5.2 shows the heuristics employed by Helix’s materialization optimizer to decide

what intermediate results to materialize. In essence, Algorithm 5.2 decides to materialize if

twice the load cost is less than the cumulative run time for a node. The intuition behind

this algorithm is that assuming loading a node allows all of its ancestors to be pruned, the

materialization time in iteration t and the load time in iteration t + 1 combined should be

less than the total pruned compute time, for the materialization to be cost effective.

Note that the decision to materialize does not depend on which ancestor nodes have been

previously materialized. The advantage of this approach is that regardless of where in the

workflow the changes are made, the reusable portions leading up to the changes are likely to

have an efficient execution plan. That is to say, if it is cheaper to load a reusable node ni than

to recompute, Algorithm 5.2 would have materialized ni previously, allowing us to make the

right choice for ni. Otherwise, Algorithm 5.2 would have materialized some ancestor nj of

ni such that loading nj and computing everything leading to ni is still cheaper than loading

ni.

Due to the streaming Constraint 5.2, complex dependencies between descendants of an-

cestors such as the one between n5 and n8 in Figure 5.1 previously described in Section 5.2,

are ignored by Algorithm 5.2—we cannot retroactively update our decision for n5 after n8

has been run. We show in Chapter 6 that this simple algorithm is effective in multiple

application domains.

Limitations of Streaming OMP. The streaming OMP heuristic given in Algorithm 5.2

can behave poorly in pathological cases. For one simple example, consider a workflow given

by a chain DAG of m nodes, where node ni (starting from i = 1) is a prerequisite for node

ni+1. If node ni has li = i and ci = 3, for all i, then Algorithm 5.2 will choose to materialize

every node, which has storage costs of O (m2), whereas a smarter approach would only

materialize later nodes and perhaps have storage cost O (m). If storage is exhausted because

Algorithm 5.2 persists too much early on, this could easily lead to poor execution times in

later iterations. We did not observe this sort of pathological behavior in our experiments.

Mini-Batches. In the stream processing (to be distinguished from the streaming con-

straint in Constraint 5.2) where the input is divided into mini batches processed end-to-end

independently, Algorithm 5.2 can be adapted as follows: 1) make materialization decisions

using the load and compute time for the first mini batch processed end-to-end; 2) reuse

the same decisions for all subsequent mini batches for each operator. This approach avoids

dataset fragmentation that complicates reuse for different workflow versions. We plan on

investigating other approaches for adapting Helix for stream processing in future work.

33

5.4 WORKFLOW DAG PRUNING

In addition to optimizations involving intermediate result reuse, Helix further reduces

overall workflow execution time by time by pruning extraneous operators from the Workflow

DAG.

Helix performs pruning by applying program slicing on the Workflow DAG. In a nutshell,

Helix traverses the DAG backwards from the output nodes and prunes away any nodes not

visited in this traversal. Users can explicitly guide this process in the programming interface

through the has extractors and uses keywords, described in Table 3.2. An example of an

Extractor pruned in this fashion is raceExt(grayed out) in Figure 2.4b), as it is excluded

from the rows has extractors statement. This allows users to conveniently perform manual

feature selection using domain knowledge.

Helix provides two additional mechanisms for pruning operators other than using the

lack of output dependency, described next.

Data-Driven Pruning. Furthermore, Helix inspects relevant data to automatically iden-

tify operators to prune. The key challenge in data-driven pruning is data lineage tracking

across the entire workflow. For many existing systems, it is difficult to trace features in

the learned model back to the operators that produced them. To overcome this limitation,

Helix performs additional provenance bookkeeping to track the operators that led to each

feature in the model when converting DPR output to ML-compatible formats. An example

of data-driven workflow optimization enabled by this bookkeeping is pruning features by

model weights. Operators resulting in features with zero weights can be pruned without

changing the prediction outcome, thus lowering the overall run time without compromising

model performance.

Data-driven pruning is a powerful technique that can be extended to unlock the possi-

bilities for many more impactful automatic workflow optimizations. Possible future work

includes using this technique to minimize online inference time in large scale, high query-

per-second settings and to adapt the workflow online in stream processing.

Cache Pruning. While Spark, the underlying data processing engine for Helix, provides

automatic data uncaching via a least-recently-used (LRU) scheme, Helix improves upon the

performance by actively managing the set of data to evict from cache. From the DAG, Helix

can detect when a node becomes out-of-scope. Once an operator has finished running, Helix

analyzes the DAG to uncache newly out-of-scope nodes. Combined with the lazy evaluation

order, the intermediate results for an operator reside in cache only when it is immediately

needed for a dependent operator.

One limitation of this eager eviction scheme is that any dependencies undetected by Helix,

34

such as the ones created in a UDF, can lead to premature uncaching of DCs before they are

truly out-of-scope. The uses keyword in HML, described in Table 3.2, provides a mechanism

for users to manually prevent this by explicitly declaring a UDF’s dependencies on other

operators. In the future, we plan on providing automatic UDF dependency detection via

introspection.

35

CHAPTER 6: EMPIRICAL EVALUATION

The goal of our evaluation is to test if Helix 1) supports ML workflows in a variety

of application domains; 2) accelerates iterative execution through intermediate result reuse,

compared to other ML systems that don’t optimize iteration; 3) is efficient, enabling optimal

reuse without incurring a large storage overhead.

6.1 SYSTEMS AND BASELINES FOR COMPARISON

We compare the optimized version of Helix, Helix Opt, against two state-of-the-art

ML workflow systems: KeystoneML [6], and DeepDive [7]. In addition, we compare Helix

Opt with two simpler versions, Helix AM and Helix NM. While we compare against

DeepDive, and KeystoneML to verify 1) and 2) above, Helix AM and Helix NM are used

to verify 3). We describe each of these variants below:

KeystoneML. KeystoneML [6] is a system, written in Scala and built on top of Spark,

for the construction of large scale, end-to-end, ML pipelines. KeystoneML specializes in

classification tasks on structured input data. No intermediate results are materialized in

KeystoneML, as it does not optimize execution across iterations.

DeepDive. DeepDive [7, 44] is a system, written using Bash scripts and Scala for the

main engine, with a database backend, for the construction of end-to-end information ex-

traction pipelines. Additionally, DeepDive provides limited support for classification tasks.

All intermediate results are materialized in DeepDive.

Helix Opt. A version of Helix that uses Algorithm 5.1 for the optimal reuse strategy and

Algorithm 5.2 to decide what to materialize.

Helix AM. A version of Helix that uses the same reuse strategy as Helix Opt and always

Census ([43]) Genomics ([3]) IE ([44]) MNIST ([6])

Num. Data Source Single Multiple Multiple Single
Input to Example One-to-One One-to-Many One-to-Many One-to-One

Feature Granularity Fine Grained N/A Fine Grained Coarse Grained
Learning Task Type Supervised; Class. Unsupervised Structured Prediction Supervised; Class.
Application Domain Social Sciences Natural Sciences NLP Computer Vision

Helix X X X X
KeystoneML X X X*

DeepDive X* X*

Table 6.1: Summary of workflow characteristics and support by the systems compared.
Grayed out cells indicate that the system in the row does not support the workflow in
the column. X∗ indicates that the implementation is by the original developers of Deep-
Dive/KeystoneML. “Class.” is short for classification.

36

materializes all intermediate results.

Helix NM. A version of Helix that uses the same reuse strategy as Helix Opt and never

materializes any intermediate results.

6.2 WORKFLOWS

We conduct our experiments using four real-world ML workflows spanning a range of ap-

plication domains. Table 6.1 summarizes the characteristics of the four workflows, described

next. We are interested in four properties when characterizing each workflow:

• Number of data sources: whether the input data comes from a single source (e.g., a

CSV file) or multiple sources (e.g., documents and a knowledge base), necessitating

joins.

• Input to example mapping: the mapping from each input data unit (e.g., a line in a

file) to each learning example for ML. One-to-many mappings require more complex

data preprocessing than one-to-one mappings.

• Feature granularity: fine-grained features involve applying extraction logic on a spe-

cific piece of the data (e.g., 2nd column) and are often application-specific, whereas

coarse-grained features are obtained by applying an operation, usually a standard DPR

technique such as normalization, on the entire dataset.

• Learning task type: while classification and structured prediction tasks both fall under

supervised learning for having observed labels, structured prediction workflows involve

more complex data preprocessing and models; unsupervised learning tasks do not

have known labels, so they often require more qualitative and fine-grained analyses of

outputs.

Census Workflow. This workflow corresponds to a classification task with simple features

from structured inputs from the DeepDive Github repository [43]. It uses the Census Income

dataset [45], with 14 attributes representing demographic information, with the goal to

predict whether a person’s annual income is ¿50K, using fine-grained features derived from

input attributes. The complexity of this workflow is representative of use cases in the social

and natural sciences, where covariate analysis is conducted on well-defined variables. Helix

code for the initial version of this workflow is shown in Figure 2.4a). This workflow evaluates

a system’s efficiency in handling simple ML tasks with fine-grained feature engineering.

37

Genomics Workflow. This workflow is described in Example 1.1, involving two major

steps: 1) split the input articles into words and learn vector representations for entities of

interest, identified by joining with a genomic knowledge base, using word2vec [4]; 2) cluster

the vector representation of genes using K-Means to identify functional similarity. Each

input record is an article, and it maps onto many gene names, which are training examples.

This workflow has minimal data preprocessing with no specific features but involves multiple

learning steps. Both learning steps are unsupervised, which leads to more qualitative and

exploratory evaluations of the model outputs than the standard metrics used for supervised

learning. We include a workflow with unsupervised learning and multiple learning steps to

verify that the system is able to accommodate variability in the learning task.

Information Extraction (IE) Workflow. This workflow involves identifying mentions

of spouse pairs from news articles, using a knowledge-base of known spouse pairs, from

DeepDive [44]. The objective is to extract structured information from unstructured input

text, using complex fine-grained features such as part-of-speech tagging. Each input article

contains ≥ 0 spouse pairs, hence creating a one-to-many relationship between input records

and learning examples. This workflow exemplifies use cases in information extraction, and

tests a system’s ability to handle joins and complex data preprocessing.

MNIST Workflow. The MNIST dataset [46] contains images of handwritten digits to be

classified, which is a well-studied task in the computer vision community, from the Key-

stoneML [6] evaluation. The workflow involves nondeterministic (and hence not reusable)

data preprocessing, with a substantial fraction of the overall run time spent on L/I in a

typical iteration. We include this application to ensure that in the extreme case where there

is little reuse across iterations, Helix does not incur a large overhead.

Each workflow was implemented in Helix, and if supported, in DeepDive and KeystoneML,

with X* in Table 6.1 indicating that we used an existing implementation by the developers

of DeepDive or KeystoneML, which can be found at:

• Census DeepDive: https://github.com/HazyResearch/deepdive/blob/

master/examples/census/app.ddlog

• IE DeepDive: https://github.com/HazyResearch/deepdive/blob/

master/examples/spouse/app.ddlog

• MNIST KeystoneML: https://github.com/amplab/keystone/blob/

master/src/main/scala/keystoneml/pipelines/images/mnist/MnistRandomFFT.scala

DeepDive has its own DSL, while KeystoneML’s programming interface is an embedded DSL

in Scala, similar to HML. We explain limitations that prevent DeepDive and KeystoneML

38

from supporting certain workflows (grey cells) in Section 6.5.1.

6.3 RUNNING EXPERIMENTS

Simulating iterative development. In our experiments, we modify the workflows to sim-

ulate typical iterative development by a ML application developer or data scientist. Instead

of arbitrarily choosing operators to modify in each iteration, we use the iteration frequency

in Figure 3 from our literature study [18] to determine the type of modifications to make

in each iteration, for the specific domain of each workflow. We convert the iteration counts

into fractions that represent the likelihood of a certain type of change. At each iteration,

we draw an iteration type from {DPR, L/I, PPR} according to these likelihoods. Then, we

randomly choose an operator of the drawn type and modify its source code. For example,

if an “L/I” iteration were drawn, we might change the regularization parameter for the ML

model. We run 10 iterations per workflow (except NLP, which has only DPR iterations),

double the average iteration count found in our survey in Section 2.2.

Note that in real world use, the modifications in each iteration are entirely up to the

user. Helix is not designed to suggest modifications, and the modifications chosen in our

experiments are for evaluating only system run time and storage use. We use statistics

aggregated over > 100 papers to determine the iterative modifications in order to simulate

behaviors of the average domain expert more realistically than arbitrary choice.

Environment. All single-node experiments are run on a server with 125 GiB of RAM, 16

cores on 8 CPUs (Intel Xeon @ 2.40GHz), and 2TB HDD with 170MB/s as both the read and

write speeds. Distributed experiments are run on nodes each with 64GB of RAM, 16 cores

on 8 CPUs (Intel Xeon @ 2.40GHz), and 500GB of HDD with 180MB/s as both the read and

write speeds. We set the storage budget in Helix to 10GB. That is, 10GB is the maximum

accumulated disk storage for Helix Opt at all times during the experiments. After running

the initial version to obtain the run time for iteration 0, a workflow is modified according

to the type of change determined as above. In all four systems the modified workflow is

recompiled. In DeepDive, we rerun the workflow using the command deepdive run. In

Helix and KeystoneML, we resubmit a job to Spark in local mode. We use Postgres as

the database backend for DeepDive. Although Helix and KeystoneML support distributed

execution via Spark, DeepDive needs to run on a single server. Thus, we compare against

all systems on a single node and additionally compare against KeystoneML on clusters.

39

6.4 METRICS

We evaluate each system’s ability to support diverse ML tasks by qualitative character-

ization of the workflows and use-cases supported by each system. Our primary metric for

workflow execution is cumulative run time over multiple iterations. The cumulative run

time considers only the run time of the workflows, not any human development time. We

measure with wall-clock time because it is the latency experienced by the user. When com-

puting cumulative run times, we average the per-iteration run times over five complete runs

for stability. Note that the per-iteration time measures both the time to execute the work-

flow and any time spent to materialize intermediate results. We also measure memory usage

to analyze the effect of batch processing, and measure storage size to compare the run

time reduction to storage ratio of time-efficient approaches. Storage is compared only for

variants of Helix since other systems do not support automatic reuse.

6.5 EVALUATION VS. STATE-OF-THE-ART SYSTEMS

6.5.1 Use Case Support

Recall that the four workflows used in our experiments are in social sciences, NLP, com-

puter vision, and natural sciences, respectively. Table 6.1 lists the characteristics of each

workflow and the three systems’ ability to support it. Both KeystoneML and DeepDive have

limitations that prevent them from supporting certain types of tasks. The pipeline program-

ming model in KeystoneML is effective for large scale classification and can be adapted to

support unsupervised learning. However, it makes fine-grained features cumbersome to pro-

gram and is not conducive to structured prediction tasks due to complex data preprocessing.

On the other hand, DeepDive is highly specialized for information extraction and focuses on

supporting data preprocessing. Unfortunately, its learning and evaluation components are

not configurable by the user, limiting the type of ML tasks supported. DeepDive is therefore

unable to support the MNIST and genomics workflows, both of which required custom ML

models. Additionally, we are only able to show DeepDive performance for DPR iterations

for the supported workflows in our experiments.

6.5.2 Cumulative Run Time

Figure 6.1 shows the cumulative run time for all four workflows. The x-axis shows the

iteration number, while the y-axis shows the cumulative run time in log scale at the ith

40

iteration. Each point represents the cumulative run time of the first i iterations. The color

under the curve indicates the workflow component modified in each iteration (purple =

DPR, orange = L/I, green = PPR). For example, the DPR component was modified in

the first iteration of Census. Figure 6.2 shows the breakdown by workflow components and

materialization for the individual iteration run times in Helix, with the same color scheme

as in Figure 6.1 for the workflow components and gray for materialization time.

Census. As shown in Figure 6.1(a), the census workflow has the largest cumulative run

time gap between Helix Opt and the competitor systems—Helix Opt is 19× faster than

KeystoneML as measured by cumulative run time over 10 iterations. By materializing and

reusing intermediate results Helix Opt is able to substantially reduce cumulative run-time

relative to other systems. Figure 6.2(a) shows that 1) on PPR iterations Helix recomputes

only the PPR; 2) the materialization of L/I outputs, which allows the pruning of DPR and

L/I in PPR iterations, takes considerably less time than the compute time for DPR and L/I;

3) Helix Opt reruns DPR in iteration 5 (L/I) because Helix Opt avoided materializing

the large DPR output in a previous iteration. For the first three iterations, which are DPR

(the only type of iterations DeepDive supports), the 2× reduction between Helix Opt and

DeepDive is due to the fact that DeepDive does data preprocessing with Python and shell

scripts, while Helix Opt uses Spark. While both KeystoneML and Helix Opt use Spark,

KeystoneML takes longer on DPR and L/I iterations thanHelix Opt due to a longer L/I

time incurred by its caching optimizer’s failing to cache the training data for learning. The

dominant number of PPR iterations for this workflow reflects the fact that users in the social

sciences conduct extensive fine-grained analysis of results, per our literature survey [18].

Genomics. In Figure 6.1(b), Helix Opt shows a 3× speedup over KeystoneML for the

genomics workflow. The materialize-nothing strategy in KeystoneML clearly leads to no

run time reduction in subsequent iterations. Helix Opt, on the other hand, shows a per-

iteration run time that is proportional to the number of operators affected by the change in

that iteration. Figure 6.2(b) shows that 1) in PPR iterations Helix Opt has near-zero run

time, enabled by a small materialization time in the prior iteration; 2) one of the ML models

takes considerably more time, and Helix Opt is able to prune it in iteration 4 since it is

not changed.

NLP. Figure 6.1(c) shows that the cumulative run time for both DeepDive and Helix

Opt increases linearly with iteration for the NLP workflow, but at a much higher rate for

DeepDive than Helix Opt. This is due to the lack of automatic reuse in DeepDive. The

first operator in this workflow is a time-consuming NLP parsing operator, whose results are

reusable for all subsequent iterations. While both DeepDive and Helix Opt materialize

this operator in the first iteration, DeepDive does not automatically reuse the results. Helix

41

Opt, on the other hand, consistently prunes this NLP operation in all subsequent iterations,

as shown in Figure 6.2(c), leading to large run time reductions in iterations 1-5 and thus a

large cumulative run time reduction.

MNIST. Figure 6.1(d) shows the cumulative run times for the MNIST workflow. As men-

tioned above, the MNIST workflow has nondeterministic data preprocessing, which means

any changes to the DPR and L/I components prevents safe reuse of any intermediate result.

However, iterations containing only PPR changes can reuse intermediates for DPR and L/I

had they been materialized previously. Furthermore, we found that the DPR run time is

short but cumulative size of all DPR intermediates is large. Thus, materializing all these

DPR intermediates would incur a large run time overhead. KeystoneML, which does not

materialize any intermediate results, shows a linear increase in cumulative run time due

to no reuse. Helix Opt, on the other hand, only shows slight increase in runtime over

KeystoneML for DPR and L/I iterations because it is only materializing the L/I results on

these iterations, not the nonreusable, large DPR intermediates. In Figure 6.2(d), we see

1) DPR operations take negligible time, and Helix Opt avoids wasteful materialization of

their outputs; 2) the materialization time taken in the DPR and L/I iterations pays off for

Helix Opt in PPR iterations, which take negligible run time due to reuse.

6.5.3 Scalability vs. KeystoneML

Dataset Size. We test scalability of Helix and KeystoneML with respect to dataset size

by running the ten iterations in Figure 6.1(a) of the Census Workflow on two different sizes

of the input. Census 10x is obtained by replicating Census ten times in order to preserve the

learning objective. Figure 6.3(a) shows run time performance of Helix and KeystoneML on

the two datasets on a single node. Both yield 10x speedup over the smaller dataset, scaling

linearly with input data size, but Helix continues to dominate KeystoneML.

Cluster. We test scalability of Helix and KeystoneML with respect to cluster size by

running the same ten iterations in Figure 6.1(a) on Census 10x described above. Using a

uniform set of machines, we create clusters with 2, 4, and 8 workers and run Helix and

KeystoneML on each of these clusters to collect cumulative run time.

Figure 6.3(b) shows that 1) Helix has lower cumulative run time than KeystoneML on

the same cluster size, consistent with the single node results; 2) KeystoneML achieves ≈ 45%

run time reduction when the number of workers is doubled, scaling roughly linearly with the

number of workers; 3) From 2 to 4 workers, Helix achieves up to 75% run time reduction

4) From 4 to 8 workers, Helix sees a slight increase in run time. Recall from Chapter 3

that the semantic unit data structure in HML allows multiple transformer operations (e.g.,

42

indexing, computing discretization boundaries) to be learned using a single pass over the

data via loop fusion. This reduces the communication overhead in the cluster setting, hence

the super linear speedup in 3). On the other hand, the communication overhead for PPR

operations outweighs the benefits of distributed computing, hence the slight increase in 4).

6.6 EVALUATION VS. SIMPLER HELIX VERSIONS

Next, we evaluate the effectiveness of Algorithm 5.2 at approximating the solution to

the NP-hard Opt-Mat-Plan problem. We compare Helix Opt that runs Algorithm 5.2

against: Helix AM that replaces Algorithm 5.2 with the policy to always materialize every

operator, and Helix NM that never materializes any operator. The two baseline heuristics

present two performance extremes: Helix AM maximizes storage usage, time for materi-

alization, and the likelihood of being able to reuse unchanged results, whereas Helix NM

minimizes all three quantities. Helix AM provides the most flexible choices for reuse. On

the other hand, Helix NM has no materialization time overhead but also offers no reuse.

Figures 6.5(a), (b), (e), and (f) show the cumulative run time on the same four workflows

as in Figure 6.1 for the three variants.

Helix AM is absent from Figures 6.5(e) and (f) because it did not complete within 50× the

time it took for other variants. The fact that Helix AM failed to complete for the MNIST

and NLP workflows demonstrate that indiscriminately materializing all intermediates can

cripple performance. Figures 6.5(e) and (f) show that Helix Opt achieves substantial run

time reduction over Helix NM using very little materialization time overhead (where the

red line is above the yellow line).

For the census and genomics workflows where the materialization time is not prohibitive,

Figures 6.5(a) and (b) show that in terms of cumulative run time, Helix Opt outperforms

Helix AM, which attains the best reuse as explained above. We also compare the storage

usage by Helix AM and Helix NM for these two workflows. Figures 6.5(c) and (d) show

the storage size snapshot at the end of each iteration. The x-axis is the iteration numbers,

and the y-axis is the amount of storage (in KB) in log scale. The storage use for Helix NM

is omitted from these plots because it is always zero.

We find that Helix Opt outperforms Helix AM while using less than half the storage

used by Helix AM for the census workflow in Figure 6.5(c) and 1
30

the storage of Helix AM

for the genomics workflow in Figure 6.5(d). Storage is not monotonic because Helix purges

any previous materialization of original operators prior to execution, and these operators may

not be chosen for materialization after execution, thus resulting in a decrease in storage.

Furthermore, to study the optimality of Algorithm 5.2, we compare the distribution of

43

nodes in the prune, reload, and compute states Sp, Sl, Sc between Helix Opt and Helix

AM for workflows with Helix AM completed in reasonable times. Since everything is

materialized in Helix AM, it achieves maximum reuse in the next iteration. Figure 6.4

shows that Helix Opt enables the exact same reuse as Helix AM, demonstrating its

effectiveness on real workflows.

Overall, neither Helix AM nor Helix NM is the dominant strategy in all scenarios, and

both can be suboptimal in some cases.

6.7 MEMORY USAGE BY HELIX

We evaluate memory usage by Helix to ensure that its materialization and reuse ben-

efits do not come at the expense of large memory overhead. We measure memory usage

at one-second intervals during Helix workflow execution. Figure 6.6 shows the peak and

average memory used by Helix in each iteration for all four workflows. We allocate 30GB

memory (25% of total available memory) in the experiments. We observe that Helix runs

within the memory constraints on all workflows. Furthermore, on iterations where Helix

reuses intermediate results to achieve a high reduction in run time compared to other sys-

tems, memory usage is also significantly reduced. This indicates that Helix reuses small

intermediates that enable the pruning of a large portion of the subgraph to reduce run time,

instead of overloading memory.

44

(a) Census

0 1 2 3 4 5 6 7 8 9
Iteration

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

DeepDive
KeystoneML
Helix

(b) Genomics

0 1 2 3 4 5 6 7 8 9
Iteration

0

500

1000

1500

2000

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

KeystoneML
Helix Opt

(c) NLP

0 1 2 3 4 5
Iteration

0
1000
2000
3000
4000
5000
6000
7000
8000

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

DeepDive
Helix Opt

(d) MNIST

0 1 2 3 4 5 6 7 8 9
Iteration

0
100
200
300
400
500
600
700
800

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

KeystoneML
Helix Opt

Figure 6.1: Cumulative run time for the four workflows. The color under the curve indicates
the type of change in each iteration: purple for DPR, orange for L/I, and green for PPR.

45

(a) Census

0 2 4 6 8
0

50

100

150

200

250

300

R
un

 ti
m

e
(s

)

DPR
L/I
PPR
Mat.

(b) Genomics

0 2 4 6 8
0

50

100

150

200

250

300
DPR
L/I
PPR
Mat.

(c) NLP

0 1 2 3 4 5
Iterations

0
100
200
300
400
500
600
700
800

R
un

 ti
m

e
(s

) DPR
L/I
PPR
Mat.

(d) MNIST

0 2 4 6 8
Iterations

0

20

40

60

80

100

120

140
DPR
L/I
PPR
Mat.

Figure 6.2: Run time breakdown by workflow component and materialization time per iter-
ation for Helix.

46

(a)

0 1 2 3 4 5 6 7 8 9
Iteration

101

102

103

104

105

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

KeystoneML
Helix Opt
KeystoneML 10x
Helix Opt 10x

(b)

0 1 2 3 4 5 6 7 8 9
Iterations

102

103

104

105

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

Helix-2
Helix-4
Helix-8

KeystoneML-2
KeystoneML-4
KeystoneML-8

Figure 6.3: a) Census and Census 10x cumulative run time for Helix and KeystoneML on
a single node; b) Census 10x cumulative run time for Helix and KeystoneML on different
size clusters.

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.
S
p
,S

l,
S
c

Census
Sp Sl Sc

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Genomics
Sp Sl Sc

0 1 2 3 4 5 6 7 8 9
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.
S
p
,S

l,
S
c

Census AM
Sp Sl Sc

0 1 2 3 4 5 6 7 8 9
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Genomics AM
Sp Sl Sc

Figure 6.4: Fraction of states in Sp, Sl, Sc as determined by Algorithm 5.1 for the Census
and Genomics workflows for Helix Opt and Helix AM.

47

(a) Census

0 1 2 3 4 5 6 7 8 9
Iteration

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

Helix Opt
Helix AM
Helix NM

(b) Genomics

0 1 2 3 4 5 6 7 8 9
Iteration

0

200

400

600

800

1000

1200

1400

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

Helix Opt
Helix AM
Helix NM

(c) Census Storage

0 2 4 6 8
Iteration

106

107

S
to

ra
ge

 in
 K

B

Helix Opt Helix AM

(d) Genomics Storage

0 2 4 6 8
Iteration

103

104

105

106

S
to

ra
ge

 in
 K

B
Helix Opt Helix AM

(e) NLP

0 1 2 3 4 5
Iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

Helix Opt
Helix NM

(f) MNIST

0 2 4 6 8
Iteration

0

100

200

300

400

500

600

700

800

900

C
um

ul
at

iv
e

R
un

 T
im

e
(s

)

Helix Opt
Helix NM

Figure 6.5: Cumulative run time and storage use against materialization heuristics on the
same four workflows as in Figure 6.1.

48

0 1 2 3 4 5 6 7 8 9
0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
em

or
y

(K
B

)

1e7 Census
Max
Avg

0 1 2 3 4 5 6 7 8 9
Iteration

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e7 MNIST

Max
Avg

0 1 2 3 4 5 6 7 8 9
0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e7 Genomics

Max
Avg

0 1 2 3 4 5
Iteration

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
em

or
y

(K
B

)

1e7 NLP

Max
Avg

Figure 6.6: Peak and average memory for Helix.

49

CHAPTER 7: RELATED WORK

Many systems have been developed in recent years to better support ML workflows. We

begin by describing ML systems and other general workflow management tools, followed by

systems that target the reuse of intermediate results.

Machine Learning Systems. We describe machine learning systems that support declar-

ative programming, followed by other general-purpose systems that optimize across frame-

works.

Declarative Systems. Due to the challenges in developing ML workflows, there has been

recent efforts to make it easier to do so declaratively. Boehm et al. categorize declarative

ML systems into three groups based on the usage: declarative ML algorithms, ML libraries,

and declarative ML tasks [1]. Systems that support declarative ML algorithms, such as Ten-

sorFlow [31], SystemML [47], OptiML [48], ScalOps [49], and SciDB [50], allow ML experts

to program new ML algorithms, by declaratively specifying linear algebra and statistical

operations at higher levels of abstraction. Although it also builds a computation graph like

Helix, TensorFlow has no intermediate reuse and always performs a full computation e.g.

any in-graph data preparation. TensorFlow’s lower level linear algebra operations are not

conducive to data preprocessing. Helix handles reuse at a higher level than TensorFlow

ops. ML libraries, such as Mahout [51], Weka [30], GraphLab [52], Vowpal Wabbit [53],

MLlib [26] and Scikit-learn [25], provide simple interfaces to optimized implementations of

popular ML algorithms. TensorFlow has also recently started providing TFLearn [54], a

high level ML library targeted at deep learning. Systems that support declarative ML tasks

allow application developers with limited ML knowledge to develop models using higher-level

primitives than in declarative ML algorithms. Helix falls into this last group of systems,

along with DeepDive [7, 44] and KeystoneML [6]. These systems perform workflow-level

optimizations to reduce end-to-end execution time. Finally, at the extreme end of this spec-

trum are systems for in-RDBMS analytics [55, 56, 57] that extend databases to support ML,

at great cost to flexibility.

Declarative ML task systems, like Helix, can seamlessly make use of improvements in ML

library implementations, such as MLlib [26], CoreNLP [20] and DeepLearning4j [10], within

UDF calls. Unlike declarative ML algorithm systems, that are targeted at ML experts and

researchers, these systems focus on end-users of ML.

Systems that Optimize Across Frameworks. These systems target a broad range of use-cases,

including ML. Weld [58] and Tupleware [59] optimize UDFs written in different frameworks

by compiling them down to a common intermediate representation. Declarative ML task

50

systems like Helix can take advantage of the optimized UDF implementations; unlike He-

lix, these systems do not benefit from seamless specification, execution, and end-to-end

optimizations across workflow components that come from a unified programming model.

Systems for Optimizing Data Preprocessing. The database community has identified various

opportunities for optimizing DPR. Several approaches identify as a key bottleneck in DPR

and optimize it [60, 61, 62, 63]. Kumar et al. [60] optimizes generalized linear models

directly over factorized / normalized representations of relational data, avoiding key-foreign

key joins. Morpheus [61] and F [62] extend this factorized approach to general linear algebra

operations and linear regression models, respectively (the latter over arbitrary joins). Some

work [63] even attempts to characterize when joins can be eschewed altogether, without

sacrificing performance. All of these optimizations are orthogonal to those used by Helix.

Another direction aims at reducing the manual effort involved in data cleaning and feature

engineering [64, 65, 66, 67, 68]. All of these optimizations are orthogonal to those used

by Helix, which targets end-to-end iterative optimizations. Snorkel [64] supports training

data engineering using rules. Columbus [65] optimizes feature selection specifically for

regression models. ActiveClean [66] integrates data cleaning with learning convex models,

using gradient-biased samples to identify dirty data. Brainwash [67] proposes to expedite

feature engineering by recommending feature transformations. Zombie [68] speeds up data

preparation by learning over smaller, actively-learned informative subsets of data during

feature engineering. These approaches are bespoke for the data preprocessing portion of

ML workflows and do not target end-to-end optimizations, although there is no reason they

could not be integrated within Helix.

ML and non-ML Workflow Management Tools. Here we discuss ML workflow systems,

production platforms for ML, industry batch processing workflow systems, and systems for

scientific workflows.

ML Workflow Management. Prior tools for managing ML workflows focus primarily on

making their pipelines easier to debug. For example, Gestalt [69] and Mistique [70] both

tackle the problem of model diagnostics by allowing users to inspect intermediate results.

The improved workflow components in these systems could be easily incorporated within

Helix.

ML Platforms-as-Services. A number of industry frameworks [27, 71, 72, 73, 74, 75], attempt

to automate typical steps in deploying machine learning by providing a Platform-as-a-Service

(PaaS) capturing common use cases. These systems vary in generality — frameworks like

SageMaker, Azure Studio, and MLFlow are built around services provided by Amazon,

Microsoft, and Databricks, respectively, and provide general solutions for production de-

51

ployment of ML models for companies that in-house infrastructure. On the other hand,

TFX, FBLearner Flow, and Michelangelo are optimized for internal use at Google, Face-

book, and Uber, respectively. For example, TFX is optimized for use with TensorFlow, and

Michelangelo is optimized for Uber’s real-time requirements, allowing production models to

use features extracted from streams of live data.

The underlying “workflow” these frameworks manage is not always given an explicit rep-

resentation, but the common unifying thread is the automation of production deployment,

monitoring, and continuous retraining steps, thereby alleviating engineers from the labor of

ad-hoc solutions. Helix is not designed to reduce manual effort of model deployment, but

rather model development. The workflow Helix manages sits at a lower level than those of

industry PaaS systems, and therefore the techniques it leverages are quite different.

General Batch Processing Workflow Systems. A number of companies have implemented

workflow management systems for batch processing [76, 17]. These systems are not concerned

with runtime optimizations, and rather provide features useful for managing large-scale

workflow complexity.

Scientific Workflow Systems. Some systems address the significant mental and computa-

tional overhead associated with scientific workflows. VisTrails [77] and Kepler [78] add

provenance and other metadata tracking to visualization-producing workflows, allowing for

reproducibility, easier visualization comparison, and faster iteration. Other systems attempt

to map scientific workflows to cluster resources [79]. One such system, Pegasus [80], also

identifies reuse opportunities when executing workflows. The optimization techniques em-

ployed by all systems discussed leverage reuse in a simpler manner than does Helix, since

the workflows are coarser-grained and computation-heavy, so that the cost of loading cached

intermediate results can be considered negligible.

Intermediate Results Reuse. The OEP/OMP problems within Helix are reminiscent

of classical work on view materialization in database systems [81], but operates at a more

coarse-grained level on black box operators. However, the reuse of intermediate results

within ML workflows differs from traditional database view materialization in that it is

less concerned with fine-grained updates, and instead treats operator outputs as immutable

black-box units due to the complexity of the data analytics operator. Columbus [65] fo-

cuses on caching feature columns for feature selection exploration within a single workflow.

ReStore [82] manages reuse of intermediates across dataflow programs written in Pig [83],

while Nectar [84] does so across DryadLINQ [85] workflows. Jindal et al. [86] study SQL

subexpression materialization within a single workflow with many subqueries. Perez et

al. [87] also study SQL subexpression materialization, but in an inter-query fashion that

52

uses historical data to determine utility of materialization for future reuse. In the same vein,

Mistique [70] and its spiritual predecessor Sherlock [88] use historical usage as part of their

cost models for adaptive materialization. Helix shares some similarities with the systems

above but also differs in significant ways. Mistique [70], Nectar [84], and ReStore [82] share

the goal of efficiently reusing ML workflow intermediates with Helix. However, the cost

models and algorithms proposed in these systems for deciding what to reuse do not consider

the operator/subquery dependencies in the DAG and make decisions for each operator in-

dependently based on availability, operator type, size, and compute time. We have shown in

Figure 5.1 that decisions can have cascading effects on the rest of the workflow. The reuse

problems studied in Columbus [65] and Jindal et al. [86] differ from ours in that they are

concerned with decomposing a set of queries Q into subqueries and picking the minimum cost

set of subqueries to cover Q. The queries and subqueries can be viewed as a bipartite graph,

and the optimization problem can be cast as a Set Cover. They do not handle iteration

but rather efficient execution of parallel queries. Furthermore, the algorithms for choosing

what to materialize in Mistique [70] and Perez et al. [87] use historical data as signals for

likelihood of reuse in the future, whereas our algorithm directly uses projected savings for

the next iteration based on the reuse plan algorithm. Their approaches are reactive, while

ours is proactive.

53

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

We presented Helix, a declarative system aimed at accelerating iterative ML application

development. In addition to its user friendly, flexible, and succinct programming interface,

Helix tackles two major optimization problems, namely Opt-Exec-Plan and Opt-Mat-

Plan, that together enable cross-iteration optimizations resulting in significant run time

reduction for future iterations. We devised a PTIME algorithm to solve Opt-Exec-Plan

by using a reduction to Max-Flow. We showed that Opt-Mat-Plan is NP-Hard and

proposed a light-weight, effective heuristic for this purpose. We evaluated Helix against

DeepDive and KeystoneML on workflows from social sciences, NLP, computer vision, and

natural sciences that vary greatly in characteristics to test the versatility of our system. We

found that Helix supports a variety of diverse machine learning applications with ease and

and provides 40-60% cumulative run time reduction on complex learning tasks and nearly

an order of magnitude reduction on simpler ML tasks compared to both DeepDive and

KeystoneML. While Helix is implemented in a specific way, the techniques and abstractions

presented in this work are general-purpose; other systems can enjoy the benefits of Helix’s

optimization modules through simple wrappers and connectors.

In future work, we aim to further accelerate iterative workflow development via introspec-

tion and querying across workflow versions over time, automating trimming of redundant

workflow nodes, as well as auto-suggestion of workflow components to aid workflow develop-

ment by novices. Specifically, Helix is capable of tracing specific features in the ML model

to the operators in the DAG. This allows information about feature importance learned in

the ML model to be used directly to prune the DAG. In addition, the materialization and

reuse techniques we proposed can be extended to optimize parallel executions of similar

workflows.

54

REFERENCES

[1] M. Boehm, A. V. Evfimievski, N. Pansare, and B. Reinwald, “Declarative machine
learning-a classification of basic properties and types,” arXiv preprint arXiv:1605.05826,
2016.

[2] M. A. Munson, “A study on the importance of and time spent on different modeling
steps,” ACM SIGKDD Explorations Newsletter, vol. 13, no. 2, pp. 65–71, 2012.

[3] X. Ren, J. Shen, M. Qu, X. Wang, Z. Wu, Q. Zhu, M. Jiang, F. Tao, S. Sinha, D. Liem
et al., “Life-inet: A structured network-based knowledge exploration and analytics sys-
tem for life sciences,” Proceedings of ACL 2017, System Demonstrations, pp. 55–60,
2017.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[5] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information
network embedding,” in Proceedings of the 24th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee, 2015,
pp. 1067–1077.

[6] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht, “Keystoneml:
Optimizing pipelines for large-scale advanced analytics,” in Data Engineering (ICDE),
2017 IEEE 33rd International Conference on. IEEE, 2017, pp. 535–546.

[7] C. Zhang, “Deepdive: A data management system for automatic knowledge base con-
struction,” Ph.D. dissertation, Citeseer, 2015.

[8] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education, 2006.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data processing in spark,” in
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM, 2015, pp. 1383–1394.

[10] D. Team, “Deeplearning4j: Open-source distributed deep learning for the jvm,” Apache
Software Foundation License, vol. 2, 2016.

[11] W. Rasband, “Imagej: Image processing and analysis in java,” Astrophysics Source
Code Library, 2012.

[12] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran, “Helix: Accelerating
human-in-the-loop machine learning (demo paper),” Proceedings of the VLDB Endow-
ment, 2018.

55

[13] D. Xin, S. Macke, L. Ma, R. Ma, S. Song, and A. Parameswaran, “Helix: Holistic
optimization for accelerating iterative machine learning,” Technical Report http://data-
people.cs.illinois.edu/helix-tr.pdf, 2018.

[14] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran, “Accelerating human-
in-the-loop machine learning: Challenges and opportunities (vision paper),” in Proceed-
ings of the Second Workshop on Data Management for End-To-End Machine Learning,
ser. DEEM’18. ACM, 2018.

[15] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image
descriptions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3128–3137.

[16] J. Lin and D. Ryaboy, “Scaling big data mining infrastructure: the twitter experience,”
ACM SIGKDD Explorations Newsletter, vol. 14, no. 2, pp. 6–19, 2013.

[17] R. Sumbaly, J. Kreps, and S. Shah, “The big data ecosystem at linkedin,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data. ACM,
2013, pp. 1125–1134.

[18] D. Xin, L. Ma, S. Song, and A. Parameswaran, “How developers iterate on machine
learning workflows–a survey of the applied machine learning literature,” KDD IDEA
Workshop, 2018.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association, 2012.

[20] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky,
“The stanford corenlp natural language processing toolkit.” in ACL (System Demon-
strations), 2014, pp. 55–60.

[21] D. Team et al., “Deeplearning4j: Open-source distributed deep learning for the jvm,”
Apache Software Foundation License, vol. 2.

[22] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid,” in
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining. AAAI Press, 1996, pp. 202–207.

[23] E. Meijer, B. Beckman, and G. Bierman, “Linq: Reconciling object, relations and
xml in the .net framework,” in Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’06. New York, NY, USA: ACM,
2006, pp. 706–706.

[24] J. Rosen, “Pyspark internals.”

56

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
python,” Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[26] X. Meng, J. Bradley, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen et al., “Mllib: Machine learning in apache spark,” 2016.

[27] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,
V. Jain, L. Koc et al., “Tfx: A tensorflow-based production-scale machine learning plat-
form,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, 2017, pp. 1387–1395.

[28] “Scikit-learn user guide,” http://scikit-learn.org/stable/user guide.html.

[29] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux, “API design for machine learning software: experiences from the
scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, 2013, pp. 108–122.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11,
no. 1, pp. 10–18, 2009.

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[32] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Tensors and dynamic
neural networks in python with strong gpu acceleration,” 2017.

[33] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” in Advances in neural information processing systems,
2011, pp. 693–701.

[34] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gradient
descent,” in Advances in neural information processing systems, 2010, pp. 2595–2603.

[35] H. G. Rice, “Classes of recursively enumerable sets and their decision problems,” Trans-
actions of the American Mathematical Society, vol. 74, no. 2, pp. 358–366, 1953.

[36] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice
and experience,” ACM computing surveys (CSUR), vol. 41, no. 4, p. 19, 2009.

[37] A. M. Pitts, “Operationally-based theories of program equivalence,” Semantics and
Logics of Computation, vol. 14, p. 241, 1997.

[38] A. D. Gordon, “A tutorial on co-induction and functional programming,” in Functional
Programming, Glasgow 1994. Springer, 1995, pp. 78–95.

57

[39] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998.

[40] M. Yannakakis, “On a class of totally unimodular matrices,” Mathematics of Operations
Research, vol. 10, no. 2, pp. 280–304, 1985.

[41] D. S. Hochbaum and A. Chen, “Performance analysis and best implementations of old
and new algorithms for the open-pit mining problem,” Operations Research, vol. 48,
no. 6, pp. 894–914, 2000.

[42] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for
network flow problems,” Journal of the ACM (JACM), vol. 19, no. 2, pp. 248–264, 1972.

[43] “Deepdive census example,” https://github.com/HazyResearch/deepdive/tree/
master/examples/census.

[44] C. De Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang, “Deepdive:
Declarative knowledge base construction,” SIGMOD Rec., vol. 45, no. 1, pp. 60–67,
June 2016. [Online]. Available: http://doi.acm.org/10.1145/2949741.2949756

[45] D. Dheeru and E. Karra Taniskidou, “{UCI} machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[47] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda,
Y. Tian, and S. Vaithyanathan, “Systemml: Declarative machine learning on mapre-
duce,” in 2011 IEEE 27th International Conference on Data Engineering. IEEE, 2011,
pp. 231–242.

[48] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya, M. Odersky,
and K. Olukotun, “Optiml: an implicitly parallel domain-specific language for machine
learning,” in Proceedings of the 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 609–616.

[49] M. Weimer, T. Condie, R. Ramakrishnan et al., “Machine learning in scalops, a higher
order cloud computing language,” in NIPS 2011 Workshop on parallel and large-scale
machine learning (BigLearn), vol. 9, 2011, pp. 389–396.

[50] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The architecture of scidb,” in
International Conference on Scientific and Statistical Database Management. Springer,
2011, pp. 1–16.

[51] S. Owen, R. Anil, T. Dunning, and E. Friedman, “Mahout in action,” 2012.

[52] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Dis-
tributed graphlab: a framework for machine learning and data mining in the cloud,”
Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.

58

[53] J. Langford, L. Li, and A. Strehl, “Vowpal wabbit online learning project,” 2007.

[54] A. Damien et al., “Tflearn,” 2016.

[55] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.
Ng, C. Welton, X. Feng, K. Li et al., “The madlib analytics library: or mad skills, the
sql,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1700–1711, 2012.

[56] X. Feng, A. Kumar, B. Recht, and C. Ré, “Towards a unified architecture for in-
rdbms analytics,” in Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. ACM, 2012, pp. 325–336.

[57] D. Z. Wang, M. J. Franklin, M. Garofalakis, J. M. Hellerstein, and M. L. Wick, “Hybrid
in-database inference for declarative information extraction,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data. ACM, 2011, pp.
517–528.

[58] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf, S. Ama-
rasinghe, M. Zaharia, and S. InfoLab, “Weld: A common runtime for high performance
data analytics,” in Conference on Innovative Data Systems Research (CIDR), 2017.

[59] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Cetintemel, and S. Zdonik,
“An architecture for compiling udf-centric workflows,” Proceedings of the VLDB En-
dowment, vol. 8, no. 12, pp. 1466–1477, 2015.

[60] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear models over
normalized data,” in Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. ACM, 2015, pp. 1969–1984.

[61] L. Chen, A. Kumar, J. Naughton, and J. M. Patel, “Towards linear algebra over nor-
malized data,” Proceedings of the VLDB Endowment, vol. 10, no. 11, pp. 1214–1225,
2017.

[62] D. Olteanu and M. Schleich, “F: regression models over factorized views,” Proceedings
of the VLDB Endowment, vol. 9, no. 13, pp. 1573–1576, 2016.

[63] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?: Thinking
twice about joins before feature selection,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 19–34.

[64] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid
training data creation with weak supervision,” arXiv preprint arXiv:1711.10160, 2017.

[65] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for feature selection
workloads,” ACM Transactions on Database Systems (TODS), vol. 41, no. 1, p. 2, 2016.

[66] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “Activeclean: Interac-
tive data cleaning while learning convex loss models,” arXiv preprint arXiv:1601.03797,
2016.

59

[67] M. R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella, A. Kumar,
F. Niu, Y. Park, C. Ré, and C. Zhang, “Brainwash: A data system for feature engi-
neering.” in CIDR, 2013.

[68] M. R. Anderson and M. Cafarella, “Input selection for fast feature engineering,” in Data
Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE, 2016, pp.
577–588.

[69] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay, “Gestalt:
integrated support for implementation and analysis in machine learning,” in Proceedings
of the 23nd annual ACM symposium on User interface software and technology. ACM,
2010, pp. 37–46.

[70] M. Vartak, J. M. da Trindade, S. Madden, and M. Zaharia, “Mistique: A system to
store and query model intermediates for model diagnosis,” in Proceedings of the 2018
ACM International Conference on Management of Data, 2018.

[71] J. Dunn, “Introducing fblearner flow: Facebook’s ai backbone,” 2018 (accessed Oc-
tober 8, 2018), https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-
backbone/.

[72] J. Barnes, “Azure machine learning microsoft azure essentials,” 2015.

[73] “Meet michelangelo: Uber’s machine learning platform,” 2017 (accessed October 8,
2018), https://eng.uber.com/michelangelo/.

[74] Amazon SageMaker Developer Guide, 2018 (accessed October 8, 2018),
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf.

[75] M. Zaharia, “Introducing mlflow: an open source machine learning platform,” 2018 (ac-
cessed October 8, 2018), https://databricks.com/blog/2018/06/05/introducing-mlflow-
an-open-source-machine-learning-platform.html.

[76] M. Beauchemin, “Airflow: a workflow management platform,” 2015 (accessed October
8, 2018), https://medium.com/airbnb-engineering/airflow-a-workflow-management-
platform-46318b977fd8.

[77] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo,
“Vistrails: visualization meets data management,” in Proceedings of the 2006 ACM
SIGMOD international conference on Management of data. ACM, 2006, pp. 745–747.

[78] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao, “Scientific workflow management and the kepler system,” Concurrency
and Computation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[79] J. Yu and R. Buyya, “A taxonomy of workflow management systems for grid comput-
ing,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 171–200, 2005.

60

[80] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and
M. Livny, “Pegasus: Mapping scientific workflows onto the grid,” in Grid Computing.
Springer, 2004, pp. 11–20.

[81] R. Chirkova, J. Yang et al., “Materialized views,” Foundations and Trends R© in
Databases, vol. 4, no. 4, pp. 295–405, 2012.

[82] I. Elghandour and A. Aboulnaga, “Restore: reusing results of mapreduce jobs,” Pro-
ceedings of the VLDB Endowment, vol. 5, no. 6, pp. 586–597, 2012.

[83] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-
so-foreign language for data processing,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. ACM, 2008, pp. 1099–1110.

[84] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang, “Nectar: Au-
tomatic management of data and computation in datacenters.” in OSDI, vol. 10, 2010,
pp. 1–8.

[85] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey,
“Dryadlinq: A system for general-purpose distributed data-parallel computing using a
high-level language.” in OSDI, vol. 8, 2008, pp. 1–14.

[86] A. Jindal, K. Karanasos, S. Rao, and H. Patel, “Selecting subexpressions to materialize
at datacenter scale,” Proceedings of the VLDB Endowment, vol. 11, no. 7, pp. 800–812,
2018.

[87] L. L. Perez and C. M. Jermaine, “History-aware query optimization with material-
ized intermediate views,” in Data Engineering (ICDE), 2014 IEEE 30th International
Conference on. IEEE, 2014, pp. 520–531.

[88] M. Vartak, P. Ortiz, K. Siegel, H. Subramanyam, S. Madden, and M. Zaharia, “Sup-
porting fast iteration in model building,” in NIPS Workshop LearningSys, 2015.

61

