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ABSTRACT
User interaction behavior is a valuable source of implicit relevance
feedback. In Web image search a different type of search result
presentation is used than in general Web search, which leads to
different interaction mechanisms and user behavior. For example,
image search results are self-contained, so that users do not need to
click the results to view the landing page as in general Web search,
which generates sparse click data. Also, two-dimensional result
placement instead of a linear result list makes browsing behaviors
more complex. Thus, it is hard to apply standard user behavior
models (e.g., click models) developed for general Web search to
Web image search.

In this paper, we conduct a comprehensive image search user
behavior analysis using data from a lab-based user study as well
as data from a commercial search log. We then propose a novel
interaction behavior model, called grid-based user browsing model
(GUBM), whose design is motivated by observations from our data
analysis. GUBM can both capture users’ interaction behavior, in-
cluding cursor hovering, and alleviate position bias. The advantages
of GUBM are two-fold: (1) It is based on an unsupervised learning
method and does not need manually annotated data for training.
(2) It is based on user interaction features on search engine result
pages (SERPs) and is easily transferable to other scenarios that have
a grid-based interface such as video search engines. We conduct
extensive experiments to test the performance of our model using
a large-scale commercial image search log. Experimental results
show that in terms of behavior prediction (perplexity), and topical
relevance and image quality (normalized discounted cumulative
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gain (NDCG)), GUBM outperforms state-of-the-art baseline models
as well as the original ranking. We make the implementation of
GUBM and related datasets publicly available for future studies.
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1 INTRODUCTION
Interaction behavior data provides implicit but abundant user feed-
back and can be collected at very low cost [37]. Thus, it has become
a popular source for improving the performance of search engines.
In particular, it has been successfully adopted to improve general
Web search in result ranking [1, 25], query auto-completion [20, 22],
query recommendation [4, 38], optimizing presentations [36], etc.

Web image search results, however, are displayed in a markedly
different way from general Web search engine results, which leads
to different interaction mechanisms and differences in user behav-
ior. Take the search engine result page (SERP) in Fig. 1, for example.
An image search engine typically places results in a grid-based
interface rather than a sequential result list. Users can view results
not only in a vertical direction but also in a horizontal direction.
Instead of a query-dependent summary of the landing page, the
image snapshot is shown together with some metadata about the
image; see the example highlighted with a red box in Fig. 1. This
type of metadata is usually only visible when the user hovers their
cursor over the result. Also, while typically available on Web image
search result pages, where users can view results by scrolling up
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and down without having to click on the “next page” button, pagi-
nation is usually not (explicitly) supported on general Web SERPs.
Furthermore, image search results are self-contained, in the sense
that users do not have to click the results to view the landing page
as in general Web search, which leads to sparse click data. It has
been demonstrated that the probability of an examined and relevant
result being clicked is very low in Web image search [40].

Figure 1: An example SERP produced by an image search
engine. The red box shows the metadata of the image that is
displaying when hovering over the corresponding position.

Due to users’ different and unique interactions with Web image
search engines when compared with general Web search engines, it
is hard to apply user behavior models that have been proven useful
for general Web search to image search without adaption. Take
click models [7], for example. They can alleviate user behavior bias
and generate a reasonable estimation of result relevance in general
Web search [5, 10, 13]. However, they tend to follow the sequential
examination hypothesis [8]. Also, the sparsity of clicks in image
search generates a challenge to training these click-based models.
In this paper, we conduct both a qualitative and quantitative

analysis using data from a lab-based user study and data from a
commercial search log to obtain a deeper understanding of user
interactions with Web image search engines. These analyses then
inform our modeling of Web image searchers. We find that users’
unique and rich interactions are highly informative about their
preferences. Specifically, we demonstrate that “hovering” over an
image is highly correlated with users’ examination behavior and
result relevance. As image search interfaces elicit 8 to 10 times
more hover interactions than clicks [28], cursor hovering could
be a strong additional signal for relevance. Also, we find that ex-
aminations of images between two interaction signals (click and
hover) usually follow one direction, but with possible skips. This
observation shows that some of the assumptions used in previously
proposed position-based models (e.g., the sequential examination
assumption) are reasonable in a Web image search scenario, but
only when restricted to the interval between two adjacent interac-
tion signals. Motivated by these and other observations, we build
a Web image search interaction model to capture user behavior.
Compared with existing interaction models in image search, our
model learns to rank results based on user behavior without incor-
porating text and visual contents. Also, the training process does
not require manually labeled data.

To summarize, the main contributions of this work are as follows:

• By conducting a comprehensive analysis, using both a quali-
tative and a quantitative approach, using user study data and
commercial search log data, we demonstrate the different user
interactions with Web image search engines.
• We propose a novel interaction behavior model named grid-based
user browsing model (GUBM). As this model is based on features
of user interactions on SERPs, it can easily be transferred to other
scenarios that have a two-dimensional interface such as video
search engines.
• We conduct extensive experiments to test the performance of
the proposed GUBM model using a commercial search log data.
The raw log data with image relevance and quality labels will be
made publicly available (after the paper review process). The ex-
perimental results are promising in terms of behavior prediction,
topical relevance, and image quality.

We outline observations from our user study and query log analysis
in Section 2. In Section 3, we formally introduce GUBM. We report
on experiments using GUBM and compare the results with results
of existing models in Section 4. Section 5 reviews related work.
Finally, conclusions and future work are discussed in Section 6.

2 EXPLORATORY ANALYSES
Although there also exist unique interactions with the image pre-
view pages, the way to show preview pages varies with different
search engines. For example, Google shows the preview page on
the same page with the SERP while Bing shows it on a new page.
We leave the investigation of the preview pages as our future work.
In this paper, We perform exploratory analyses using two image
search datasets to obtain a deeper understanding of user interac-
tions with image search result pages. One has been created using
data collected in a lab-based user study and is publicly available [40].
In this user study, 40 participants have been recruited to complete
20 image search tasks which cover different query categories ac-
cording to the Shatford-Panofsky approach [31]. Besides logged
mouse activities, a Tobii eye-tracker has been used to record partic-
ipants’ examination behavior. By using the built-in algorithms and
all default parameters from Tobii Studio, the participants’ fixation
points were detected and the certain image being examined were
recorded in the dataset. Also, several professional assessors are
recruited to provide relevance labels for query-image pairs. The
second image search dataset that we use is a sampled of query log
data from a commercial image search engine. The details about this
dataset can be found in Section 4.1.

2.1 Hovering
Interactions with an image result usually consist of mouse clicks,
cursor hovering and user examination. Previous user behavior mod-
els developed for general Web search (e.g., click models) focus on
mouse clicks. However, the number of clicks on image SERPs is
small. In the commercial query log on which we conduct exper-
iments (the second dataset), about 62.2% of the sessions have no
click. In contrast, there exist about 20 times more hover interac-
tions than click. Also, Park et al. [28] show that cursor hovering
is strongly correlated with mouse clicks in image search. These
findings motivate our first research question:
RQ1: Can cursor hovering be an additional signal for relevance in

image search scenarios?
To answer this research question, we calculate a confusion matrix
that shows the relation between hover actions (H) and relevance



score (R) using user study data (the first dataset) and compare it to
the confusion matrix in [40, Table 6] which is based on clicks (C).
The results are shown in Table 1. Conditioned on the assumption

Table 1: Relation between click (C), hover (H ) and relevance
score (R) given images that are examined.

E = 1 C = 1 C = 0 H = 1 H = 0

Not relevant (R = 0) 0.21% 26.7% 7.30% 19.6%
Fairly relevant (R = 1) 0.41% 6.94% 2.61% 4.74%
Very relevant (R = 2) 4.84% 60.9% 25.7% 40.0%

that an image is examined, we can observe that the probability
of a relevant result being hovered ((2.61 + 25.7)%/((2.61 + 4.74) +
(25.7 + 40.0))% = 38.9%) is much higher than of being clicked
((0.41 + 4.84)%/((0.41 + 6.94) + (4.84 + 60.9))% = 7.18%). Also, the
probability of a non-relevant result being hovered or clicked is
low. Although the probability of hovering is slightly higher than
the probability of a click on a non-relevant result, this potential
noise can be compensated by the larger volume of hovering data
(compared to click data). Thus, cursor hovering may be a useful
signal for relevance in image search and it may help to overcome
the sparseness of clicks.
We modify the examination hypothesis [8] from general Web

search to our image search scenario by combining click and hover
signals. We use interaction signal (I) to indicate both click (C) and
hover (H) and propose our first assumption:
Assumption 1 – Examination hypothesis in image search.

An image result being interacted with (Ii = 1) accords with
two independent conditions: it is examined (Ei = 1) and it is
relevant (Ri = 1), which can be represented as:

Ii = 1↔ Ei = 1 and Ri = 1. (1)

2.2 Examinations between interactions
To construct a user interaction behavior model, it is essential to
know how users examine results on a SERP. Previous click models
usually follow the sequential examination hypothesis [8] accord-
ing to which users examine results from top to bottom in a linear
fashion. In Web image search engines, however, result placement is
two-dimensional. Users can examine results not only in a vertical
direction but also in a horizontal direction. Xie et al. [40] analyze
user examination behavior. One of their observations is that the
probability of moving eyes horizontally is significantly higher than
in other directions, which means that users tend to examine results
within a single row before skipping to other rows. In this paper, we
want to look deeper into users’ examination behavior by consid-
ering the local context (that is, the interval between two adjacent
interaction signals) to propose revised examination behavior as-
sumptions for our interaction model. This motivates our second
research question:
RQ2: How do users examine the image search results between two

adjacent interaction signals?
We utilize the user study data to answer this research question. In
an image search session, the interaction signals can be organized
as a sequence I = ⟨I1, I2, . . . , It , . . . , IT ⟩ according to timestamp
information, where 1 ≤ t ≤ T and T is the number of interaction
signals in this search session. It (rt , ct ) records the position of the
result being interacted with, where rt and ct represent the row

number and column number, respectively. We separate the interac-
tion sequence I into adjacent pairs: ⟨I0, I1⟩, . . . , ⟨In , IT+1⟩ (I0(0, 0)
represents the search start of this session and IT+1(rmax , cmax )
represents the search end of this session). In the user study data
used in the exploratory analyses, rmax is set to 20 (20 rows of re-
sults were reserved on the experimental result pages) and cmax is
the number of images in the final row.
We then investigate the examination behavior between two ad-

jacent interaction signals (It and It+1) in the vertical direction and
the horizontal direction, respectively.
In the vertical direction, the relative spatial relations between

two signals can be “↓” (rt < rt+1) or “↑” (rt > rt+1). In our data the
proportion of “↓” is 68.1% and “↑” is 31.9%, which means that revisit
behavior should be taken into account in image search scenarios.
Intuitively, the examination direction would accord with the inter-
action direction while it is also possible that there exist some parts
of direction change.

We count the number of times there is a change in examination
direction for two types of adjacent interaction signals separately.
From Fig. 2, we can observe that in most cases (higher than 95%
for both types), users exhibit a sequential examination behavior
following the same direction as the interaction direction without
any direction change.

↓
↑

Figure 2: Distribution of the fraction of examination direc-
tion changes for two types of adjacent interaction signals in
vertical direction.

In the horizontal direction, we want to know how users examine
results within a single row. We count the number of examination
direction changes in each row (from row rt to row rt+1) between
adjacent interaction signals. Fig. 3 displays the results in which
more than 93% examination sequences (within a single row) have
no direction change. Thus, we can propose our second assumption:
Assumption 2 – Locally unidirectional examination assump-

tion. Between adjacent interaction signals, users tend to ex-
amine results in one direction without changes both in the
vertical direction and in the same row. And the vertical exam-
ination direction is consistent with the vertical interaction
direction.

2.3 Examination
Determining the examination direction in a single row is difficult as
there exist rows (about 40% in our data) that receive fewer than two



Figure 3: Distribution of number of times of examination di-
rection change in one row between two adjacent interaction
signals.

examination points.We predefine three types of in-row examination
direction and calculate the proportion of sets of rows between
adjacent interaction signal pairs that satisfy the definition of each
type below.
• LtoR: Examination direction in every row follows a “from left to
right (→)” pattern: 60.5% of sets of rows in our data.
• RtoL: Examination direction in every row follows a “from right
to left (←)” pattern: 66.0% of sets of rows in our data.
• Z-shape: Examination directions in adjacent rows are opposite:
93.2% of all sets of rows in our data.

We assume that examination directions that receive fewer than two
examination points can be from left to right (→) or from right to
left (←), hence the percentages in the list just given add up to more
than 100.
We can observe that the proportion of sequences of interaction

signals that have a Z-shape is larger than the other two types. We
can explain this finding using a perspective from [40], viz. that
users usually follow a “nearby principle” examination behavior in
image search. In Section 4 we will test the performance of models
with different types of in-row examination direction.

As mentioned above at the beginning of Section 2.3, about 40% of
the rows receive less than two examination points; this means that
users will not examine every result in the path between adjacent
interaction signals. We further investigate the skipping behavior
by answering the following research question:
RQ3: How far do users’ eye gazes jump after examining the current

result?
We define the distance between two adjacent examined results as:

d = max(|rt+1 − rt |, |ct+1 − ct |), (2)
where r refers to the row number and c refers to the column number
of examined results. We calculate the distance (as defined in Eq. 2)
between all pairs of adjacent examinations in the path between two
adjacent interaction signals; the results are shown in Fig. 4. We can
observe that more than 50% of the adjacent examinations exhibit
skipping behavior (d > 1). The average examination transition
distance for “↑” (1.36) is significantly higher than for “↓” (1.00)
with P-value < 0.001. This may be caused by the fact that when
users examine results from bottom to top (“↑”), they will skip more
results to re-examine a specific result. This brings us to our third
assumption:

↓
↑

Figure 4: Distribution of different examination transition
distance between two adjacent interaction signals.

Assumption 3 – Non one-by-one examination assumption.
When users examine the results between two adjacent inter-
action signals, they will skip several results and examine a
result at some distance.

With answers to the above three research questions, RQ1–RQ3,
we are able to obtain a clear picture of users’ examination behav-
ior between two adjacent interaction signals (It and It+1). After
interacting with an image result at row rt and column ct (click
or hover over the image result), a user will examine results with
possible skips in the same row and will then move to the next row.
The user will not revisit the previous rows until interacting with
another image result at row rt+1 and column ct+1. The vertical
direction of eye movements is consistent with the vertical interac-
tion direction. Thus, given two adjacent interaction signals, we can
consider examination behavior that takes place in between them
to be in a linear way by joining adjacent rows together following
a certain in-row examination direction. For example, by assuming
a “Z-shape” interaction pattern, which satisfies most cases (93.2%),
we simulate examination behavior between interaction signals in
Fig. 5. We use white arrows to show the path of user examinations
and red points to mark examined results.

It

It+1

Figure 5: A simulation of examination behavior on image
SERP between two adjacent interaction signals(It and It+1).
We use white arrows to show the examination direction and
red points to mark the examined results.



3 GRID-BASED USER BROWSING MODEL
In this paper, we aim to build an interaction behavior model based
on interaction sequences that can be observed in large-scale com-
mercial image search logs.

3.1 Model and hypotheses
Before introducing our model, named grid-based user browsing
model (GUBM), we provide some definitions and notations.
After a query q has been issued to an image search engine, a

SERP is presented with a number of images that are organized in a
grid-based manner. The result panel can be represented as a matrix:
⟨D0,D1, . . . ,Di , . . . ,DM ⟩, where Di is the image sequence in the
i-th row and can be represented as: ⟨di0,di1, . . . ,di j , . . . ,dini ⟩ in
which di j is the image in the i-th row and j-th column and ni is the
number of images in the i-th row. It should be noted that different
rows may contain different numbers of images due to the different
aspect ratios of the images. In Fig. 1, for example, n1 equals 4 and
n2 equals 5.

Guided by a search intent, the user begins to examine the SERP
and interacts with the results before abandoning the search. The
interaction sequence can be recorded as I = ⟨I1, I2, . . . , It , . . . , IT ⟩,
as introduced in Section 2.2. Given two adjacent interaction sig-
nals (It (rt , ct ) and It+1(rt+1, ct+1)), we define an image path to be
a sequence Pt,t+1 that can be generated based on Assumption 2
(locally unidirectional examination assumption) and a certain in-
row examination direction; as illustrated in Fig. 5 (“Z-shape” for
the in-row examination direction), the image path Pt,t+1 can be
represented as

Pt,t+1 = ⟨drt ,ct ,drt ,ct+1, . . . ,drt+1,ct+1+1,drt+1,ct+1 ⟩,
where drt ,ct and drt+1,ct+1 refer to the images being interacted by
It and It+1 respectively. For every result (di, j ) in the image path,
we use a binary variable Ei, j to indicate whether this result is being
examined (1) or not (0). Because of Assumption 2 (locally unidi-
rectional examination), we can simplify the subscript i, j, which
indicates the i-th row and j-th column, to a single number f (i, j) by
considering the following mapping function, where EDi represents
the examination direction in the i-th row which can be “from left
to right” (→) or “from right to left” (←).

f (i, j) =



i−1∑
r=0

nr + j, if (EDi →)

i−1∑
r=0

nr + ni − j − 1, if (EDi ←)
(3)

Thus, the image path Pt,t+1 between It and It+1 can be rewritten
as ⟨dm , . . . ,di , . . . ,dn⟩ wherem = f (rt , ct ) and n = f (rt+1, ct+1).
For each di in the image path, we define the following binary

variables to capture the user behavior over it:
• I i : the user interacted with the result by mouse click or cursor
hovering. Note that I i differs from the notation It used to record
the spatial position of interaction result.
• Ei : the user examined the result.
• Ri : the search result attracted the user as its content is relevant.
We are now in a position to describe our grid-based user browsing
model. According to the examination hypothesis in image search
(Assumption 1 in Section 2), the probability of a result being inter-
acted with can be described as Eq. 4:

P(I i = 1) = P(Ei = 1) · P(Ri = 1) (4)

In this paper, we adopt the first-order hypothesis accepted in most
user behavior models developed for general Web search [5, 10].
The first-order hypothesis supposes that the click event at time
t + 1 is only determined by the click event at time t . We extend
this hypothesis to construct our model by considering the adjacent
interaction event:

P(It+1 | It , . . . , I1) = P(It+1 | It ) (5)
Next, Eq. 6 depicts the user interaction in which we use the lo-
cally unidirectional examination assumption (Assumption 2) and
a certain in-row examination direction to generate an image path
between two adjacent interaction signals:

P(It+1 = (rt+1, ct+1) | It = (rt , ct )) (6)
= P(It+1 = f (rt+1, ct+1) = n | It = f (rt , ct ) =m)
= P(Im = 1, . . . , I i = 0, . . . , In = 1)

By considering the image path between It and It+1, the probability
of an image result being examined depends on the spatial position
of this result in the path. We use an internal parameter γimn to
depict the examination probability while the vertical examination
direction along the path can be either ↓ (m ≤ n) or ↑ (n ≤ m):

P(Ei = 1 | It =m, It+1 = n) (7)

=

{
γimn ifm ≤ i ≤ n or n ≤ i ≤ m
0 otherwise.

Examination may also be affected by other image content features
such as saliency or edge density [40]. In this paper, however, we only
incorporate position information into our model; other features
will be discussed in possible directions for future work.

Next, another internal parameter used is αuq , which represents
the relevance level for a query-image pair, where u is the image
result for the specific query q that is at position i in the image path:

P(Ri = 1) = αuq (8)
The task here is to infer γ and α from observable data (i.e., inter-
action sequence I ). We assume that these two parameters are user
independent so as to simplify the model.
In summary, Eqn. 4–8 above encode the assumptions used by

GUBM to simulate user behavior on an image SERP.

Search 
Begin

I1

It

It+1

IT

Search 
End

It

It+1

f(i,j)

Im=1

Im+1=0

In-1=0

In=1

Em

Em+1

Em+1

Em+1

m=f(rt,ct)

n=f(rt+1,ct+1)

Rm

Rm+1

Rn-1

Rn-1

Figure 6: Graphical representation of grid-based user brows-
ing model (GUBM).

Fig. 6 provides a graphical representation of GUBM. From search
start to search end, an interaction sequence ⟨I1, . . . , IT ⟩ can be ob-
served. Considering an adjacent interaction signals, the image path



between them can be obtained by predefined in-row examination
direction (i.e., “Z-shape”). Then, based on the locally unidirectional
examination assumption (Assumption 2), we can investigate user
examinations between two adjacent interaction signals in an ap-
proximately linearway, which enables us to borrow some ideas from
click models in general Web search. Specifically, the assumptions
derived from data analysis share some perspective with partially
sequential click model (PSCM) [33].

3.2 Model inference for GUBM
In this paper, we use the expectaction-maximization (EM) algo-
rithm [9] to infer the internal parameters γ and α from search logs.
In GUBM, the observation is the interaction sequence (I ) while
the hidden variables are the query-image relevance level (R) and
examination behavior (E). Given internal parameter θ = {γ ,α }, the
marginal likelihood can be represented as Eq. 9 according to Eq. 5.

P(I ,E,R | θ ) =
T∏
t=0

P(It+1,E,R | It ,θ ) (9)

We use s to denote a specific query-session and S to denote all
sessions in the search logs; I s refers to the interaction sequence in
session s . The conditional expected log-likelihood (Q-function) can
then be written as:

Q =
∑
s ∈S

EE,R |I s ,θ [log P(I s ,E,R | θ )] (10)

Thus, in iteration round v of the EM algorithm, the Q-function of
αuq and γimn can be formulated as:

Qαuq =
∑
s ∈S

∑
(It , It+1)∈I s

1i,n ·
(1 − αvuq ) log(1 − αuq )

1 − αvuqγvimn
+ (11)

1i,n ·
αvuq (1 − γvimn ) log(αuq )

1 − αvuqγvimn
+ 1i=n · log(αuq )

Qγimn =
∑
s ∈S

∑
(It , It+1)∈I s

1i,n ·
(1 − γvimn ) log(1 − γimn )

1 − αvuqγvimn
+ (12)

1i,n ·
γvimn (1 − α

v
uq ) log(γimn )

1 − αvuqγvimn
+ 1i=n · log(γimn ),

where u is shown in the image path ⟨dm , . . . ,dn⟩ with subscript i
between interactions It and It+1 in session s . Furthermore, θv =
{αv ,γv } are the internal parameters in iteration round v . And 1 is
the indicator function.

To maximize the Q-function, we take the derivate of Eq. 11 and
Eq. 12 with respect to the parameters αuq and γimn , respectively.
Then, we can obtain update functions for αuq and γimn as:

aFv1 = 1i,n ·
1−αvuq

1−αvuqγvimn

aFv2 = 1i,n ·
αvuq (1−γvimn )
1−αvuqγvimn

(13)

aFv3 = 1i=n · 1

αv+1uq =
∑
s ∈S

∑
(It , It+1)∈I s

aFv2 +aF
v
3

aFv1 +aF
v
2 +aF

v
3

and

дFv1 = 1i,n ·
1 − γvimn

1 − αvuqγvimn

Table 2: Description of experiment dataset (“#” refers to
“number of”). H (C) sessions are sessions that have at least
one hover (H ) (click (C)) action.

#Distinct queries #Sessions #H Sessions #C Sessions

16,194 476,586 466,208 179,410

дFv2 = 1i,n ·
γvimn (1 − α

v
uq )

1 − αvuqγvimn
(14)

дFv3 = 1i=n · 1

γv+1imn =
∑
s ∈S

∑
(It , It+1)∈I s

дFv2 + дF
v
3

дFv1 + дF
v
2 + дF

v
3

In this paper, we set the initial value of αuq and γimn to 0.5 and
the number of iterations to 40. For each session s , we investigate
the top 100 images and the interaction sequence over them as the
proportion of queries with around 100 results being shown is much
higher than other queries in our dataset from a commercial image
search engine. (In commercial image search engines, a result is
loaded and shown only when users scroll to the area the result
belong to, and the number of results being loaded and shown will
be recorded in search logs.)

4 EXPERIMENTS AND DISCUSSIONS
We evaluate the proposed grid-based user browsing model, GUBM,
using search logs from a commercial image search engine. As our
model can estimate not only the query-image relevance level but
also the interaction (click and hover) probability of image results
based on Eq. 7, we conduct extensive experiments including topical
relevance and image quality estimation (in terms of normalized
discounted cumulative gain (NDCG)) as well as behavior prediction
(in terms of perplexity).

4.1 Datasets
The experimental dataset is randomly sampled from a search log in
October 2017.We discard queries with fewer than 10 search sessions
to make sure that the proposed interaction model and baseline
models can capture enough information, as in [10]. Also, for each
query, we reserve 1,000 query sessions to prevent a small number of
queries from dominating the data. The details about the dataset can
be found in Table 2. We split all query sessions into training and
test sets at a ratio of 7:3, following previous publications [6, 25, 41].
The relevance for Web image search consists of two facets: top-

ical relevance and image quality [12, 25]; we gather annotations
for these two facets respectively first and then incorporate them
together as the same way in [25].

For topical relevance, we measure the relation between subjects
in a text query and visual subjects in the image.We gather judgment
on the following 3-point scale:
• Not relevant (0): The visual subjects fail to match the subjects
in the text query. (Example: the query is “Bicycle” and the main
object in the image is “Car”).
• Fairly relevant (1): The visual subjects partly match the subjects
in the text query or vice versa, which can mean three things:
(1) The query contains two or more objects while the image only
describe part of them (Example: the query is “Cat and mouse”
and the image only depicts “Cat”). (2) The image contains more
objects than the query can fully describe. (Example: the query is



“Cat” and the main objects in the image include both “Cat” and
“Mouse.”) (3) Although the objects are matched between the two
modalities, their modifiers are different (Example: the query is
“Red Ferrari” and the image is about “Black Ferrari”).
• Very relevant (2): The visual subjects perfectly match the subjects
in text query.

We measure image quality according to framework (the position
of the main objects in the image), clarity, watermark, color and
brightness, and the judgments are gathered on the following 5-
point scale:
• Bad (0): Badly framed, big and obvious watermark, low clarity.
• Fair (1): Fairly framed, small but obvious watermark, slightly
blurred.
• Good (2): Well framed, small and not easily perceived watermark,
low value for download or image collections.
• Excellent (3): Nicely framed, no watermark, fairly attractive and
appealing.
• Perfect (4): Without aesthetic flaws, very attractive and appealing,
high artistic value.

For each query-image pair topical relevance judgment or image
quality judgment, at least three editors are recruited to provide
the annotation based on the above instructions. The Fleiss Kappa
scores [11] among annotators are higher than 0.5 (substantial agree-
ment) for both two tasks.
The final 5-scale relevance score can be obtained by the prin-

ciple [25] that the relevance score of an image equals the topical
relevance score when the topical relevance score is 0 or 1 and equals
the image quality score when the topical relevance score is 2.
We sample 500 distinct queries from the dataset; after filtering

out pornographic queries, 448 distinct queries and around 50,000
images are annotated. The distribution of different relevance scores
is 9.33% (0), 17.0% (1), 18.0% (2), 54.3% (3), and 1.43% (4).

4.2 Evaluation of behavior prediction
To measure the effectiveness of an interaction behavior model
on behavior prediction, an often used metric is perplexity [10].
Previous work on click models applies perplexity to test how well
a model can predict clicks [23, 33]. In this paper, we use perplexity
to test the ability of GUBM on predicting interaction behavior
(click and hover together) and validate the assumptions proposed
in Section 2 by comparing GUBM to other user behavior models.
The formulation of perplexity can be written as:

pr (M) = 2−
1
|S |

∑
s∈S (I

s
r log2 qsr+(1−I

s
r ) log2(1−qsr )), (15)

whereM refers to the model we evaluate and qsr is the probability
of the image result, at rank r in session s , being interacted with.
Please note that r is mapped from tuple position (row, column) to a
numerical value using Eq. 3 with “LtoR” as the in-row examination
direction (commercial image search engines usually place results
from left to right in each row). A smaller perplexity value indicates
better prediction performance; the ideal perplexity value is 1. The
improvement of perplexity PA over PB can be calculated by PB−PA

PB−1 .
In this paper, we compare the following models to validate the

proposed assumptions (specially, Assumption 2 and 3):
• GUBM-LtoR, GUBM-RtoL, GUBM-Zshape: These three models
are GUBM with different in-row examination directions (see Sec-
tion 2.3). By comparing them, we want to investigate which type
of in-row examination direction fits the user browsing behavior
better.

Table 3: Overall interaction perplexity (average perplexities
at different ranks) of each model (all improvements are sig-
nificant with p-value < 0.001. )

Model Overall Perplexity GUBM-Zshape Impr.

UBM 1.5806 82.6%
THCM 1.6876 85.3%
POM 1.9250 89.0%
GUBM-RtoL 1.1017 –
GUBM-LtoR 1.1011 –
GUBM-Zshape 1.1010 –

• UBM [10]: A classic position-based model. Although this model
also allows for users’ skipping behavior, it makes the sequential
examination assumption, which assumes that users will not re-
visit previous results. We transfer two-dimensional result panels
to result lists by using Eq. 3, following a “Z-shape” in-row exami-
nation direction to instantiate UBM for a grid-based interface.
• THCM [41]: A sequence-based model that allows for users’ revisit
behavior. However, it requires that user examine results one-by-
one. We adapt it to the image search scenario by the same method
that we used for UBM above.
• POM [35]: A flexible model that allows arbitrary examination
behavior between two adjacent signals without constraint.

Figure 7: Interaction perplexities of different ranks of differ-
ent models.

In Fig. 7 we plot the perplexities at different ranks (1–100) for
each model; and in Table 3 we show the overall perplexity obtained
by averaging the perplexities at different ranks.
From Fig. 7, we can observe that there is no visible difference

between GUBM-LtoR, GUBM-RtoL and GUBM-Zshape, although
from Table 3, the overall perplexity of GUBM-Zshape is slightly
better. In an image search scenario, users will follow unidirectional
in-row examination behavior and the in-row direction can be more
flexible than the predefined directions introduced in Section 2.3. In-
tuitively, a “nearby principle” will be a better fit for users’ examina-
tion behavior between adjacent rows. By comparing GUBM-Zshape
to other popular user behavior models (UBM, THCM and POM), we
find that the performance of GUBM-Zshape is significantly better
on behavior prediction, at different ranks and in overall compar-
ison. The improvements show that the assumptions proposed in



Table 4: Relevance (topical relevance+image quality) estima-
tion performance in terms of NDCG@5, 10, 15 and 20 (448
distinct queries). ** (*): The difference is significant between
the baseline model and GUBM with p-value < 0.01 (0.05).
Model Original ranking UBM GUBM-C GUBM

NDCG@5 0.9165** 0.9231* 0.9242* 0.9349
NDCG@10 0.9078** 0.9084** 0.9090** 0.9252
NDCG@15 0.9065* 0.9066* 0.9063* 0.9179
NDCG@20 0.9049* 0.9042* 0.9047* 0.9159

Section 2 are much closer to practical user behavior than the as-
sumptions underlying the competing models. We can conclude that
considering users revisit behavior is useful for behavior modeling
(GUBM vs. UBM) and users will display a skipping behavior rather
than examine results one-by-one (GUBM vs. THCM, Assumption
3). Also, the locally unidirectional assumption fits user behavior
well (Assumption 2). Although considering examination behavior
between adjacent interaction signals is much more flexible (POM),
it may give the model too much freedom for it to be correctly
parameterized in practice.

4.3 Evaluation of relevance estimation
An important goal of our interaction behavior model is to improve
the search ranking of image search engines. As our model can pro-
vide relevance estimation of a query-image pair, we can rerank the
original ranking according to the estimated score (αuq ). In this pa-
per, we apply normalized discounted cumulative gain (NDCG) [19]
to measure the performance of a given ranking. For a ranked list of
images, the DCG score is defined as:

DCG@d =
d∑
i=1

ri
log2(i + 1)

, (16)

where ri is the relevance score at position i and d is the depth of
this ranked list of images. Then the NDCG@d can be obtained by
normalizing DCG@d using ideal DCG@d which measures the per-
fect ranking. We utilize the annotated data introduced in Section 4.1
and compare the performance of GUBM (with “Z-shape” in-row ex-
amination direction) on relevance (topical relevance+image quality)
estimation with UBM introduced in Section 4.2 and the following
two baselines:
• Original ranking: The original search result ranking returned
after issuing a certain query by the commercial search engine
from which our data was collected. To be noted, the original
ranking is recorded at the same time as our dataset.
• GUBM-C: Amodel trained on the full dataset in which we remove
hover information in all sessions while we preserve click infor-
mation. By comparing GUBM-Zshape to this model, we want to
investigate whether hover information plays an important role
in improving image search result ranking.
We compare the proposed GUBM-Zshape with these two base-

lines in terms of NDCG@5, 10, 15 and 20. The results are listed
in Table 4. Our model is significantly better than UBM which in-
dicates that the underlying assumptions of our model are more
appropriate in an image search scenario. We also observe that our
model achieves significant improvements over both GUBM-C and
the original ranking on all metrics. The results indicate that hover
can be a strong additional signal for relevance and Assumption 1

Figure 8: Qualitative comparison of results re-ranked by
GUBM-Zshape (left) and results from the original ranking
(right). GUBM outperforms the original ranking in the top
2 cases (“loving heart” and “banana”) and loses in the last
case (“Michael Jordan”). (Red boxes mark images with a low
topical relevance level given the query. Purple boxes mark
images with poor image quality.)

(Examination hypothesis in image search) can be useful for behavior
modeling in an image search scenario.
We examine different cut-offs and find that the ranking perfor-

mance of GUBM-C is almost the same as the original ranking in
terms of NDCG@15 and NDCG@20. When the depth of the ranked
list of images is reduced (to 10 or even 5), the average performance
of GUBM-C improves and the improvement itself increases too,
although no significant differences are observed. This phenomenon
may be caused by the fact that users tend to click the top results [40],
so that click information is relatively abundant at the top positions,
which may guide the model in the right direction. However, when
considering more results (i.e., top 15 and 20), the sparsity of clicks
may result in a smaller and unobservable improvement.

Table 5: Topical relevance (TR) and Image quality (I ) estima-
tion performance of GUBM-Zshape in terms of NDCG@5
and 10 (448 distinct queries). ‡ (†): better than the original
ranking with p-value < 0.01 (0.05).

Model TR@5 TR@10 I@5 I@10

Original ranking 0.9713 0.9711 0.9396 0.9324
GUBM-Zshape 0.9783† 0.9749 0.9530‡ 0.9442†

We also report on the performance of GUBM-Zshape in terms
of topical relevance and image quality estimation separately in
Table 5 by comparing GUBM-Zshape with the original ranking. The
results indicate that GUBM-Zshape can improve the ranking both
in topical relevance and image quality and that the improvement
in image quality (I ) is larger than in topical relevance (TR). Also,
we should note that the average improvement is not significant
in terms of TR@10. The reason for this may be two-fold: (1) as
we compute the NDCG of the top ranking, the score is already
very high enough (the average level is higher than 0.97) so that the
room for improvement is limited; (2) user interaction behavior in
an image search scenario may have a closer correlation with image
quality, thus confirming [12].

4.4 Case studies
Besides evaluating the GUBM-Zshape in terms of behavior predic-
tion and relevance estimation, we also include some case studies to
gain a better understanding of its advantages and limitations. Three
examples of image search results are shown in Fig. 8. We present
the top re-ranking results of our model on the left and the results



of the original ranking on the right. Red and purple boxes mark
images with a low topical relevance score and poor image quality,
respectively, according to the judgments detailed in Section 4.1. In
the top two cases (for the queries “loving heart” and “banana”), our
model provides better result rankings in terms of NDCG. In the
original ranking of “loving heart,” the first and third results are
not relevant to the query, which can easily be noticed as “heart” is
usually a simple visual object in images. Thus, the ranking of these
images with just a few interactions will be lowered.

In the second case, our model works well on moving results with
observable quality flaws to a lower ranking, especially images with
big watermarks that cover major parts of the main objects. However,
we find that the fourth result in the original ranking is moved to
the first position in the re-ranked list produced by GUBM-Zshape.
Although this image has no obvious flaws, it has no artistic value
either and does not seem appealing at all. A possible reason is that
this image differs from other surrounding images, especially its
color, and attracts the attention of users, which can be explained
by the appearance bias [24, 34].

Appearance bias may also affect the performance of our model in
the third case (“Michael Jordan”, the worst result in our annotated
dataset). We can observe that our model re-ranks images with low
topical relevance score to the top positions. Although the subjects
of these images are similar to the query as they all depict basketball
players, their contents cannot be fully described by the query, which
leads to low topical relevance level. The appearance difference here
can be the number of objects in the image.
To sum up, user interaction is valuable for result ranking as

it records user preferences but it is affected by appearance bias,
which should be paid attention to. We leave the investigation of
how appearance bias affects user behavior and how to alleviate this
bias for future work.

5 RELATEDWORK
User interaction behavior, especially click information, has long
demonstrated its value when used to improve the ranking of general
Web search engines. By following certain examination assumptions,
click models [5, 10, 33] can simulate user behavior and achieve
promising performance in alleviating position bias, click prediction
and relevance estimation. Click through data has also been used
as a relevance signal to train learning to match or learning to rank
models [1, 16, 21] and as a signal for evaluation [15].
Besides click information, other types of user behavior such as

cursor movement, hovering, mouse scrolling and dwell time are
shown to be effective in improving the performance of searcher
models [3, 14, 17, 30]. Specifically, Huang et al. [17] demonstrate
that the searcher model with the additional cursor data (i.e., hover-
ing and scrolling) can better predict the future clicks.

The above publications focus on general Web search. In the case
of multimedia search there are many studies intowhy people search
for multimedia [see, e.g., 39, for a recent sample], but there exist
relatively few publications on investigating how to leverage inter-
action behavior to improve the performance of multimedia search
engines (e.g., image or video search). Previous work [28, 29, 32, 40]
has illustrated that user behavior on grid-based search engine re-
sult pages differs from traditional, linear result pages. For example,
image search leads to shorter queries, tends to be more exploratory,
and requires more interactions compared to Web (text) search. How
to incorporate the abundant and unique user behavior data available

in a multimedia search setting still remains an open question. As in
general Web search, in keyword-based image search, click-through
data has been applied to bridge the gap between visual and textual
content [18, 27, 42]. Specifically, Yu et al. [42] try to utilize visual
features and click features simultaneously to obtain the ranking
model. Jain and Varma [18] use click data as a pseudo relevance
signal to train a re-ranking model and also use PCA and Gaussian
Process regression to address the sparsity problem of click data in
image search. Although these models can boost the performance of
search engines, they are mainly content-based without fully exploit-
ing the ability of rich user behavior in image search. O’Hare et al.
[25] extract abundant user behavior features (e.g., hover-through
rate) and demonstrate that combining these features with content
features can yield significant improvements on relevance estima-
tion compared to purely content-based features. However, to train
the learning to rank framework using these features, a manually
annotated dataset is needed.

Somewhat orthogonal to the work listed above, Oosterhuis and
de Rijke [26] consider so-called complex ranking settings where
it is not clear what should be displayed, that is, what the relevant
items are, and, importantly, how they should be displayed, that is,
where the most relevant items should be placed; this is relevant
when different display formats beyond a ranked list or grid are
being used for result presentation. The authors introduce a deep
reinforcement learning method capable of learning both the layout
and the best ranking given the layout, from weak reward signals.
Inspired by click models developed for general Web search, we

utilize user interactions on image SERPs to construct a ranking
model. We simulate user examination behavior between adjacent
interaction signals and estimate internal parameters including user
examination and query-image pair relevance from observable user
interactions (click and hover). In comparison with previous models
in image search, our model is interaction-based without having
to incorporate content features. Also, unlike the supervised learn-
ing to rank framework, our model can be trained on large-scale
commercial search logs without annotated data. To the best of
our knowledge, this is the first work to integrate grid-based user
examination behavior into a user model of image search scenario.

6 CONCLUSION AND FUTUREWORK
We have conducted exploratory analyses to investigate the correla-
tion between interaction signals (click and hover together) and user
examination in Web image search. By answering three research
questions, we find that cursor hovering can be an additional signal
for relevance and users tend to examine results in one direction with
possible skips both in the vertical direction and in the horizontal
direction. We then propose three assumptions to characterize user
interaction behavior in an image search scenario. Based on these
assumptions, we construct a interaction behavior model, called
grid-based user browsing model (GUBM). GUBM utilizes observ-
able data (interaction sequences) to estimate internal parameters
including the examination probability and relevance level of a given
query-image pair.
Through extensive experimentation, we demonstrate that in

terms of behavior prediction and result ranking, GUBM signifi-
cantly outperforms the state-of-the-art baseline models as well as
the original ranking of a commercial image search engine. We show
that the proposed assumptions are close to actual user behavior



and that integrating cursor hovering can highly improve model per-
formance both in topical relevance and image quality. As GUBM is
based on interaction features on image SERPs, it can easily be trans-
ferred to other search environments that have grid-based result
interfaces such as video search or product search.
Through case studies of several queries, we obtained a better

understandings about the advantages and the limitations of GUBM.
The limitations guide interesting directions for future work: (1) The
so-called appearance bias affects user interaction which may lead
the behavior models to worse performance. How to alleviate appear-
ance bias in multimedia search engines deserves more investigation.
(2) As dwell time may also be a valuable and informative signal for
user preference [2], we will try to model the temporal information
of user interactions in the future.

Code and data
To facilitate reproducibility of our results, we share the code and
data used to run our experiments at https://tinyurl.com/yb3etwm8.
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