

Mccreadie, R., Macdonald, C. and Ounis, I. (2018) Automatic Ground

Truth Expansion for Timeline Evaluation. In: 41st International ACM

SIGIR Conference on Research and Development in Information Retrieval,

Ann Arbor, MI, USA, 8-12 Jul 2018

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/160907/

Deposited on: 21 May 2018

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/160907/
http://eprints.gla.ac.uk/

Automatic Ground Truth Expansion for Timeline Evaluation
Richard McCreadie, Craig Macdonald and Iadh Ounis

University of Glasgow, Scotland, UK
(firstname.lastname)@glasgow.ac.uk

ABSTRACT
The development of automatic systems that can produce timeline
summaries by filtering high-volume streams of text documents, re-
taining only those that are relevant to a particular information need
(e.g. topic or event), remains a very challenging task. To advance
the field of automatic timeline generation, robust and reproducible
evaluation methodologies are needed. To this end, several evalu-
ation metrics and labeling methodologies have recently been de-
veloped - focusing on information nugget or cluster-based ground
truth representations, respectively. These methodologies rely on
human assessors manually mapping timeline items (e.g. tweets) to
an explicit representation of what information a ‘good’ summary
should contain. However, while these evaluation methodologies
produce reusable ground truth labels, prior works have reported
cases where such labels fail to accurately estimate the performance
of new timeline generation systems due to label incompleteness.
In this paper, we first quantify the extent to which timeline sum-
mary ground truth labels fail to generalize to new summarization
systems, then we propose and evaluate new automatic solutions
to this issue. In particular, using a depooling methodology over 21
systems and across three high-volume datasets, we quantify the
degree of system ranking error caused by excluding those systems
when labeling. We show that when considering lower-effectiveness
systems, the test collections are robust (the likelihood of systems
being miss-ranked is low). However, we show that the risk of sys-
tems being miss-ranked increases as the effectiveness of systems
held-out from the pool increases. To reduce the risk of miss-ranking
systems, we also propose two different automatic ground truth label
expansion techniques. Our results show that our proposed expan-
sion techniques can be effective for increasing the robustness of
the TREC-TS test collections, markedly reducing the number of
miss-rankings by up to 50% on average among the scenarios tested.
ACM Reference Format:
Richard McCreadie, Craig Macdonald and Iadh Ounis. 2018. Automatic
Ground Truth Expansion for Timeline Evaluation. In SIGIR ’18: The 41st In-
ternational ACM SIGIR Conference on Research & Development in Information
Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3209978.3210034

1 INTRODUCTION
With the increasing usage of social media platforms and online
reporting channels, information is produced and disseminated on-
line faster and in larger volumes than ever before. As a result,
users expect to have easy access to up-to-date information about
topics of interest, resulting in a large number of new real-time

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SIGIR ’18: The
41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, July 8–12, 2018, Ann Arbor, MI, USA, https://doi.org/10.1145/3209978.3210034.

Table 1: Example timeline summary extract with nuggets.

Timestamp Update Text Information Units
01/14/2012,
5:02pm

Carrying 3,206 passengers and 1,023 crew members,
the Costa Concordia was on its usual route across
the Mediterranean Sea and departed Civitavecchia -
three hours before disaster struck.

Crew and Passen-
ger count, Ship
route, Time of
departure

01/14/2012,
9:38pm

As the Costa Concordia keeps shifting on its rocky
ledge, many have raised the prospect of a possible
environmental disaster if the 2,300 tons of fuel on
the half-submerged cruise ship leaks into the sea.

Fuel oil environ-
mental hazard

01/15/2012,
5:17pm

The Costa Concordia death toll has risen by two - as
all British passengers and crew were confirmed to
have survived. Two French nationals and a Peruvian
died after the cruiser ran aground near the island
of Giglio off the Tuscan coast on Friday night.

People killed
increased by 2.
Location of event

information-seeking scenarios. These scenarios require solutions
that can identify relevant (topical), non-redundant (avoids repeated
information), and timely (up-to-date) content from noisy high-
volume text streams. A common class of solutions that require
these characteristics are event timeline/real-time summary genera-
tion systems. Such systems take as input a topic of interest and a
large volume of textual items (e.g. news articles or tweets), most
of which are non-relevant and/or redundant, and select a subset of
those items to be emitted over time into a timeline or an updating
summary [12, 19, 26]. An example extract from the output of such
systems is shown in Table 1.

This work is concerned with how to effectively and efficiently
evaluate the quality of timeline items produced by such systems.
Over the last few years new methodologies to evaluate the quality
of timelines have been proposed [4, 17]. These methodologies typ-
ically use human annotators to manually identify atomic units of
information that form a ground truth representing the information
a ‘good quality’ summary about a topic should contain (see Figure 1).
Next, textual items (e.g. sentences or tweets) returned by a diverse
set of timeline generation systems for the topic are pooled. Finally,
the pooled text items are manually checked to see what atomic
information units for the topic they cover (if any), forming <text
item,information unit> pairs. Metrics such as Expected Latency
Gain [12] use the resultant pairs to estimate the degree to which in-
dividual text items included in a timeline (and hence the timeline as
a whole) contains relevant, non-redundant, and timely information.

The use of atomic information units as a ground truth for evalu-
ating timelines/real-time summaries is generally accepted and has
been successfully deployed within the Temporal Summarization
and Real-time Summarization tracks at the Text Retrieval Confer-
ence (TREC) [4, 17]. However, while these tracks produced test
collections that can in theory be used to evaluate any timeline
generation system, prior works have reported cases where these
test collections fail to accurately estimate the performance of new
timeline generation systems [19, 20]. In particular, it was observed
in these past works that the overlap between items included in the
initial pools (i.e. the assessed set) and those returned by their new
proposed systems was insufficient to facilitate a robust comparison

https://doi.org/10.1145/3209978.3210034
https://doi.org/10.1145/3209978.3210034

of systems. As a result, it is unclear to what extent the test col-
lections produced during these tracks can be used to evaluate the
quality of new systems that were not included in the initial pool-
ing [5]. In this paper, we investigate to what extent current atomic
information unit-based test collections are able to distinguish be-
tween timeline summarization systems with different effectiveness
levels, as well as propose and evaluate automatic solutions to reduce
the likelihood of errors occurring when evaluating such systems.

Contributions. The main contribution of our work is an in-depth
analysis of the TREC 2013-2015 Temporal Summarization track
test collections that quantifies how robust these collections are
when evaluating unpooled systems, as well as an effectiveness
evaluation of different automatic <text item,information unit>
expansion techniques aimed at increasing the robustness of these
test collections. Specifically, we tackle two main research questions:

• RQ1: To what extent can the TREC Temporal Summarization
track test collections accurately rank unpooled systems?

• RQ2: If we use automatic methods to generate additional <text
item,information unit> pairs can we reduce the likelihood of new
systems being miss-ranked?

Our results show that the TREC 2013-2015 Temporal Summarization
track test collections do not accurately estimate the effectiveness of
unpooled systems. Moreover, the discrepancies observed between
actual and estimated performances are sufficient to cause errors
when ranking those systems. Furthermore, we found that the likeli-
hood of encountering ranking errors is not uniform across system
effectiveness levels – the better a system is, the more negatively
it is impacted by not being pooled. For this reason, we conclude
that it is potentially risky to use the TREC-TS test collections out-
of-the-box. We then experiment with two types of automatic <text
item,information unit> expansion techniques aimed at reducing
these discrepancies, namely: item-item similarity expansion and
item-item semantic expansion. Our experiments using these two
expansion techniques show that automatically adding even a small
number of <text item,information unit> pairs can markedly re-
duce the number of ranking errors observed when using the text
collections. In particular, we found that item-item similarity expan-
sion can reduce the number of ranking errors by up to 30% while
item-item semantic expansion can reduce the number of ranking
errors by up to 50%. We conclude that these expansion techniques
improve the robustness of the TREC-TS test collections, reducing
the risk of miss-ranking new systems that were not pooled.

2 BACKGROUND AND RELATEDWORK
2.1 Classical Summarization Evaluation
In the summarization domain, a range of evaluation methodologies
have previously been proposed and examined in the literature. Early
works focused on estimating the quality of fixed-length textual
summaries produced by either single-document or multi-document
summarization systems [22]. This is a type of textual comparative
evaluation, where a summary produced by an automatic system is
compared against one or more gold standard summaries authored
by humans. The idea underpinning this type of evaluation is that
good summaries will be textually similar to the gold-standard sum-
maries. To perform the similarity comparison, the ROUGE [16]
suite of metrics have become the defacto standard and were used

extensively as part of the Document Understanding Conference
(DUC) [9] and Text Analysis Conference (TAC) [10] evaluations.

2.2 Timeline Summaries and Evaluation
Comparative evaluation approaches were used for many years to
evaluate multi-document summarization systems [1], however the
shift toward real-time information sharing and the associated de-
velopment of timeline generation and real-time summarization
solutions [19, 26, 30, 33] that push updates to users over an ex-
tended period of time required new evaluation methodologies. A
timeline summary can be defined as a number of (approximately)
sentence-length timestamped text items. These text items might
be sentences extracted from news articles [4] or tweets [17]. A
timeline summary is usually about a topic or event, and hence the
text items it contains should be relevant to that topic or event. A
timeline is normally visualized as a list of text items in chronologi-
cal or reverse-chronological order. New text items may be added to
the timeline over time, as new information emerges and is found
by the summarization system. Classical comparative evaluation
approaches that use metrics like ROUGE [16] and its temporal ex-
tensions [8, 12] make the assumption that both the summary to be
evaluated and the gold-standard summaries are of (roughly) equal
length, and that the gold-standard summaries do not change over
time. As such, these classical comparative summary evaluation
approaches are unsuitable to evaluate timelines.

To solve this issue, atomic information units were introduced
as an alternative means to evaluate the quality of a timeline sum-
mary [12]. Atomic information units had been used in a wide range
of domains prior to their application to timeline evaluation such
as Web search diversification [25] and question answering [29],
although the terminology used to describe them changes depend-
ing on the domain they are applied to. Indeed, atomic information
units are equivalent to as sub-topics, aspects, facets, clusters or
nuggets [12, 19, 23, 26, 32]. The core concept behind atomic infor-
mation unit-based evaluations is that all of the units that contribute
to the evaluation score for a system should be explicitly defined.
In this way, evaluation can be reduced to counting the proportion
of all units covered by a system. The more units covered (typically
within some range constraint such as the top k documents), the
better that system is. This concept maps naturally into a summa-
rization context, where each ‘unit’ represents a piece of information
that ‘good’ timeline summary for a topic should contain.

In practice, for evaluating timeline summaries, atomic informa-
tion units have been implemented in two different manners. First
in the form of information nuggets within the TREC Temporal
Summarization track during 2013 to 2015. Second as information
clusters within the TREC Real-time Summarization track during
2016 and 2017. We choose to use the TREC Temporal Summariza-
tion implementation as the basis for the study in this paper as it is
the more complex/costly to deploy of the two [5]. We discuss this
implementaton below. For those interested in differences between
the two tracks we recommend the comparison by Baruah et al. [5].

2.3 TREC Temporal Summarization Track
In 2013 the Text Retrieval Conference (TREC) introduced the Tem-
poral Summarization (TREC-TS) track that examined how to extract
sentences from high volume streams of news and social content

to return to the user as updates for large events [4]. TREC-TS is a
timeline generation task, as defined above, where each topic is an
event (represented by an event query, e.g ‘costa concordia disaster’),
the text items are sentences extracted from a stream containing
news articles, blogs and other Web documents. To avoid differences
in what might be considered a ‘sentence’, each document in the
stream was pre-segmented. For a set of events, TREC-TS systems
processed the high volume stream of sentences and emitted a subset
of those sentences into a timeline summary.

For evaluation, TREC-TS adopted an atomic information unit-
based evaluation methodology, where an information unit was
referred to as a ‘nugget’. This methodology was inspired by earlier
work developed for question answering [29] and applied in a series
of evaluations in the early 2000s. Nuggets in the TREC-TS context
represented atomic facts relevant to an event, represented by short
natural language phrases. For example, for the event ‘Costa Concor-
dia shipping disaster’, the ground truth might contain nuggets such
as ‘occurred on Friday 13th January 2012’, ‘ran aground on a reef’
and ‘the hull was punctured’. Under this evaluation methodology a
perfect summary is one that covers all of the information nuggets
for an event while being as short (contains as few sentences) as
possible. Summaries containing redundant (repeated) information
are penalized and were also evaluated in terms of timeliness (was
the information relevant at the time it was retrieved?).

As a TREC track dedicated to supporting standardized evaluation,
TREC-TS produced three test collections for evaluating timeline
generation systems, one for each of the years that the track ran
(2013, 2014 and 2015). These test collections each contain a number
of topics (events), a high-volume stream of sentences for each topic,
and a ground truth label set comprised of the information nuggets
along with a <text item,information unit> (i.e. <sentence,nugget>)
mapping that describes what sentences contain the information
represented by each nugget. Creating the ground truth label set for
each test collection was a three-step process [2, 3]:

(1) Nugget Extraction (‘nuggetization’): Human assessors
manually defined the information nuggets for each topic.
This was achieved by having TREC assessors read the edit
stream from the Wikipedia page for each topic (the page de-
scribing the event). The assessors defined new information
nuggets as they encountered novel information about the
event that they considered important enough to be included
in a “good” summary about the topic.

(2) Sentence Pooling: Each participating system submitted a
timeline summary comprised of sentences for each topic
(event). The systems assign each sentence a priority score
indicating how confident they are that those sentences are
of high-quality. The top-k sentences by priority score were
then selected and added into a pool to be assessed.

(3) NuggetMatching: Given the ground truth nuggets extracted
from Wikipedia, assessors then manually checked each sen-
tence in the pool, recording whether those sentences con-
tained any of the information represented by the nuggets.
A sentence that contains a nugget’s information is referred
to as ‘covering’ that nugget. The result of this is a set of
<sentence,nugget> pairs, specifying which sentences con-
tain the information represented by each nugget. It is worth
noting that nuggets represent concepts, hence the matching

Table 2: Statistics of the TRECTemporal Summarization test
collections from 2013, 2014 and 2015.

Year
Statistic 2013 2014 2015
Number of Events 9 15 21
Number of Nuggets 1,168 1,394 996
Number of Matches 5,071 13,635 24,823
Number of Updates 10,377 14,652 33,483

process often requires the assessor to do more than match
the text of a concept to the text of a sentence, e.g. accounting
for synonyms.

The statistics of the resultant TREC-TS test collections for each
year are provided in Table 2. Both the nugget extraction and nugget
matching steps involved significant human effort (by NIST asses-
sors). According to a study by Baruah et al. [5], the total assessment
time spent to create the 2013 and 2014 TREC-TS test collections
was around 375 hours, where over 80% of that time was spent on
nugget matching.

2.4 Questions on TREC-TS Robustness
The test collections produced by TREC-TS have been used for a
range of research papers since their original release [5, 13, 14, 19, 20].
However, a number of these works reported needing to add more
nuggets/matches to the provided ground-truth sets to make the test
collections usable. In particular, McCreadie et al. [19] reported in
their paper that there was very low overlap between the sentences
included in the TREC-TS pool and the top sentences selected by
their system, i.e. assessment completeness [6] was low. To tackle
this, they performed additional pooling and matching based on the
TREC-TS guidelines, adding 22,424 sentences to the pool at a sig-
nificant cost. This was then echoed in their later study [20] where
they found almost no overlap between their diversification-focused
system and the TREC-TS pool (see Annex A from [20] for details),
again requiring the pooling and assessment of the new summaries.
On the other hand, Ekstrand-Abueg et al. [11] performed a correla-
tion study examining whether removing individual systems from
the pool adversely affected the system ranking under the official
track metrics. They reported high correlations between system
rankings pre and post pooling, indicating that the test collections
are reusable. However, they also noted that there were outlier sys-
tems that were severely affected (i.e. were miss-ranked) when they
were removed from the pool.

These prior studies lead us to question to what extent the TREC-
TS test collections are in fact robust when evaluating unpooled
systems. The studies reported in [20] and [19] required signifi-
cant additional pooling and assessment effort before the collections
could be used. Having to perform reassessment for each new system
or summary to be evaluated reduces the value that these test collec-
tions bring to IR evaluation. Hence, in this paper, we quantify how
robust these collections are for evaluating unpooled systems and
also propose and evaluate automatic techniques aimed at increasing
the robustness of these test collections.

2.5 Incompleteness of Relevance Judgments
Apart from the initial examination by Ekstrand-Abueg et al. [11],
the robustness of timeline generation test collections have not been

explored in the literature. However, there have been a number of
past works in the wider information retrieval domain (typically
for search tasks) examining the effect that relevance assessments
(or lack thereof) has on test collection robustness. For instance,
early work by Voorhees [28] investigated how different relevance
assessment sets for a test collection impacted on the evaluation of
retrieval results for the TREC-4 and TREC-6 test collections. That
study showed that while the effectiveness metrics were impacted by
using assessments created by different groups (e.g. NIST assessors
vs. Waterloo assessors), the resultant ranking of the retrieval runs
(systems) were highly correlated. Meanwhile, Zobel [34], examined
the fairness of top k pooling methods for selecting documents to
assess, showing that a pooling depth of 100 appeared to be adequate
for search over the TREC-5 test collection. These early studies
support the idea that smaller collections are indeed robust in the
face of incomplete assessments.

However, over time, the size of test collections used by evalua-
tion campaigns like TREC grew, but the pool depth (the number of
judged documents per topic) across years has remained constant,
increasing the relative degree of incompleteness (e.g. due to the
varied nature of documents retrieved by systems contributing to
the pools for these large corpora). Hence, later studies such as that
by Buckley and Voorhees [6] examined the effect that further relax-
ing the completeness assumption has on the Cranfield evaluation
methodology in larger test collections. In contrast, they showed that
the Cranfield methodology was not robust in the face of massively
incomplete relevance judgments. Moreover, works such as [24] have
also questioned how robust different IR metrics are when using
pooling at different k values. Parallels can be drawn between these
works in the search domain and the questions investigated in this
paper. The TREC-TS test collections are built on a corpus containing
over a billion items (sentences).1 However, only between 60 and
100 (depending on year [3, 4]) of the top k sentences were pooled
from participating systems. Hence, assessment completeness is a
valid concern when working with collections at this scale.

3 METHODOLOGY AND SETUP
To examine the extent that the TREC-TS test collections are robust,
we need a standardized setting and evaluation methodology with
which to quantify ‘robustness’. To create such a setting, we first
define what we mean by ‘robustness’ below:
Robustness: In a timeline generation context, a truly robust test
collection is one which can be used to accurately estimate the
quality of a timeline summary, regardless of whether that summary
was included within the initial pool or not. A robust test collection
should correctly rank different timeline generation systems in order
of the quality of the timeline summaries they produce.

Given this definition, to evaluate the robustness of a test collec-
tion we can identify three main requirements: 1) a series of systems
that produce summaries of known quality (such that we have a
known ordering of systems); 2) an evaluation metric that reflects
the quality of a system according to the test collection; and 3) we
need to have the ability to compare systems when included in the
pool and when excluded from the pool. Below we discuss how we
design our experimental setup to meet these three requirements.

1http://trec-kba.org/kba-stream-corpus-2014.shtml

3.1 Synthetic System Generation
The first requirement for our evaluation is to have a series of time-
line generation systems that can produce timeline summaries of
known quality. This is so that we have a gold standard ranking of
systems that reflects their actual performance. Initially, one might
consider using the systems originally submitted to the TREC track
in each year. However, this has some notable limitations. First, the
systems that participated in TREC are different from year-to-year
and the sources for those systems are not always available, hence
we cannot deploy each TREC system across all years. This is po-
tentially problematic, as there are relatively few topics (‘events’) in
each test collection (between 9 and 21, see Table 2), which is less
than the recommended number of topics for an IR experiment [7].
Second, the TREC systems only represent a subset of the range of
possible system performances, e.g. in the first year, all participating
systems were rather poor in terms of effectiveness. It would be
preferable to be able to deploy single set of systems across all years
such that we can compare across a larger number of events and
have those systems represent the full range of system effectiveness
(poor to perfect).

To achieve this, we instead take an alternative approach inspired
by prior work in theWeb and expert search domains [18, 27], where
we generate synthetic systems with known performances. This is
possible, since we are using the TREC-TS test collections as the
subject of our investigations, which have sentence-level labels that
quantify how much value is added by any sentence. Hence, we can
define a synthetic system that takes in the sentence-level labels
along with a target effectiveness level, and generates summaries
with (approximately) that effectiveness level for each topic.

In particular, as discussed in Section 2.3, the TREC test collec-
tions contain atomic information items (nuggets) that form a ground
truth for measuring summary quality. More precisely, the test collec-
tions contain <sentence,nugget> pairs that specify which individ-
ual sentences contain the information represented by each nugget.
Following the atomic information nugget evaluation paradigm, a
simple way to represent the quality of a timeline summary with k
sentences is to calculate the proportion of nuggets it covers. As long
as all summaries are of the same length k for a topic, then nugget
coverage is a fair representation of timeline summary quality (it
measures the volume of information contained).

Given the above, we specify a series of target effectiveness levels
in terms of nugget coverage from 95% to 5% in 5% increments. For
each target effectiveness level, we generate one summary per topic
within the three TREC-TS test collections. For a topic, we first ran-
domly select a subset of the information nuggets that matches the
target effectiveness level, e.g. for 60% coverage, we select 60% of the
nuggets for that topic. We then iterate over all <sentence,nugget>
pairs for that topic in the ground truth label set, selecting one sen-
tence that matches each nugget in a greedy manner. For instance,
if a topic contained 100 nuggets and our target effectiveness level
was 40%, we would first randomly select 40 of those 100 nuggets,
and then attempt to select one sentence matching each of those 40
nuggets. When considering real timeline summarization systems,
not all sentences are equally likely to be selected (some are easier to
find than others, e.g. because they contain the event query terms)
and most nuggets have multiple sentences we might select. To cap-
ture this, instead of selecting any of the available sentences that

http://trec-kba.org/kba-stream-corpus-2014.shtml

Table 3: Synthetic Run Statistics.

Synthetic Target Actual TREC-TS Metrics
System Coverage Coverage ELG LC H(ELG,LC)
Synth-C95 95% 72% 0.3590 0.6989 0.4589
Synth-C90 90% 68% 0.3337 0.6474 0.4249
Synth-C85 85% 64% 0.3336 0.6277 0.4216
Synth-C80 80% 61% 0.3404 0.5901 0.4165
Synth-C75 75% 57% 0.3241 0.5676 0.3996
Synth-C70 70% 53% 0.3202 0.5289 0.3834
Synth-C65 65% 49% 0.3189 0.5105 0.3792
Synth-C60 60% 46% 0.3057 0.4466 0.3488
Synth-C55 55% 41% 0.2922 0.4233 0.3314
Synth-C50 50% 38% 0.2997 0.4181 0.3371
Synth-C45 45% 34% 0.2888 0.3596 0.3047
Synth-C40 40% 30% 0.2919 0.3398 0.3002
Synth-C35 35% 25% 0.2989 0.2961 0.2824
Synth-C30 30% 22% 0.2737 0.2515 0.2501
Synth-C25 25% 18% 0.2555 0.2012 0.2108
Synth-C20 20% 14% 0.2785 0.1523 0.1869
Synth-C15 15% 10% 0.3053 0.1199 0.1623
Synth-C10 10% 7% 0.3122 0.0755 0.1121
Synth-C05 5% 3% 0.2478 0.0274 0.0473

match a nugget randomly, we instead use a probabilistic selection
of sentences, based on the likelihood of each sentence having been
selected by the original TREC systems (the more TREC systems
that selected a sentence the more likely our synthetic systems will
similarly select that sentence). As a sentence may cover multiple
nuggets, we exclude a sentence from being selected if it covers any
nuggets not in our target set. Furthermore, only around 70% of
nuggets have associated matching sentences, i.e. in the remaining
cases no systems in the pool found sentences that covered that
nugget. In all cases we select as many sentences as possible and
then ‘fill’ the remaining slots (to maintain a consistent length k)
with redundant sentences. In practice, this means that the actual
nugget coverage for a synthetic summary is lower than the target
coverage, e.g. a 90% coverage target results in 68% actual coverage
when averaged across topics. We summarize the statistics of our
generated synthetic runs in Table 3. As can be observed from Ta-
ble 3, this synthetic system generation approach produces a range
of systems that span the range of effectiveness levels attainable in
terms of nugget coverage.

3.2 Evaluation Metrics
Having produced a set of systems with known performances, we
now need to define metrics to capture how effective the summaries
produced by those systems are. One possible option would be to
simply use nugget coverage averaged across topics as an estimation
of summary quality, as we did in the previous section. However,
the TREC-TS track also considered factors beyond nugget coverage,
such as novelty, brevity and latency [12]. For this reason, as well
as to maintain compatibility with the track, we use the official
TREC-TS target evaluation metric, which itself is the harmonic
mean between two metrics: Expected Latency Gain and Latency
Comprehensiveness. Expected Latency Gain (ELG) is a precision-
like metric, calculated as the sum of the relevance of each nugget

that a sentence covered, computed as:

ELG(S) = 1
|S|

∑
u ∈S

∑
n∈M(u)

g(u,n) (1)

where S is the stream of sentences returned by the system,M(u) is
the set of gold standard nuggets matching sentenceu (as determined
by an assessor) and g(u,n)measures the utility ofmatching sentence
u with nugget n. Latency Comprehensiveness (LC) is the proportion
of all nuggets matched by the system updates, computed as:

LC(S) = 1
|N|

∑
u ∈S

∑
n∈M(u)

g(u,n) (2)

where N is the set of nuggets for the current event. For both ELG
and LC, the g(u,n) component contains built-in penalties to capture
sentence brevity and latency. We refer the reader to the TREC track
metrics documentation2 for a detailed explanation on how these
are calculated. To provide a target metric, an F -like measure was
also defined, which we denote H(ELG,LC). This is the harmonic
mean of ELG and LC,

H(ELG,LC)(S) = 2 ∗ ELG(S) ∗ LC(S)
ELG(S) + LC(S) (3)

We report the performance of our synthetic systems under the
TREC-TS Metrics ELG, LC andH(ELG,LC) in Table 3. As we can see,
the performance as reported by the TREC-TS LC andH(ELG,LC)
and metrics are highly correlated with the actual nugget coverage
of the systems.

3.3 Depooling Methodology
Finally, to evaluate the robustness of the test collections, we need to
be able to evaluate the difference in performance of systems when
they are included within the pool and when excluded from it. The
core idea is that if a test collection is robust, then the estimated
performance (underH(ELG,LC)) of a pooled system with known
coverage X should be similar to the estimated performance for that
same system when it is not pooled. In this case, an unpooled system
represents a hypothetical new system that did not participate in
the original TREC track and hence was not pooled.

TREC-TS followed a top k pooling methodology, where the sen-
tences with the k highest confidence scores were added to the pool
and later assessed (i.e. they took part in the nugget matching phase
resulting in the <sentence,nugget> pairs M(u)). From the TREC-
TS pool statistics, we know the number of the original TREC-TS
participating systems that contributed each sentence. We refer to
sentences contributed by multiple systems as common sentences
and sentences that were only contributed by a single system as
uncommon sentences.

Building on past work examining the effect of unpooled systems
on IR system performance [11], we simulate the state of the TREC-
TS test collections in scenarios where a particular system was not
pooled. For ease of reference, we refer to this as depooling. depool-
ing involves removing one copy of each of the top k sentences
contributed by that system from the pool, along with any associ-
ated <sentence,nugget> pairs that resulted from the subsequent
nugget matching phase. By definition, common sentences would
not be affected by removing only a single system (that system’s sen-
tences would still be contributed by some other system). However,
2http://www.trec-ts.org/metrics-10242013.pdf

http://www.trec-ts.org/metrics-10242013.pdf

Table 4: Synthetic Run Performances under H(ELG,LC)
when pooled or depooled. ▼ indicates statistically signifi-
cant decreases in estimated performance (t-test p<0.01) be-
tween the run when in the pooled and when depooled.

Synthetic H(ELG,LC) H(ELG,LC)
System When Pooled When Depooled
Synth-C90 0.4249 0.3850▼
Synth-C80 0.4165 0.3823▼
Synth-C70 0.3834 0.3480▼
Synth-C60 0.3488 0.3196▼
Synth-C50 0.3371 0.3105▼
Synth-C40 0.3002 0.2617▼
Synth-C30 0.2501 0.2259▼
Synth-C20 0.1869 0.1627▼
Synth-C10 0.1121 0.0687▼

uncommon sentences would be at risk from being eliminated from
the pool entirely. If a sentence is eliminated from the pool, then that
loss will impact the scoring of all systems. As we used the sentences
in the TREC-TS pool previously to produce our synthetic systems,
those systems behave as though they have been pooled. Hence, by
depooling one of the synthetic systems we can investigate whether
its estimated performance would have been adversely impacted
had it not been pooled (i.e. due to uncommon sentences not being
assessed). As such, we create an evaluation scenario for each of
our 19 systems, each representing the case where that system was
depooled. In the next section, we use these depooling scenarios to
answer our first research question, i.e. RQ1 ‘To what extent can the
TREC Temporal Summarization track test collections accurately
rank unpooled systems?’.

4 RQ1: TOWHAT EXTENT ARE THE TREC-TS
TEST COLLECTIONS ROBUST?

To answer RQ1, we first examine whether the estimated perfor-
mance scores for systems change when pooled and when depooled.
The ideal outcome is that the scores would not change, however
this would only occur in cases where the system being depooled
was totally comprised of common sentences. Hence, we can expect
some score variance due to uncommon sentences being eliminated
from the pool, but we would hope such score variance is minimal.
Table 4 reports the estimated performance of the synthetic systems
underH(ELG,LC) in the pooled and depooled scenarios (for brevity
we only list performances for half the systems, the observations are
the same for the other systems). As we can observe from Table 4,
in all scenarios, depooling a synthetic system causes a statistically
significant decrease in its estimated performance under the official
TREC metric (H(ELG,LC)). This is a first indication that the test col-
lections may not be as robust as we would like, as the effectiveness
scores estimated for a system is shown to vary greatly depending
on whether it was included in the pool or not. Hence, it is likely
that new systems that were not originally pooled will have their
true performance underestimated.

On the other hand, some error when estimating the performance
of depooled systems is to be expected, as this is a known issue
with pooling-based evaluation scenarios [6, 11]. From an evalua-
tion perspective, what researchers and developers care about is
whether the test collection is able to distinguish between systems
with different effectiveness levels, i.e. whether we get the ordering
of systems correct (particularly in the top ranks) is more important

Table 5: Effect of depooling a single system in terms of rank-
ing stability.

Rankings Pooled Vs. Depooled
Synthetic # Rank Kendall’s τ τAPSystem Swaps
Synth-C95 3 0.9649 0.8129
Synth-C90 2 0.9766 0.8752
Synth-C85 6 0.9298 0.8771
Synth-C80 0 1.0000 1.0000
Synth-C75 4 0.9532 0.9081
Synth-C70 1 0.9883 0.9914
Synth-C65 3 0.9649 0.9579
Synth-C60 1 0.9883 0.9915
Synth-C55 4 0.9532 0.9614
Synth-C50 1 0.9883 0.9914
Synth-C45 2 0.9766 0.9864
Synth-C40 1 0.9883 0.9870
Synth-C35 1 0.9883 0.9946
Synth-C30 0 1.0000 1.0000
Synth-C25 1 0.9883 0.9006
Synth-C20 0 1.0000 1.0000
Synth-C15 0 1.0000 1.0000
Synth-C10 0 1.0000 1.0000
Synth-C05 0 1.0000 1.0000
Average 1.5790 0.9815 0.9597

than whether individual system scores are underestimated [5]. In-
deed, while we might expect that underestimations of a system’s
performance will cause that system to be miss-ranked, evidence
from the search domain indicates that IR metrics tend to have some
degree of robustness against incompleteness effects [24], i.e. the
error in the score for a system may not be sufficient to cause a
ranking swap.

As our synthetic systems have known effectiveness levels (based
on nugget coverage), we know the correct ordering of systems.
We also showed previously in Table 3 that the official TREC-TS
metric (H(ELG,LC)) reflects this correct ranking when all systems
are pooled. However, given that we know that depooling a system
causes statistically significant changes in H(ELG,LC), it is possi-
ble that these changes are severe enough to result in that system
(and other systems) being miss-ranked. In Table 5, we report the
effect that depooling each system individually has on the overall
ranking of synthetic systems in terms of number of rank swaps
(miss-rankings) and overall rank correlation under Kendall’s τ . Ad-
ditionally, as we are oftenmore interested in distinguishing between
systems near the top of the ranking than those at the bottom, we
also report τAP [31] values, which place higher weight on rank
correlations occurring in the top ranks. Ideally, we should preserve
the original correct ranking, i.e. the number of rank swaps should
be 0, while Kendall’s τ and τAP would be 1. From Table 5, we can
see that for the majority of scenarios, depooling a single system
results in the miss-ranking of at least one pair of systems. Indeed,
the average number of system swaps needed to restore the correct
ranking across depooling scenarios is 1.579, while the rank corre-
lation on average was around 0.9815. This result is similar to that
reported by Ekstrand-Abueg et al. [11], who observed correlation
values around 0.97 when holding out individual TREC-TS systems
in their study. However, while these rank correlations appear high,
it is important to remember that systems are still being ranked
incorrectly. Moreover, from Table 5, we see that rank swaps are

more common when highly effective systems are depooled, i.e. if
you have a new (unpooled) system that is very effective, it is likely
to be miss-ranked (see the top of Table 5). On the other hand, it
appears that systems at the lower end of the effectiveness scale have
little impact on the overall ranking of systems when not pooled.

To answer RQ1, we conclude that the TREC-TS test collections
are likely robust when evaluating systems that were not pooled
at the lower end of the effectiveness scale, i.e. systems equivalent
to or worse than Synth-C30, that has an actual nugget coverage
level of 22%. On the other hand, systems that were not pooled that
push the upper-end of the effectiveness envelope are more likely
to be miss-ranked, and hence using the TREC-TS test collections
out-of-the-box is subject to more risk. The issue is that a researcher
or developer has no way of knowing which case they fall into. As
such, it would be advantageous to improve the test collections to
reduce the risk of ranking error for unpooled/depooled systems.

5 RQ2: CANWE USE AUTOMATIC
MATCHING TO INCREASE ROBUSTNESS?

In the previous section we observed that systems that are depooled
(i.e. representing new systems that did not participate in the original
TREC tracks) are at risk from beingmiss-ranked. In particular, when
comparing the ranking of the same 19 systems when all were pooled
vs. when only 18 of them were pooled, we observed that ranking
errors start to occur (average Kendall’s τ and τAP values of 0.9815
and 0.9597, respectively).

These ranking errors stem from a system identifying sentences
that are: 1) highly important (e.g. they cover a nugget that it is
very difficult to find sentences for), 2) uncommon (no other system
contributed those sentences to the pool) and 3) the system assigned
them a high confidence score (so they would have been added
to the pool if the system had been part of the initial evaluation).
The result of such a system not being included in the pool is that
a portion of its top k documents will not have been assessed,3
and unassessed sentences are assumed to not be relevant to any
nuggets. Hence, that system’s performance estimation is likely to
be an underestimation.

From a test collection perspective, such a system not being in-
cluded in the pool leads to missing <sentence,nugget> pairs. These
pairs could be recovered by pooling all new systems and then re-
assessing, however, this additional cost eliminates much of the
value that these test collections bring to IR evaluation. Indeed, if
we use the total amount of time it reportedly took the TREC asses-
sors to perform nugget matching [5] then each additional sentence
assessed takes around 50 seconds on average. Moreover, this does
not factor in time taken to set up the assessment system and recruit
assessors. As such, it would be advantageous to have an automatic
means to generate the missing <sentence,nugget> pairs without
resorting to more human assessment.

In the remainder of this section we examine methods for auto-
matically generating missing <sentence,nugget> pairs using the
initial set of <sentence,nugget> pairs from the TREC-TS pool as
a base, which we refer to as match expansion. In particular, we
first discuss our experimental methodology (Section 5.1) as well as
evaluation metrics (Section 5.2). Then we propose two approaches

3Recall that the top k pooling methodology guarantees that all pooled systems will
have had their top k documents assessed.

to generate new <sentence,nugget> pairs (Section 5.3). Finally, we
report our experimental results in Section 5.4.

5.1 Matching Expansion Methodology
To evaluate matching expansion, we need two sets of sentences for
which we know what the correct <sentence,nugget> pairs are. The
first set we need represents the sentence pool pre-expansion, while
the second set represents the sentences and <sentence,nugget>
pairs that are the correct expansions our proposed system should
produce. Previously in Section 3.3 we created such a setting via
depooling, which we re-use here. In particular, for each of our syn-
thetic systems, by depooling that systemwe create a scenario where
some sentences and associated <sentence,nugget> pairs will be
eliminated from the pool. The goal of a matching expansion algo-
rithm in this case is to then to restore as many of those sentences
and associated <sentence,nugget> pairs as possible, while avoiding
introducing erroneous <sentence,nugget> pairs.

5.2 Matching Expansion Metrics
Next, we need to define metrics that can tell us how effective an
expansion attempt is. As we are proposing automatic methods to
expand the ground truth, we could do more harm than good by
introducing false <sentence,nugget> pairs if not careful. As such,
we define three primary metrics to capture expansion effectiveness,
namely: Expansion Recall (E-Recall), Avg. Expansion Pair F1 (aEP-
F1) and Avg. τ/τAP (aτ/aτAP).

Expansion Recall (E-Recall): As discussed above, from a test col-
lection perspective a system not being included in the pool leads
to missing <sentence,nugget> pairs, i.e. pairs that would have
been added if the top k sentences for that system had been as-
sessed. The goal of the match expansion is to recover these missing
<sentence,nugget> pairs. We define E-Recall to be the proportion
of missing sentences that were correctly matched to one or more
nuggets, calculated as:

E-Recall(SM
p ,SM

up ,SM
up→e) =

|(SM
p ∩ SM

up) ∩ (SM
up→e ∩ SM

up)|

|SM
p ∩ SM

up |
(4)

where SM
p is the set of sentences that correctly matched one or

more nuggets if system S was pooled, SM
up is the set of sentences

that correctly matched one or more nuggets even if system S was
not pooled (i.e. derived from sentences contributed by other pooled
systems) and SM

up→e is the set of sentences that would correctly
match one or more nuggets if system S was not pooled but after a
matching expansion technique (see Section 5.3) has been applied.
This is analogous to recall from a classification perspective, repre-
senting the proportion of all sentences that wewere able to correctly
restore through automatic expansion. Note that we are not inter-
ested in a precision-like metric here, as ‘false positives’ represent
sentences that do not exist in SM

p . Indeed, as SM
p results from

top k pooling, we know that it is incomplete, meaning that a ‘false
positive’ might represent a relevant sentence that does cover one
or more nuggets, but no other system contributed it to the pool.

Avg. Expansion Pair F1 (aEP-F1): On the other hand, a simple
recall estimation is also insufficient to determine the quality of an

expansion, as the goal is to restore all missing <sentence,nugget>
pairs correctly. E-Recall only specifies the proportion of missing
sentences for which expansion generated at least one correct match
(<sentence,nugget> pair). Hence, we need a second metric that for
each restored sentence, which has ≥1 correct <sentence,nugget>
pairs, measures the proportion of matches for the sentence that are
correct. Extending the idea of precision and recall for this setting,
we start by defining Expansion Pair Precision (EP-P) and Expansion
Pair Recall (EP-R) for a sentence u as follows:

EP-P(Mu
p ,Mu

up→e) =
|Mu

p ∩Mu
up→e |

|Mu
up→e |

(5)

EP-R(Mu
p ,Mu

up→e) =
|Mu

p ∩Mu
up→e |

|Mu
p |

(6)

whereMu
p is the set of <sentence,nugget> pairs for sentenceu that

resulted from matching after being pooled andMu
up→e is the set

of <sentence,nugget> pairs for sentence u that were produced by
expansion when u was not pooled. EP-P measures the proportion
of nugget matches for sentence u produced by expansion that were
correct, while EP-R measures the proportion of all nugget matches
for sentence u that were restored. We can average both EP-P and
EP-R across all sentences with matches from the TREC-TS pool
(i.e. where we knowMu

p) and that were subject to expansion (i.e.
Mu

p andMu
up→e are different), which we denote as aEP-F and aEP-

R, respectively. In our later experiments, to have a single metric
representing pair generation quality, we report the harmonic mean
of aEP-P and aEP-R across sentences, denoted aEP-F1:

aEP-F1 = 2 · aEP-P · aEP-R
aEP-P + aEP-R

(7)

Using these two metrics, we can express how effective an expan-
sion attempt is. For instance, if an expansion method achieved an
E-Recall of 0.1456 and an aEP-F1 of 0.9621, then we can read this
follows. First, the expansion method managed to find 14.6% of the
missing sentences. Second, of the sentences found, matching F1 was
high at 0.9621, meaning that nearly all missing <sentence,nugget>
pairs were restored and very few erroneous <sentence,nugget>
pairs were introduced in the process.

Avg. τ/τAP (aτ/aτAP): Finally, while the above metrics capture
the effectiveness of an expansion attempt from the perspective of
the sentences and <sentence,nugget> pairs restored, our end-goal
is to reduce the likelihood that systems which are depooled will
be miss-ranked. Previously in Table 5 we reported the average
correlation between the correct ranking of systems and the ranking
of systems after each individual system was removed from the
pool. In a similar way, we can also calculate the average correlation
between 1) the correct ranking of systems and 2) the ranking of
systems produced after an individual system has been removed
and then expansion has been attempted. Intuitively, if expansion is
successful, then average correlation should increase, i.e. expansion
should reduce the number of ranking errors introduced when each
system is depooled. Hence, we report the average τ and τAP both
before and after expansion, as well as the average number of rank
swaps needed to restore the correct ranking (i.e. the number of
miss-rankings).

5.3 Matching Expansion Techniques
There are two ways one might attempt to generate expansions for
<sentence,nugget> pairs. Either we start with a sentence and we
try to find all related nuggets (i.e. attempt to simulate in an auto-
matic manner the process that the TREC assessors perform during
matching). Alternatively, we start with a <sentence,nugget> pair
and try to find other good matches in the collection. To achieve
either of these approaches we need effective representations for
both the sentences and nuggets. In the case of a sentence, the only
representation we have for it is its text. However, an open question
is how we represent a nugget. For our experiments here, we choose
to use existing <sentence,nugget> mappings to form a series of tex-
tual representations for each nugget. Here, each previously matched
sentence in the pool is a representation for its associated nuggets. To
generate new <sentence,nugget> pairs, for each nugget representa-
tion (a sentence A), we search for other textually similar sentences.
If another sentence B is sufficiently similar to A, then we infer that
for all <A,nugget> pairs, there should also be <B,nugget> pairs. To
calculate similarity, we experiment with two ways to estimate the
distance between texts, namely: raw text similarity and semantic
similarity, which we summarize below.

Raw Text Similarity: For this expansion method, we take the
simplest of approaches, using textual similarity with Levenshtein
distance between each sentence that has one or more matches in
the pool and every other sentence in the collection. If a sentence
A and a sentence B have a similarity above a threshold θ , then for
each <A,nugget> pair we add an associated <B,nugget> pair.

Semantic Similarity:As sentences in the TREC-TS test collections
are drawn from an article stream comprised of news articles, blogs
and forum posts, we can expect significant vocabulary miss-match
between different articles discussing the same information. For this
reason, it is reasonable to expect raw text similarity will fail to
identify some similar sentences due to vocabulary miss-matches.
To tackle this issue, we also experiment with the identification of
similar sentences based on semantic rather than textual similar-
ity. In this case, we represent each sentence as a high-dimensional
sentence embedding and then calculate similarity in terms of that
semantic space. Sentence embeddings have previously been shown
to be an effective sentence representation when calculating sim-
ilarity [15]. In particular, given a sentence, for each word in that
sentence, we first convert that word into a high-dimensional word
embedding. To produce a sentence embedding we calculate a sin-
gle position per dimension by averaging the word positions per
dimension. For reproducibility, we use Word2Vec [21] along with
pre-trained word embeddings from the Google News dataset (about
100 billion words).4 We use Cosine similarity for calculating the
distance between the sentence embedding vectors. If a sentence A
and a sentence B have a similarity above a threshold θ , then for
each <A,nugget> pair, we then add an associated <B,nugget> pair.

For both similarity metrics we also need to define a similarity
threshold, above which a nugget and sentence will be considered
a match. The correct similarity threshold will vary between tech-
niques, e.g. what might be considered an acceptable threshold for
raw text similarity will differ from semantic similarity. For brevity,

4Available from https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Table 6: Comparison of match expansion and resultant correlation with the correct system ranking on average across depool-
ing scenarios and topics when performing sentence to sentence similarity expansion. Statistically significant changes (paired
t-test p<0.05) in aτ and aτAP against no expansion (None) are denoted △ and ▽ for increases and decreases respectively.

Expansion Metrics Ranking Metrics
Expansion Technique Threshold θ E-Recall aEP-F1 Avg Rank Swaps aτ aτAP
None - - - 1.5789 0.9815 0.9597
Item-Item Similarity Expansion 0.99 0.0714 0.9401 1.4211 0.9834 0.9597
Item-Item Similarity Expansion 0.90 0.1096 0.8336 1.0526 0.9877△ 0.9619
Item-Item Similarity Expansion 0.80 0.1199 0.8349 1.0526 0.9876△ 0.9610
Item-Item Similarity Expansion 0.70 0.1199 0.8349 1.0526 0.9876△ 0.9610
Item-Item Semantic Expansion 1.00 0.0679 0.9662 1.1579 0.9865 0.9625
Item-Item Semantic Expansion 0.98 0.1239 0.8653 0.8421 0.9902△ 0.9640
Item-Item Semantic Expansion 0.96 0.1666 0.7436 0.6842 0.9920△ 0.9878△
Item-Item Semantic Expansion 0.94 0.2383 0.4819 1.9473 0.9772 0.9334
Item-Item Semantic Expansion 0.92 0.3678 0.2253 5.8421 0.9317▽ 0.8361▽
Item-Item Semantic Expansion 0.90 0.5034 0.1341 8.2105 0.9040▽ 0.7359▽

in the following section we only report performances from around
the peak threshold θ observed based on experimentation with differ-
ent θ ranges. We refer to expansion with the raw text as item-item
similarity expansion and expansion with semantic similarity as
item-item semantic expansion.

5.4 Matching Expansion Results
Table 6 reports the effectiveness of our different proposed expansion
techniques in terms of the metrics discussed in Section 5.2. We can
divide our metrics into two classes, Expansion Metrics that measure
how effectively we are restoring missing <sentence,nugget> pairs;
and Ranking Metrics that report how well correlated with the cor-
rect system ranking we are after expansion has occurred. E-Recall
performances indicates the proportion of the missing sentences
that were restored during expansion (higher is better), while aEP-F1
indicates how effectively we restored the matches for those sen-
tences (higher is better). Under the ranking metrics, # Rank Swaps
is the number of swaps needed on average to re-create the correct
ranking (lower is better), while aτ and aτAP indicate the resultant
correlation between the ranking produced post-expansion and the
correct ranking (higher is better). In the case of the Ranking Metrics
aτ and aτAP , we also report statistically significant changes (paired
t-test p < 0.05) against no expansion (None).

From Table 6, examining the two approaches that use the sen-
tences texts alone for expansion, we observe different behaviours
depending on whether raw text similarity or semantic similarity
was applied. In the case of using the raw text for identifying sim-
ilar sentences, we see that the E-Recall scores range between 7%
and 12%. This indicates that regardless of the threshold selected,
only a small proportion of the missing sentences could be found by
comparing the raw text of the sentences. In turn, this indicates that
uncommon sentences predominantly do not use the same language
as the more common sentences. On the other hand, we also see high
aEP-F1 performances ranging from 0.9401 to 0.8349. This shows
that although only a few of the missing sentences are found, the
matches derived from those sentences were almost always correct
(i.e. all matches for each sentence were restored and we did not
introduce many erroneous matches in the process). If we then ex-
amine the effect that using sentence text expansion with raw text
similarity has on the ranking of systems, we see that this type of
expansion results in fewer ranking errors than observed prior to

expansion (None). Indeed, the average number of swaps needed
to restore the correct ranking drops by 30% from 1.5789 to 1.0526
(threshold=0.9) and an average Kendall’s τ correlation against the
correct ranking increases by a small but statistically significant
margin (0.9815 to 0.9877) across the scenarios tested. Importantly
this shows that the restoration of a relatively small proportion of
all sentences that should have been pooled (e.g. around 10%) can
eliminate around 30% of the ranking errors (1.5789 rank swaps to
1.0526 rank swaps).

Next, we examine how effective sentence expansion is when
is when using semantic similarity rather than raw text similarity
from Table 6. Examining the expansion metrics first, we observe
a much wider range of E-Recall values as we vary the similarity
threshold. In particular, exact vector matching (threshold=1.0) re-
sults in 6.8% of the missing sentences being found, while a lower
similarity threshold of 0.9 results in half (50.34%) of the missing
sentences being found. This shows that semantic similarity com-
parisons are more effective for finding uncommon sentences than
raw text matching. However, as we lower the similarity threshold,
we also observe a rapid decline in aEP-F1 (0.9662 when the θ=1.0
to 0.1341 when the θ=0.9). This illustrates that semantic expansion
is much more prone to introducing erroneous matches as we relax
the selection constraint. If we examine how this affects the system
ranking performance, we observe that even though semantic expan-
sion introduces a higher proportion of erroneous matches than raw
text expansion, it can be more effective. In particular, we see that
when the vector similarity threshold θ is set to 0.98 and 0.96, we
further reduce the average number of rank swaps (ranking errors)
to 0.8421 and 0.6421, respectively. If we compare this to the number
of ranking errors prior to expansion, then semantic expansion can
reduce the number of errors by up to 50% (1.5789 rank swaps to
0.6842 rank swaps). This also increases the correlation between
the system ranking post-expansion and the correct ranking by a
statistically significant margin under both aτ and aτAP .

To answer RQ2, we have shown that automatic<sentences,nugget>
expansion techniques that find textually or semantically similar
sentences and use those sentences to infer matches can be effective
for increasing the robustness of the TREC-TS test collections. In
particular, we have shown that expansion using raw text similarity
can reduce the number of miss-rankings by 30%, while semantic
similarity-based expansion can reduce the number of miss-rankings

by 50%. We conclude that these expansion techniques improve the
robustness of the TREC-TS test collections, reducing the risk of
miss-ranking new systems that were not pooled.

6 CONCLUSIONS
In this paper, we quantified the extent to which the TREC Tempo-
ral Summarization (TREC-TS) test collections are able to robustly
rank different timeline generation systems in scenarios where one
of those systems was not included in the sampled pool. We also
proposed new automatic approaches aimed at improving the robust-
ness of those test collections. Through a leave-one-out (depooling)
experiment, we observed a mixed picture in terms of test collection
robustness. In particular, the TREC-TS test collections appear to
be robust when evaluating systems that were not pooled at the
lower end of the effectiveness scale, i.e. the correlation with the
correct system ranking is perfect when the system is depooled. On
the other hand, when more effective systems were depooled, we
started to observe ranking errors and lower correlations, partic-
ularly towards the top ranks. Hence, we conclude that using the
TREC-TS test collections out-of-the-box is subject to some risk.

To reduce this risk, we studied two approaches that use the avail-
able sentence pool and associated labels (<sentence,information
unit> matches) to automatically generate new labels that might
have been missed due to sentences not being pooled. In partic-
ular, we evaluated item-item similarity expansion and item-item
semantic expansion approaches. Our experiments using these two
proposed expansion techniques showed that automatically adding
even a small number of <text item,information unit> pairs can
markedly reduce the number of ranking errors observed when
using the TREC-TS test collections. In particular, item-item simi-
larity expansion can reduce the number of ranking errors by up to
30% while item-item semantic expansion can reduce the number
of ranking errors by up to 50%. Since our results show that match-
ing expansion techniques enhance robustness of the TREC-TS test
collections, we recommend the use of expanded match sets when
evaluating new systems, particularly in cases where low complete-
ness levels are observed.

Our work highlighted the limitations of shallow pooling for cre-
ating test collections from large streaming data, particularly for
tasks where item selections are not independent (in this case se-
lection of an item for inclusion within the summary is dependent
on past selections of other sentences), resulting in low overlap be-
tween systems when pooling summaries for labeling. In these cases,
new labeling approaches are needed that provide increased stream
coverage, without dramatically increasing labeling time/cost.

7 DATA RELEASE
To support future researchers working with the TREC-TS test col-
lections, we provide both the synthetic systems that we used in this
study as potential new baselines for the community, as well as the
expanded assessment matches produced by the best performing
expansion approach (Item-Item Semantic Expansion→ θ = 0.96),
which we recommend that researchers use in scenarios where they
are experiencing low completeness levels under the official labels.
These can be freely downloaded at:

http://dx.doi.org/10.5525/gla.researchdata.613

REFERENCES
[1] James Allan, Rahul Gupta, and Vikas Khandelwal. 2001. Temporal summaries of

new topics. In ACM SIGIR 2001.
[2] Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Richard McCreadie,

Virgil Pavlu, and Tetsuya Sakai. 2014. TREC 2014 Temporal Summarization Track
Guidelines. In TREC 2014.

[3] Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Richard McCreadie,
Virgil Pavlu, and Tetsuya Sakai. 2015. TREC 2015 Temporal Summarization Track
Overview. In TREC 2015.

[4] Javed A Aslam, Matthew Ekstrand-Abueg, Virgil Pavlu, Fernando Diaz, and
Tetsuya Sakai. 2013. TREC 2013 Temporal Summarization. In TREC 2013.

[5] Gaurav Baruah, Richard McCreadie, and Jimmy Lin. 2017. A Comparison of
Nuggets and Clusters for Evaluating Timeline Summaries. In ACM CIKM 2017.

[6] Chris Buckley and Ellen M. Voorhees. 2004. Retrieval Evaluation with Incomplete
Information. In ACM SIGIR 2004.

[7] Chris Buckley and Ellen M. Voorhees. 2017. Evaluating Evaluation Measure
Stability. SIGIR Forum 51, 2 (Aug. 2017), 235–242.

[8] John M. Conroy, Judith D. Schlesinger, and Dianne P. O’Leary. 2011. Nouveau-
ROUGE: A Novelty Metric for Update Summarization. Computational Linguistics
37 (2011), 1–8.

[9] Hoa Dang. 2005. Overview of DUC 2005. In DUC 2015.
[10] Hoa Trang Dang and Karolina Owczarzak. 2008. Overview of the TAC 2008

Opinion Question Answering and Summarization Tasks. In TAC 2008.
[11] Matthew Ekstrand-Abueg, Richard McCreadie, Virgil Pavlu, and Fernando Diaz.

2016. A Study of Realtime Summarization Metrics. In CIKM 2016.
[12] Qi Guo, Fernando Diaz, and Elad Yom-Tov. 2013. Updating Users about Time

Critical Events. In ECIR 2013.
[13] Chris Kedzie, Fernando Diaz, and Kathleen McKeown. 2016. Real-Time Web

Scale Event Summarization Using Sequential Decision Making. arXiv preprint
arXiv:1605.03664 (2016).

[14] Chris Kedzie, Kathleen McKeown, and Fernando Diaz. 2015. Predicting Salient
Updates for Disaster Summarization.. In ACL 2015.

[15] Tom Kenter and Maarten De Rijke. 2015. Short text similarity with word embed-
dings. In ACM CIKM 2015.

[16] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In ACL Workshop On Text Summarization 2004.

[17] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. 2014. Overview of
the TREC-2014 Microblog Track. In TREC 2014.

[18] Craig Macdonald and Iadh Ounis. 2011. The influence of the document ranking
in expert search. Information Processing & Management 47, 3 (2011), 376–390.

[19] Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2014. Incremental Update
Summarization: Adaptive Sentence Selection based on Prevalence and Novelty.
In CIKM 2014.

[20] Richard McCreadie, Rodrygo Santos, Craig Macdonald, and Iadh Ounis. 2017.
Explicit diversification of event aspects for temporal summarization. ACM TOIS
(2017).

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] Ani Nenkova and Kathleen McKeown. 2011. Automatic Summarization. FnTIR 5,
2–3 (2011), 103–233.

[23] Paul Over. 1997. TREC-6 Interactive Report. In TREC 1997.
[24] Tetsuya Sakai. 2008. Comparing metrics across TREC and NTCIR:: the robustness

to pool depth bias. In ACM SIGIR 2008.
[25] Rodrygo LT Santos, Iadh Ounis, and Craig Macdonald. 2015. Search result

diversification. Foundations and Trends in Information Retrieval 9, 1 (2015), 1–90.
[26] Luchen Tan, Adam Roegiest, Charles L. A. Clarke, and Jimmy Lin. 2016. Simple

Dynamic Emission Strategies for Microblog Filtering. In ACM SIGIR 2016.
[27] Andrew Turpin and Falk Scholer. 2006. User performance versus precision

measures for simple search tasks. In ACM SIGIR 2006.
[28] EllenM. Voorhees. 1998. Variations in Relevance Judgments and theMeasurement

of Retrieval Effectiveness. In SIGIR 1998.
[29] Ellen M. Voorhees. 2003. Overview of the TREC 2003 Question Answering Track.

In TREC 2003.
[30] Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and Yan

Zhang. 2011. Evolutionary Timeline Summarization: a Balanced Optimization
Framework via Iterative Substitution. In ACM SIGIR 2011.

[31] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. 2008. A New Rank
Correlation Coefficient for Information Retrieval. In ACM SIGIR 2008.

[32] ChengXiang Zhai, William W. Cohen, and John Lafferty. 2003. Beyond Indepen-
dent Relevance: Methods and Evaluation Metrics for Subtopic Retrieval. In ACM
SIGIR 2003.

[33] Chunyun Zhang, Zhanyu Ma, Jiayue Zhang, Weiran Xu, and Jun Guo. 2015. A
Multi-level System for Sequential Update Summarization. In QSHINE 2015.

[34] Justin Zobel. 1998. How Reliable Are the Results of Large-scale Information
Retrieval Experiments?. In ACM SIGIR 1998.

http://dx.doi.org/10.5525/gla.researchdata.613

	160907.pdf
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Classical Summarization Evaluation
	2.2 Timeline Summaries and Evaluation
	2.3 TREC Temporal Summarization Track
	2.4 Questions on TREC-TS Robustness
	2.5 Incompleteness of Relevance Judgments

	3 Methodology and Setup
	3.1 Synthetic System Generation
	3.2 Evaluation Metrics
	3.3 Depooling Methodology

	4 RQ1: To what extent are the TREC-TS Test Collections Robust?
	5 RQ2: Can we use Automatic Matching to Increase Robustness?
	5.1 Matching Expansion Methodology
	5.2 Matching Expansion Metrics
	5.3 Matching Expansion Techniques
	5.4 Matching Expansion Results

	6 Conclusions
	7 Data Release
	References

	automatic-ground-truth(3).pdf
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Classical Summarization Evaluation
	2.2 Timeline Summaries and Evaluation
	2.3 TREC Temporal Summarization Track
	2.4 Questions on TREC-TS Robustness
	2.5 Incompleteness of Relevance Judgments

	3 Methodology and Setup
	3.1 Synthetic System Generation
	3.2 Evaluation Metrics
	3.3 Depooling Methodology

	4 RQ1: To what extent are the TREC-TS Test Collections Robust?
	5 RQ2: Can we use Automatic Matching to Increase Robustness?
	5.1 Matching Expansion Methodology
	5.2 Matching Expansion Metrics
	5.3 Matching Expansion Techniques
	5.4 Matching Expansion Results

	6 Conclusions
	7 Data Release
	References

