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ABSTRACT
With the recent growth of conversational systems and intelligent
assistants such as Apple Siri and Google Assistant, mobile devices
are becoming even more pervasive in our lives. As a consequence,
users are getting engaged with the mobile apps and frequently
search for an information need in their apps. However, users cannot
search within their apps through their intelligent assistants. This
requires a unified mobile search framework that identifies the target
app(s) for the user’s query, submits the query to the app(s), and
presents the results to the user. In this paper, we take the first
step forward towards developing unified mobile search. In more
detail, we introduce and study the task of target apps selection,
which has various potential real-world applications. To this aim, we
analyze attributes of search queries as well as user behaviors, while
searching with different mobile apps. The analyses are done based
on thousands of queries that we collected through crowdsourcing.
We finally study the performance of state-of-the-art retrievalmodels
for this task and propose two simple yet effective neural models that
significantly outperform the baselines. Our neural approaches are
based on learning high-dimensional representations formobile apps.
Our analyses and experiments suggest specific future directions in
this research area.
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1 INTRODUCTION
Recent years have witnessed a rapid growth in the use of mobile
devices, enabling people to access the Internet in various contexts.
More than 77% of Americans now own a smartphone1, with an
1http://www.pewinternet.org/fact-sheet/mobile/
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increasing trend in terms of the time people spend on their phones.
As of 2016, the average U.S. user spends 5 hours on mobile devices
per day, with just 8% of it spent in the phone’s browser. In fact,
people spend most of their time (72%) using apps that have their
own search feature2. Moreover, Google Play Store now features
more than 3.5 million apps and users install an average of 35 mobile
apps on their phones, using half of them regularly3.

More recently, with the release of intelligent assistants, such
as Google Assistant and Apple Siri, people are experiencing mo-
bile search through a single voice-based interface. These systems
introduce several research challenges. Given that people spend
most of their times in apps and, as a consequence, most of their
search interactions would be with apps (rather than a browser), one
limitation is that users are unable to use a conversational system
to search within many apps. This suggests the need for a unified
search framework that replaces all the search boxes in the apps, with
a single search box. With such a framework, the user can submit a
query through this system which will identify the target app(s) for
the issued query. The query is then routed to the identified target
apps and the results are displayed in a unified interface.

In this work, we are particularly interested in taking the first
step towards developing a unified search framework for mobile
devices by introducing and studying the task of target apps selec-
tion, which is defined as identifying the target app(s) for a given
query. To this end, we built a collection of cross-app search queries
through crowdsourcing, which is released for research purposes4.
Our crowdsourcing experiment consists of two parts: we initially
asked crowdworkers to explain their latest search experience on
their smartphones and used them to define various realistic mobile
search tasks. Then, we asked another set of workers to select the
apps they would choose to complete the tasks as well as the query
they would submit. We investigate various aspects of user behaviors
while completing a search task. For instance, we show that users
choose to complete most of the search tasks using two apps. In
addition, we demonstrate that for the majority of the search tasks,
most of the users prefer not to use Google Search.

From the lessons learned from our data analysis, we propose two
simple yet efficient neural target apps selection models. Our first
model looks at the problem as a ranking task and produces a score
for a given query-app pair. We study two different training settings

2http://flurrymobile.tumblr.com/post/157921590345/
us-consumers-time-spent-on-mobile-crosses-5
3https://www.thinkwithgoogle.com/advertising-channels/apps/
app-marketing-trends-mobile-landscape/
4Available at http://aliannejadi.github.io/unimobile.html
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for this model. Our second framework, on the other hand, casts the
problem as a multi-label classification task. Both neural approaches,
called NTAS, learn a high-dimensional representation for each
app. Our experiments demonstrate that our model significantly
outperforms a set of state-of-the-art models in this task.

In summary, the main contributions of this paper include:

• Designing and conducting two crowdsourcing tasks for collecting
cross-app search queries for real-life search tasks. The tasks and
queries are publicly available for research purposes.

• Presenting the first study of user behaviors while searching with
different apps as well as their search queries. In particular, we
study the attributes of the search queries that are submitted to
different apps and user behaviors in terms of the apps they chose
to complete a search task.

• Proposing two neural models for target apps selection.
• Evaluating the performance of state-of-the-art retrieval models
for this task and comparing them against the proposed method.

Our analyses and experiments suggest specific future directions
in this research area.

2 RELATEDWORK
While the study of unified mobile search is a new research area,
it has roots in previous research. Our work is related to the areas
of mobile IR, federated, and aggregated search. Moreover, relevant
research has been done in the area of proactive IR where a system
aims to provide personalized information cards to users based on
their context. Other relevant works can be found in the areas of
query classification, neural networks, and crowdsourcing. In the
following, we summarize the related research in each of these areas.

Mobile IR. One of the main goals of mobile IR is to enable users to
carry out all the classical IR operations using a mobile device [14].
One of the earliest studies on mobile IR was done by Kamvar and
Baluja [20] where they did a large-scale mobile search query analy-
sis. They found mobile searches were less diverse in terms topic.
In another study, Church et al. [11] argued that the conventional
Web-based approaches fail to satisfy users’ information needs. In
fact, Song et al. [33] found significant difference in search patterns
done using iPhone, iPad, and desktop. In a more recent study, Guy
[18] conducted an analysis on mobile spoken queries as opposed
to typed-in queries. They found that spoken queries are longer and
closer to natural language. These findings were in line with an older
study by Crestani and Du [13].

More recently, research has been done on various topics in mo-
bile IR such as app and venue recommendation as well as app
search [1, 26, 27]. For instance, Shokouhi et al. [32] studied query
reformulation patterns in mobile query logs and found that users
do not tend to switch between voice and text while reformulat-
ing their queries. Park et al. [27] represented apps using online
reviews for improved app search on the market. Williams et al. [35]
leveraged mobile user gesture interactions, such as touch actions,
to predict good search abandonment on mobile search. Park et al.
[26] inferred users implicit intentions from social media for the
task of app recommendation. Harvey and Pointon [19] found that
fragmented attention of users while searching on-the-go, affects
their search objective and performance perception. In contrast to

the prior work, we explore how users behave while searching with
different apps. To do this, we study the attributes of search queries
assigned to different apps.

A few industrial systems exist aiming to provide users with
unifiedmobile search. Apple Spotlight5 is the most popular example
of such systems that is available on iOS devices. Also, Sesame
Shortcuts6 is an Android app that creates easy-to-access shortcuts
to the installed apps. The shortcuts are also accessible via keyword-
based queries. Despite the existence of these systems, research on
cross-app search has not yet been done.

Proactive IR. The aim of proactive IR systems is to anticipate users’
information needs and proactively present information cards to
them. Shokouhi and Guo [31] analyzed user interactions with infor-
mation cards and found that the usage patterns of the cards depend
on time, location, and user’s reactive search history. Benetka et al.
[7] showed that information needs vary across activities as well as
during the course of an activity. They proposed a method to lever-
age users’ check-in activity for recommending information cards.
Our work focuses on the queries that users issue in different apps.
Queries can express complex information needs that are impossible
to infer from context.

Federated and aggregated search. A unified mobile search sys-
tem distributes a search query to a limited number of apps that it
finds more relevant to a search query. There is a considerable over-
lap between the target apps selection task and federated/aggregated
search. In federated search, the query is distributed among uncoop-
erative resources with homogeneous data; whereas in aggregated
search, the content is blended from cooperative resources with
heterogeneous data [4]. Given the uncooperative environment of
most federated search systems, Callan and Connell [8] proposed a
query-based sampling approach to probe various resource providers
and modeled them based on the returned results. In most aggre-
gated search systems, on the other hand, different resources are
parts of a bigger search system and thus cooperative. Moreover,
an aggregated search system can even access other metadata such
as users’ queries and current traffic [4]. Diaz [16] proposed mod-
eling the query dynamics and collection to detect news queries
for integrating the news vertical into the result page. This work
was later extended by Arguello et al. [6] to include images, videos,
and travel information. In this work, we assume an uncooperative
environment because the contents of apps are not accessible to the
unified search system. Moreover, given the existence of various
content types in different apps, we assume the documents to be
heterogeneous.

Query classification. Our work is also related to the research in
query classification where different strategies are taken to assign a
query to predefined categories. Kang and Kim [21] defined three
types of queries arguing that search engines require different strate-
gies to deal with the queries belonging to each of the classes. Shen
et al. [30] introduced an intermediate taxonomy used to classify
queries to specified target categories. Cao et al. [9] leveraged con-
ditional random fields to incorporate users’ neighboring queries

5https://en.wikipedia.org/wiki/Spotlight_(software)
6http://sesame.ninja/
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Table 1: Distribution of crowdsourcing search task cate-
gories.

Search Category % of tasks

General Information & News 13%
Video & Music 12%
Image 9%
Social Networking 9%
App 9%
File & Contact 8%
Online Shopping 13%
Local Services & Navigation 15%
Email & Event 12%

in a session as context. More recently, Zamani and Croft [39] stud-
ied word embedding vectors for the query classification task and
proposed a formal model for query embedding estimation.

Neural IR. The recent and successful development of deep neural
networks for various tasks has also impacted IR applications. In
particular, neural ranking models have recently shown significant
improvements in a wide range of IR tasks, such as ad-hoc retrieval
[17], question answering [37], and context-aware retrieval [38].
These approaches often rely on learning high-dimensional dense
representations that carry semantic information. They can be par-
ticularly useful to match queries and documents where minimal
term overlap exists. We also take advantage of such latent high-
dimensional representations in our models for representing mobile
apps.

Crowdsourcing. Although there has been a large body of research
in IR related to crowdsourcing, we can only mention the most
relevant works. Alonso and Stone [2] explored building a query log
that is coupled with query annotations describing the search tasks.
Arguello et al. [5] used crowdsourcing to collect spoken queries
for predefined search tasks. In our work, we combine these two
approaches (see Section 3).

3 CROWDSOURCING
In this section, we describe how we collected UniMobile, which
is, to the best of our knowledge, the first dataset on cross-app
mobile search queries. We started by creating a number of Human
Intelligence Tasks (HITs) on Amazon Mechanical Turk7, asking
workers to describe their latest mobile search experience in detail.
The answers helped us to define fine-grained diverse naturalistic
mobile search tasks. Then, we launched another task askingworkers
to assume they wanted to complete a given search task on their
smartphones. They had to submit their search queries as well as
the apps they would choose to complete each task.

Task definition. In the first crowdsourcing task, we described the
category of search, giving them a handful of general examples.
Furthermore, we also asked them to give us the context and back-
ground of their search, as well as the queries and the apps they used
to do the search. Finally, we provided a complete example of a valid
answer. We launched this job for most of search categories listed in

7http://www.mturk.com

Figure 1: HIT interface for choosing apps. The workers
could enter an app’s name or click on an app’s icon.

Table 1. The HIT payment was $0.10 and the workers were based
in the U.S. with an overall acceptance rate of 75% or higher. The
average work time was 246 seconds with 135 workers completing
169 HITs resulting in an average of 92 terms per HIT. The workers
provided enough details about the context and background of their
search that enabled us to generalize the task to the level that we
would get a wide range of queries on the same task. For example,
one worker submitted the following answer:

“I was searching for a new refrigerator to buy. The
first thing I did was search for the best refrigerators
of 2017 and then narrow down my search for exactly
the type of refrigerator that I was looking for...”

Then, we used this answer to define a more general search task:
“Consider one of the oldest appliances in your home.
You have been thinking of changing it for a while.
Now, it’s time to order it online.”

Query and app pairs. The second crowdsourcing task consisted
of 206 individual search task descriptions, mostly extracted from
the answers we got in the first task. Table 1 lists the distribution of
the tasks. In the definition of tasks, our aim was to cover various
aspects of mobile information seeking as mentioned in [10]. We
asked the workers to read the search task description very carefully
and assume that they wanted to perform it using their own mobile
device. Then, we asked them to select one or more apps from a
given list. Alternatively, they could type the name of the app they
would choose for that search task. We provided an auto-complete
feature for entering the apps’ names in order to make it easier for
the users to type the name of their favorite apps. Figure 1 shows the
interface we designed for this HIT. Since we restricted the HIT to be
done only by workers in the U.S., we chose the list of apps from the
most popular Android apps in the U.S. market. Note that the apps
were randomly shuffled and displayed to each worker to prevent
any position bias. These apps are listed as follows: Google Search,
Gmail, Play Store, Facebook, Instagram, Google Maps, YouTube,
Amazon, Twitter, Spotify, Waze, Pinterest, WhatsApp, File Manager,
Netflix, Yelp, Contacts, Dropbox.

As incentive, we paid $0.05 for every HIT assignment. We also
encouraged the workers to complete a survey for a $0.05 bonus. Our
aim was to understand the workers’ background and familiarity
with mobile devices. We asked the workers to perform the task
using their mobile devices’ browsers and tracked their keyboard

http://www.mturk.com


Table 2: Statistics of UniMobile.

# queries 5,812
# unique queries 5,567
# users 625
# search tasks 206
# unique apps 121
# unique first apps 70
# unique second apps 89
Mean unique apps per task 7.51 ± 10.57
Mean query per user 9.30 ± 20.30
Mean query per task 28.21 ± 12.72
Mean query terms 4.21 ± 2.45
Mean query characters 24.83 ± 12.88

keystrokes to prevent them from copying any text from the task
description. The average work time for this task was 85 seconds
with 91% of the workers completing the survey. The key statistics
of the survey were that 59% of the workers used Android and
55% used a mobile device as the primary device to connect to the
Internet. Moreover, 83% of the workers believed they use their
mobile device more than two hours a day and 41%, more than four
hours a day. After launching several batches, we went through all
the submitted answers for quality control and we observed that
following crowdsourcing task design guidelines of [22] helped us
achieve a very high assignment approval rate (99%). We have made
the collection publicly available for research purposes. The released
data consists of the tasks that we defined through the first set of
HITs as well as user queries in the second set of HITs, together with
their corresponding ranked list of apps. The data can be used to
study how users are engaged in searching with different apps. Also,
the release of the defined tasks provides the opportunity to conduct
a similar study in a lab setting on participants’ mobile phones and
compare the findings with this work.

4 DATA ANALYSIS
In this section, we present a thorough analysis of UniMobile, to
understand how users issue queries in different apps, and which
apps they choose to complete search tasks. With the definition of
206 mobile search tasks, we were able to collect 5,812 search queries
and their target apps. Overall, queries were assigned to 121 unique
apps. Table 2 lists all the details of our dataset. In the following, we
analyze different aspects of the data.

How apps are distributed. Figure 2 shows the distribution of
queries with respect to users and apps in UniMobile. As we can
see in Figures 2a and 2c, while there exist 173 users who submitted
only one query, 110 users account for 80% of the queries and 239
users account for 95% of the queries. Also, we see in Figures 2b and
2d that the distribution of apps follows a power-law. In particular, 9
apps account for more than 80% and 17 apps account for more than
95% of the queries. Figure 3 shows how queries are distributed with
respect to the top 17 apps. As we can see, while Google Search8,
that is mainly targeted for Web search, constitute 39% of total app
selections, users opt to perform the majority (61%) of their search

8The term “Google Search” is also used to refer to the Google Chrome app.

(a) (b) (c) (d)

Figure 2: The distribution of number of queries with respect
to apps and users.

Figure 3: Number of queries per app for top 17 apps.

(a) (b)

Figure 4: Distribution of unique apps per user and task.

tasks using other apps. Moreover, the variety of apps ranges from
apps dealing with local phone data (e.g., Contacts and Calendar) to
social media apps (e.g., Facebook and Twitter) indicating that they
cover a wide range of search tasks.

How apps are selected. Here we are interested in finding out
how users behave while choosing an app to perform a search task.
Although users assign two apps while submitting 72% of the queries,
they choose only one app for 21% of the queries and choose more
than two apps for only 7% of the queries. We also analyze howmany
different apps users select while doing the tasks. Figure 4a shows
the distribution of unique apps per users illustrating how many
users selected a certain number of different apps. As we can see,
a quarter of users preferred to search using two unique apps. On
the other hand, Figure 4b plots the same distribution with respect
to the tasks, that is how many unique apps were selected for each
task. We see an entirely different distribution where the average
number of unique apps per task is 7.51, showing that the given



(a) Google Search (b) Gmail (c) Yelp (d) File Manager (e) Contacts (f) Calendar (g) WhatsApp

Figure 5: Histogram of number of query terms per app. Despite the small size, we can see the radically different distributions.

(a) (b)

Figure 6: Query length distribution with respect to number
of terms and characters.

search tasks can be addressed using multiple apps. As we compare
the two distributions in Figures 4a and 4b, we can conclude that
while the majority of search tasks can be addressed using multiple
apps, users usually limit their choice to a personal selection of apps.
Therefore, a system can define a set of candidate apps which then
can be narrowed down considering user’s personal preference.

Furthermore, we analyze users’ choice of Google Search, observ-
ing that it is selected as the first app in 39% of the queries while 46%
as the second app. The users chose Google Search as the third app
in 30% of the queries with three selected apps. This indicates that,
according to UniMobile, in most cases (61%), users prefer to open a
more specific app than Web search apps such as Google Search. We
also analyze users collective app selection behavior with respect to
the tasks. For each task, we count how often each app is selected
and sorted them. Our aim is to find out how often users decide to
perform their search tasks using Google Search. According to our
study, in 14% of the tasks, no user selected Google Search, while in
35% of the tasks Google Search was the most selected app. More-
over, in 68% of the tasks it was among the top two most frequently
selected apps, and in 78% of the tasks it was among the top three.
Considering the categorical distribution of apps in Table 1 where
only 13% of the tasks were in the category of General Information
& News, we see that Google Search attracts many queries from
the tasks that can be done using a more specific app. Given the
integrity and aggregation of various search services such as image,
video, location, and online shopping and easy access to them in one
app, this observation is not surprising. Nevertheless, we see that for
86% of the tasks, most users prefered other apps. This suggests that
a unified mobile search system has a high potential of simplifying
and improving users search experience.

How queries differ among apps.We analyze different attributes
of queries with respect to their corresponding apps, to understand

(a) Google Search (b) Calendar

Figure 7: Distribution of top query unigrams for two sample
apps.

how different users formulate their information needs into queries
using different apps. After tokenizing the queries, the average query
terms per query is 4.21. We analyze the distribution of number of
query terms per app, observing different distributions for every
app, some of which are shown in Figure 5. This difference is more
obvious if we compare Google Search with personal or local apps
such as Contacts. In particular, Google Search has an average of
4.82 query terms while Contacts has an average of 2.67, which is
considerably less than other apps. This can be explained if we con-
sider the type of information users usually look for using Contacts
app. The queries usually consist of one of the stored names on
the phone, followed by terms such as “email,” “address,” “info,” and
“contact.” Moreover, Figure 6 plots the distribution of query length
with respect to terms and characters on the whole dataset.

Figure 5 demonstrates the distribution of number of query terms
for 7 apps. In this figure, we only include the apps that exhibit a
considerably different distribution from the average. As shown,
Google Search query terms peak at 3 while personal apps such as
Contacts, Calendar, and Gmail peak at 2. This indicates that the
structure of queries vary depending on the target app. We can also
see the difference in the most frequent unigrams for two example
apps in Figure 7 where we see that while stopwords are the most
frequent unigrams used in queries submitted to Google Search,
for a specific personal app such as Calendar, a domain-specific
term such as “meeting” accounts for more than 15% of the total
distribution. This suggests that while considering domain-specific
terms is crucial to predicting the target app, taking into account
the query structure is also important. For instance, as we see in
Figure 7a, the question mark is among the top query unigrams
submitted to Google Search, suggesting that many of the queries
are submitted in the form of a question. In contrast, as wementioned
earlier, the structure of contact queries are mostly in the form of
“<proper noun> + <information field>,” as in “sam email.”



Query overlap. Here we study query overlap or query similarity
over the queries using a simple function used in previous stud-
ies done on large-scale query logs (e.g., [12]). We measure the
query overlap at various degrees and use the similarity function
sim(q1,q2) = |q1∩q2 |/|q1∪q2 |. This function simply measures the
overlap of query terms. We observed 70% of queries overlapping
with at least another query at the similarity threshold of > 0.25.
Higher thresholds lead to significantly lower similar queries; with
thresholds > 0.50 and > 0.75we observe that 24% and 9% of queries
were similar, respectively. Similar to previous analyses, in Table 3we
observe a different level of query overlap in queries associated with
different apps. The least query overlap is observed for Facebook
queries. This could be due to the personal environment of Face-
book. The highest query overlap is observed in Play Store queries.
We observed the presence of some domain-specific terms such as
“app” in many queries which results in higher query similarity. The
observed difference in query overlap for every app suggests that
various factors influence the way users formulate their queries. For
example, apps that provide more focused information, receive more
similar queries. On the other hand, more personal apps receive a
diverse set of queries as they reflect personal information needs
which can be totally different from one user to the other.

Summary.Our analyses first showed that users’ queries are mainly
targeted to a few apps; however, these apps are very different in
terms of their content. Moreover, we showed that users often choose
two different apps for a single query, suggesting that many users
submit the same query in multiple apps. Also, we showed that
different users select an average of more than 7 apps for each
task, with Google Search being the top selected app in only 35%
of the cases. This again indicates the necessity of a unified search
system on mobile devices. Finally, we analyzed the queries issued
in different apps and found notable differences. For instance, we
showed that query lengths, unigram distribution, and query overlap
differ among apps. This suggests that the query structure needs to
be taken into account while representing the apps.

5 NEURAL TARGET APPS SELECTION
Assume that a user aims at submitting a query q to a set of mobile
apps {a1,a2, · · · ,an }, called the target apps. Note that the size of
this set could be equal to 1. The task of target apps selection is
defined as ranking the mobile apps in response to the query q,
such that the target apps appear in higher ranks. In this section,
we propose our methodology to tackle the target apps selection
task. To this end, we propose two general frameworks based on
neural networks. Our first framework, called NTAS1, is given a
query and a candidate app and produces a retrieval score. We study
both pointwise and pairwise training settings for this framework.
Our second framework, called NTAS2, is given a query as the input
and produces a probability distribution indicating the probability
of each app being targeted, for all apps.

One of the main challenges in this task is that it is not obvious
how to represent each app. For example, although the apps’ descrip-
tions would be used for app representation in the app selection
task [27], it cannot be used in the target apps selection. Because
the queries that can be searched in a specific app do not match
with the content of the app’s description. To address this issue, our

Table 3: The percentage of similar queries at different sim-
ilarity thresholds considering only the queries associated
with every app.

App % of similar queries
> 0.25 > 0.50 > 0.75

All apps 70% 24% 9%
Google Search 63% 19% 6%
Amazon 38% 8% 3%
Gmail 57% 14% 7%
YouTube 49% 20% 7%
Google Maps 46% 3% 1%
Facebook 30% 9% 1%
Play Store 61% 26% 14%

frameworks learn a high-dimensional representation for each app,
as part of the network. The following subsections describe these
two frameworks in more detail.

5.1 NTAS1: App Scoring Model
NTAS1 outputs a retrieval score for a given query q and a candidate
app a. Formally, NTAS1 can be defined as follows:

score = ψ (ϕQ (q),ϕA(a)) ,

where ψ (·, ·) ∈ R is a scoring function for the given query repre-
sentation ϕQ (q) ∈ Rm and app representation ϕA(a) ∈ Rn . Various
neural architectures can be employed to model each of the three
components in the NTAS1 framework.

We implement the component ϕQ (q) with two major functions:
an embedding function E : V → Rd that maps each vocabulary
term to ad-dimensional embedding space, and a global termweight-
ing function W : V → R that maps each vocabulary term to a
real-valued number showing its global importance. The query rep-
resentation function ϕQ represents a query q = {w1,w2, · · · ,w |q |}
as follows:

ϕQ (q) =
|q |∑
i=1

Ŵ(wi ) · E(wi ) , (1)

which is the weighted element-wise summation over the terms’
embedding vectors (hence, m = d). Ŵ is the normalized global
weights computed using a softmax function as follows:

Ŵ(wi ) =
exp(W(wi ))∑ |q |
j=1 exp(W(w j ))

.

This is a simple yet effective approach for query representation
based on the bag of words assumption, which has been proven to
be effective for the ad-hoc retrieval task [15]. Note that the matrices
E andW are the network parameters in our model and are learned
to provide task-specific representations.

The app representation component ϕA is simply implemented
as a look-up table. In other words, our neural model consists of an
app representation matrix A ∈ RN×n where N denotes the total
number of apps and the ith row of this matrix is a n-dimensional
representation for the ith app. Therefore, ϕA(a) returns a row of
the matrix A that corresponds to the app a.



Tomodel the functionψ , following Zamani et al. [40], we feed the
Hadamard product (which enforcesm = n) of the learned query and
app representations into a fully-connected feed-forward network
with two hidden layers. This network produces a single output as
the score assigned to the given query-app pair. We use rectified
linear unit (ReLU) as the activation function in the hidden layers of
the network. To prevent overfitting, the dropout technique [34] is
employed.

We study both pointwise and pairwise learning settings for our
NTAS1 model.

Pointwise learning. In a pointwise setting, we use mean squared
error (MSE) as the loss function. MSE for a mini-batch b is defined
as follows:

LMSE (b) =
1
|b |

|b |∑
i=1

(yi −ψ (ϕQ (qi ),ϕA(ai )))2 ,

where qi , ai , and yi denote the query, the candidate app, and the
label in the ith training instance of the mini-batch. For this training
setting, we use a linear activation for the output layer.

Pairwise learning. NTAS1 can be also trained using a pairwise
setting. Therefore, each training instance consists of a query, a
target app, and a non-target app. To this end, we employ hinge
loss (max-margin loss function) that has been widely used in the
learning to rank literature for pairwise models [23]. Hinge loss for
a mini-batch b is defined as follows:

LHinдe (b) =
1
|b |

|b |∑
i=1

max {0, ϵ− sign(yi1 − yi2)(
ψ (ϕQ (qi ),ϕA(ai1)) −ψ (ϕQ (qi ),ϕA(ai2))

)}
,

where ϵ is a hyper-parameter determining the margin of hinge loss,
a linear loss function that penalizes examples violating the margin
constraint. To bound the output of the model to the [−1, 1] interval,
we use tanh as the activation function for the output layer, in the
pairwise training setting. The parameter ϵ is also set to 1, which
works well when the predicted scores are in the [−1, 1] interval.

5.2 NTAS2: Query Classification Model
Unlike NTAS1 that predicts a score for a given query-app pair,
our second framework computes the probability of each app being
targeted by a given query. In more detail, NTAS2 is modeled as
γ (ϕQ (q)) ∈ RN , whose ith element denotes the probability of the
ith app being targeted, given the query representation ϕQ (q). N is
the total number of apps.

To implement NTAS2, we represent each query via a weighted
element-wise average as explained in Equation (1). γ is modeled
using a fully-connected feed-forward network with the output
dimension of N . ReLU is employed as the activation function in
the hidden layers, and a softmax function is applied on the output
layer to compute the probability of each app being targeted by the
query.

To train NTAS2, we use a cross-entropy loss function which for
a mini-batch b is defined as:

Lce (b) =
1
|b |

|b |∑
i=1

N∑
j=1

(p(aj |qi ) logγ (ϕQ (qi ))) .

Similar to NTAS1, we use dropout to regularize the model.

6 EXPERIMENTS
In this section, we evaluate the performance of the proposed models
in comparison with a set of state-of-the-art IR models. We also study
the performance of the models with respect to tasks and users.

6.1 Experimental Setup

Dataset. We evaluated the performance of our proposed models
on the UniMobile dataset. We followed two different strategies to
split the data: (1) In UniMobile-Q, we randomly selected 70% of the
queries for training, 10% for validation, and 20% for test set (2) In
UniMobile-T, we randomly split the tasks (rather than queries). To
do so, we randomly selected 70% of the tasks for training, 10% for
validation, and 20% for test set. To minimize random bias, for each
splitting strategy we repeated the process five times. The hyper-
parameters of the models were tuned based on the results on the
validation sets. Therefore, we repeated all the experiments five
times and reported the average performance.

Evaluation metrics. Effectiveness was measured by five standard
evaluation metrics: mean reciprocal rank (MRR), precision of the
top 1 retrieved app (P@1), normal discounted cumulative gain for
the top 1, 3, and 5 retrieved apps (nDCG@1, nDCG@3, nDCG@5).
We determined the statistically significant differences using the two-
tailed paired t-test with Bonferroni correction at a 95% confidence
interval (p < 0.05). In the ranked list of apps associated to every
query, we assigned the score of 2 to the first relevant app and 1 to
the rest of relevant apps, to differentiate between a model that is
able to rank the first relevant app higher and a model that is not.

The choice of evaluation metrics was motivated by considering
three different aspects of the task, inspired by data analysis. We
chose MRR considering scenarios where a user is looking for rele-
vant information only in one app, and so they would stop scanning
the search results as soon as they find the first relevant document.
We reported P@1 and nDCG@1 to measure the performance for
scenarios that a user only checks the first result. Given that many
search tasks need to be addressed using more than one app, it is cru-
cial to evaluate a system with respect to more than one relevant app
in the top-k results. nDCG@3 allowed us to evaluate our approach
when a user scans the top 3 results. Since we found that most of the
queries were assigned to one or two apps (see Section 4), nDCG@3
measures how well a system is able to place the two relevant apps
among the top 3 results. We also used nDCG@5 to evaluate top 5
results on a single screen, given the size of a typical smartphone.

Comparedmethods.We compared the performance of our model
with the following methods:

• StaticRanker: For every query we ranked the apps in the order of
their popularity in the training set as a static (query independent)
model.

• QueryLM, BM25, BM25-QE: For every app we aggregated all the
relevant queries from the training set to build a document rep-
resenting the app. Then we used Terrier [25] to index the docu-
ments. QueryLM uses the language model retrieval model [29].



Table 4: Performance comparison with baselines on UniMobile-Q and UniMobile-T. The superscript * denotes significant dif-
ferences compared to all the baselines.

Method UniMobile-Q Dataset UniMobile-T Dataset

MRR P@1 nDCG@1 nDCG@3 nDCG@5 MRR P@1 nDCG@1 nDCG@3 nDCG@5

StaticRanker 0.6485 0.5293 0.4031 0.4501 0.5144 0.6718 0.5507 0.4247 0.4853 0.5446
QueryLM 0.5867 0.3803 0.3068 0.4676 0.5508 0.5178 0.3272 0.2619 0.3716 0.4503
BM25 0.7523 0.6233 0.4915 0.6298 0.6859 0.6780 0.5244 0.4101 0.5392 0.5992
BM25-QE 0.6948 0.5177 0.4116 0.5909 0.6498 0.6256 0.4276 0.3312 0.5015 0.5704
k-NN 0.7373 0.6031 0.4794 0.6091 0.6633 0.6879 0.5414 0.4287 0.5413 0.6003
k-NN-AWE 0.7420 0.6081 0.4842 0.6156 0.6682 0.6984 0.5551 0.4407 0.5560 0.6117
LambdaMART 0.7313 0.6127 0.4864 0.6110 0.6426 0.6749 0.5469 0.4323 0.5419 0.5704

NTAS1-pointwise 0.7591* 0.6214 0.4897 0.6328 0.6934* 0.7047* 0.5582* 0.4493* 0.5506* 0.6258*
NTAS1-pairwise 0.7661* 0.6285* 0.5012* 0.6364* 0.7018* 0.7192* 0.5661* 0.4709* 0.5941* 0.6471
NTAS2 0.7638* 0.6271* 0.4996* 0.6351* 0.6976* 0.7144* 0.5723* 0.4608* 0.5689* 0.6334*

For BM25-QE, we adopted Bo1 [3] model for query expansion.
We used the Terrier implementation of these methods.

• k-NN, k-NN-AWE: To find the nearest neighbors in k nearest
neighbors (k-NN), we considered the cosine similarity between
TF-IDF vectors of queries. Then, we took the labels (apps) of the
nearest queries and produced the app ranking. As for k-NN-AWE,
we computed the cosine similarity between the average word
embedding (AWE) of the queries obtained from GloVe [28] with
300 dimensions.

• LambdaMART: For every query-app pair, we used the scores
obtained by BM25, k-NN, and k-NN-AWE as features to train
LambdaMART [36] implemented in RankLib9. For every query,
we considered all irrelevant apps as negative samples.

6.2 Results and Discussion
In the following, we evaluate the performance of NTAS1 andNTAS2
trained on both data splits. We further analyze how other baseline
models perform comparing their performance on both splits to-
gether with other methods.

Performance comparison. Table 4 lists the performance of our
proposed methods as well as the compared methods. As we can see,
the performance of all methods drops when we use UniMobile-T
data splits, except for StaticRanker. StaticRanker gives us an idea
of how much the test set is biased towards more popular apps. For
example, we see that StaticRanker performs better on UniMobile-T
suggesting that it consists of more popular apps. As we compare
the relative performance drop between the two data splits, we
see that among other baselines, k-NN-AWE is more robust with
the minimum relative drop (−8.4% on average). QueryLM, on the
other hand, is the least robust model with the maximum relative
drop (−16% on average). This indicates that k-NN-AWE is able
to capture similar queries for unseen tasks using a pre-trained
word embedding, whereas QueryLM relies heavily on the indexed
queries.

Among the baselines tested on UniMobile-Q, we see that BM25
performs best in terms of all evaluationmetrics. Given that UniMobile-
Q contains queries belonging to the same tasks both in training

9https://sourceforge.net/p/lemur/wiki/RankLib/

and test sets, this shows that when more similar queries exist in
the index, BM25 is able to rank the apps more effectively. However,
on UniMobile-T, k-NN-AWE performs best in terms of all metrics.
Given that UniMobile-T does not contain queries belonging to the
same task in training and test sets, this suggests that leveraging a
pre-trained word embedding helps k-NN capture query similari-
ties more effectively when the queries are less similar, leading to a
better generalization. This can also be seen when comparing the
performance of k-NN and k-NN-AWE, given that k-NN-AWE con-
sistently outperforms k-NN. Regarding LambdaMART, we see that
even though it benefits from multiple features, it does not perform
as well as k-NN-AWE and BM25 on UniMobile-Q. On the contrary,
we see that it performs better on UniMobile-T showing that the
AWE-based feature improves its generalization.

As we can see, NTAS1-pairwise and NTAS2 outperform all the
methods, on both data splits, in terms of all evaluation metrics. All
the improvements are statistically significant suggesting that using
queries to learn the app representation helps our approach learn the
similarities more effectively. Considering the relative difference on
the two data splits, we observe that our proposed approaches also
show a drop. Compared to other methods (except for StaticRanker),
we observe that NTAS1-pairwise and NTAS2 consistently have a
lower relative drop across UniMobile-Q and UniMobile-T, indicating
that the trained app embedding is an effective way to represent
mobile apps based on the queries that are assigned to them. Among
our proposed methods, NTAS1-pairwise has the least relative drop
(−7.4% on average), suggesting that a pairwise setting leads to a
higher generalization.

Representation analysis. We reduce the dimensionality of the
learned app representations by projecting them to a two-dimensional
space using t-Distributed Stochastic Neighbor Embedding (t-SNE) [24].
Figure 8 shows the proximity of the representation of different
apps10 being grouped in some clusters. For instance, all social me-
dia apps are placed close to each other. Also, we see that location
search and navigation apps are in another cluster. Interestingly,
Gmail is close to File Manager, Contacts, and WhatsApp. People
usually search for attachments or their contacts using Gmail, ex-
plaining their proximity. Google Search, on the other hand, belongs
10Given space limitations, we could not include all the apps in this figure.

https://sourceforge.net/p/lemur/wiki/RankLib/


Figure 8: Proximity of different app representations learned
by NTAS1 (pairwise). This plot is produced by reducing the
dimensionality (using the t-SNE algorithm) of the app rep-
resentations to two for visualization.

to no cluster. This could be due to the variety of queries people
submit to Google Search, placing it somewhere in the center of all
other apps. However, we cannot explain why YouTube is close to
WhatsApp, or why Play Store is close to Amazon. Hence, Figure 8
shows that learning high-dimensional app representation using the
queries submitted to them is effective, though perhaps not perfect.

Performance on apps. Here, we compute the mean performance
of the queries targeted to a specific app and plot the result for each
app in Figure 9. For the sake of visualization, we only compare
the performance of NTAS1-pairwise with three other methods in
terms of MRR. We see that all models perform well in ranking less
personal apps such as Google Search, YouTube, and Google Maps.
Since none of the models incorporate users’ personal data, this
result is expected. This suggests users’ personal data can be lever-
aged to rank apps such as File Manager, Contacts, and Calendar
higher. Also, users’ activities on their social media apps should be
leveraged to provide a more effective personalized ranking. More-
over, we see that k-NN-AWE is more robust across the two data
splits, compared to other baselines. In particular, it performs well in
ranking Contacts suggesting that the proximity of contact names in
the high-dimensional space of word embedding enables k-NN-AWE
to outperform other models. Finally, it can be seen that NTAS1-
pairwise is more robust across the two data splits, compared to
other methods. Specifically, it outperforms all other methods for
the majority of apps. However, NTAS1-pairwise performs worse
than other methods for File Manager, on both data splits. This
is mainly due to insufficient number of training data, given the
diversity of the queries related to this app.

Performance on tasks.We are interested in seeing how methods
perform differently with respect to different search tasks. To do so,
we averaged the performance (nDCG@3) of all queries belonging
to the same task. Then, we grouped the tasks by the total number of
unique apps selected by users and plotted their results in Figure 10.
Our intuition was that if different users chose several apps for a
single task, it can be a sign that the task is more challenging for the
models. We can see in the figure that as the number of unique apps
per task raises, the models perform worse. Although, the negative
correlation is not very strong (Pearson: −0.3049 and −0.3450 for
UniMobile-Q and UniMobile-T, respectively), it is consistent with

(a) UniMobile-Q Dataset

(b) UniMobile-T Dataset

Figure 9: Performance comparison with respect to certain
apps on both data splits.

(a) UniMobile-Q Dataset (b) UniMobile-T Dataset

Figure 10: Negative correlation between the number of
unique apps users selected for a task and performance.

all models and evaluation metrics. This indicates that if a task can be
done using multiple apps, their corresponding queries also become
more difficult for a system. A multi-app task can be either very
personal (i.e., every user chooses their own favorite app) or very
general (i.e., it can be done using many apps). Therefore, one can
explore incorporating users’ regular app usage patterns to perform
a personalized target app selection.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced and studied the task of target apps
selection, which was motivated by the growing interest in con-
versational search systems where users speak their queries to a
unified voice-based search system. To this aim, we presented the
first analysis of mobile cross-app search queries and user behaviors



in terms of the apps they chose to complete different search tasks.
We found that a limited number of popular apps attract most of the
search queries. We further observed notable differences between
queries submitted to different apps. We showed that query length
and content differ among apps. We also showed that, 39% of search
queries were done in Google Search, and it was the top choice of
users in 35% of the tasks. Given that more than 71% of the defined
tasks could be done with the current features of Google Search, this
indicates that users prefer to search using a more specific app. We
carried out the experiments and analyses on the dataset of cross-app
mobile queries that we collected through crowdsourcing.

Since the mobile information environment is uncooperative and
the data is heterogeneous, representing each app for the target apps
selection task is challenging. We proposed two models that learn
high-dimensional latent representations for the mobile apps in an
end-to-end training setting. Our first model produces a score for
a given query-app pair, while the second model produces a prob-
ability distribution over all the apps given a query. We compared
the performance of our proposed method with state-of-the-art re-
trieval baselines splitting data following two different strategies.
Our approach outperformed all baselines significantly.

There are several directions for future work. We plan to conduct
a follow-up study asking volunteers to install an app which will
track their movement and sense their context. We will ask the vol-
unteers to report their daily mobile search experiences using our
app. This will enable us to study user behaviors while searching
with different apps in the wild. Since we will not ask users to com-
plete predefined search tasks, we expect to see different distribution
of search tasks and selected apps. Moreover, a real unified mobile
search system would have access not only to the users’ personal
selection of apps, but also to their daily app usage patterns. Incor-
porating such information into the ranking model is an interesting
future direction. More importantly, mobile devices can be used
to sense users’ context. Another future direction is to study how
the sensed contextual information can be leveraged to enhance a
ranking model. Also, search results aggregation and presentation
should be explored in the future, considering two important factors:
high information gain and user satisfaction.
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