1805.02816v1 [cs.IR] 8 May 2018

arXiv

Attention-based Hierarchical Neural Query Suggestion

Wanyu Chen

Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
wanyuchen@nudt.edu.cn

Honghui Chen
Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
caifei@nudt.edu.cn

ABSTRACT

Query suggestions help users of a search engine to refine their
queries. Previous work on query suggestion has mainly focused
on incorporating directly observable features such as query co-
occurrence and semantic similarity. The structure of such features
is often set manually, as a result of which hidden dependencies be-
tween queries and users may be ignored. We propose an Attention-
based Hierarchical Neural Query Suggestion (AHNQS) model that
combines a hierarchical structure with a session-level neural net-
work and a user-level neural network to model the short- and
long-term search history of a user. An attention mechanism is
used to capture user preferences. We quantify the improvements
of AHNQS over state-of-the-art recurrent neural network-based
query suggestion baselines on the AOL query log dataset, with
improvements of up to 21.86% and 22.99% in terms of MRR@10 and
Recall@10, respectively, over the state-of-the-art; improvements
are especially large for short sessions.

CCS CONCEPTS

«+ Information systems — Query suggestion;

KEYWORDS

Neural methods for information retrieval, Query suggestion

1 INTRODUCTION

Modern search engines offer query suggestions to help users express
information need effectively. Previous work on query suggestion,
such as probabilistic models and learning to rank techniques, mainly
relys on features indicating dependencies between queries and
users, such as clicks and dwell time [2, 7]. However, the structure

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’18, July 8-12, 2018, Ann Arbor, MI, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5657-2/18/07...$15.00
https://doi.org/10.1145/3209978.3210079

Fei Cai”
Science and Technology on Information Systems
Engineering Laboratory
National University of Defense Technology
Changsha, China
caifei@nudt.edu.cn

Maarten de Rijke
Informatics Institute
University of Amsterdam
Amsterdam, The Netherlands
derijke@uva.nl

of those dependencies is usually modeled manually. As a result,
hidden relationships between queries and a user’s behavior may
be ignored. Consequently, recurrent neural network (RNN) based
approaches have been proposed to tackle these challenges. A query
log can be treated as sequential data that can be modeled to predict
the next input query. However, existing neural based methods only
consider so-called current sessions (in which a query suggestion is
being generated) as the search context for query suggestion [8].

We propose an Attention-based Hierarchical Neural Query Sug-
gestion (AHNQS) model that applies a user attention mechanism
inside a hierarchical neural structure for query suggestion. The
hierarchical structure contains two parts: a session-level RNN and
a user-level RNN. The session-level RNN captures queries in the
current session and is used to model the user’s short-term search
context to predict their next query. The user-level RNN captures
the past search sessions for a given user and is applied to model
the user’s long-term search behavior to output a user state vec-
tor representing their preferences. We use the hidden state of the
session-level RNN as the input to the user-level RNN; the user state
of the latter is then used to initialize the first hidden state of the
next session-level RNN.

In addition, we apply an attention mechanism inside the hierar-
chical structure that is meant to capture a user’s preference towards
different queries in a session. This addition is based on the assump-
tion that different queries in the same session may express different
aspects of the user’s search intent [1], e.g., queries with subsequent
click behavior are more likely to represent the user’s information
need than those without. An attention mechanism can automati-
cally assign different weights for hidden states of the queries in the
session-level RNN. The attentive hidden states together compose
the session state, which is used as input for the user-level RNN.

We compare the performance of AHNQS against a state-of-the-
art query suggestion baseline and variants of RNN based query
suggestion methods using the AOL query log. In terms of query
suggestion ranking accuracy we establish improvements of AHNQS
over the best baseline model of up to 21.86% and 22.99% in terms
of MRR@10 and Recall@10, respectively.

Our contributions in this paper are: (1) We tackle the challenge
of query suggestion in a novel way with neural network based
method. (2) We propose AHNQS, which adopts a hierarchical struc-
ture containing a user attention mechanism to better capture the
user’s search intent. (3) We analyse the impact of session length on

https://doi.org/10.1145/3209978.3210079

R R R N
Output layer (T/ <T/ (T/ (T/
N R R N

Hidden layer @%/_»@i‘/_»@f‘/ cee @TU j—> Session state s,
o N
Input layer < f\qz\/ Ga\/ @«y

Figure 1: Structure of the NQS model.

query suggestion performance and find that AHNQS consistently
yields the best performance, especially with short search contexts.

2 APPROACH
2.1 Session-level RNNs for query suggestion

As in [10], session-level RNNs are our starting point. Here in the
neural based query suggestion model (NQS), queries in the current
session are taken as sequential input and used to output the proba-
bility of being the next query for the query suggestion candidates.

Formally, we assume that a query session Session; contains N;
queries, denoted as Session; = (q1,¢,92,¢,93,¢» - - - » 4N, ¢)- As shown
in Fig. 1, for generating the input vector of the network, we use
a 1-of-N encoding of g;, i.e., the vector length equals the number
of unique queries V and only the coordinate corresponding to the
i-th query is one, the others are zero. We choose to use the Gated
Recurrent Unit (GRU) [3] as our non-linear transformation. The
hidden state h, can be calculated by using the previous hidden

state h,—1 and the candidate update state h;;:

hn = (1= up)hn_1 + tnhn,)
where the update gate u, can be generated by:
un = 0(Ilugn,t + Huhn—1). @
The candidate update state hy, is calculated by:
hp = tanh(Iqn,; + H(rp - hn-1)), ®3)
where the reset gate rp, is:
rn = 0(Irqn,t + Hrhn-1) 4

where I, I,,, I, € R9*V 1 H, H, € R%>dn and dy, is the number
of dimension of the hidden state. The H matrices are used to keep
or forget the information in h,_1.

We use RNNsession and RNNyser to denote the GRU function. The
final hidden state of a session-level RNN is used to indicate the
session state, Sy = hp, ;. The output of the session-level RNN are
the scores of query suggestion candidates being predicted as the
next query: sp ¢ = g(hn,+), where g(-) is the active function of the
output layer, which can be a softmax or tanh depending on the loss
function of the neural network. We generate the query suggestion
list in the test set according to the scores of query candidates.

We choose a pairwise loss function that forces positive query
suggestion samples to be ranked higher than the negative ones.
Actually, there are several pairwise ranking loss functions, including
cross-entropy and TOP1 [5]. In the field of recommender systems,
TOP1 has proved to outperform others, so we set:

—si0)+ o(s2,), %)

where s;j ; and s;, ; denote the score of a negative query candidate
and a ground truth query, respectively.

1 N,
Loss = N ijsl o(sj, ¢

2.2 Hierarchical user-session RNN for query
suggestion

Clearly, the NQS model only models the short-term search context.
Here, we model the long-term search behavior of a given user with
a user-level RNN, producing the hierarchical NQS model (HNQS).

@) (@)

\‘) NSNS
Session-level RNN

Figure 2: Structure of the HNQS model.

We assume that a user u has N, query sessions, User,, = (Sessiony, y,
Sessiong, y, . . ., Sessionyy,, ;). In a user-level RNN, the input is the
session state S; and the hidden state can be calculated as:

hn,u = RNNuser(hn—l,u’ Sn,u)v (6)

where Sy, ;, is the session state of the n-th query session of user u,
which is equal to the last hidden state of the session-level RNN.
As shown in Fig. 2, we use the final hidden state of the user-
level RNN to denote the user state, Uy = h;, 4, that contains the
information about the search behavior from a user’s past sessions
and thus can be applied in the session-level RNN. In HNQS, the
session-level RNN is initialized with a user state as follows: hg ;41 =
tanh(W - U; + bg). We choose to use only the initialization strategy
for session-level RNN with user state Uy, instead of transporting the
user information from U; throughout the whole session-level RNN
including initialization, updating and output. The GRU unit has both
long and short term memory [6] and can automatically transport
the user state information within the network, which leads to a
better performance when combined with our initialization strategy.

2.3 Attention-based hierarchical RNN for
query suggestion

We assume that submitted queries that trigger subsequent click
behavior have a better expression of the user’s search intent. We
hypothesize that queries in a session should have different weights
to reflect the user’s information need and employ an attention
mechanism on top of the HNQS model to capture the user’s pref-
erence for different queries in a session and then aggregate the
representations of informative queries.

Fig. 3 shows how we update the user-level RNN in AHNOQS as fol-
lows: ht,yy, = RNNyser(ht—1,u,Ct), where C; = ZjN:Il ajehj ¢ is the
attentive representation of the session state, a weighted sum of the
hidden states hj ; from the session-level RNN, where «; is the nor-
malized attention score for the j-th query in session Session;, which
is interpreted as the contribution of the query to the preference of
the user: 1)

exp(e;
ajr = Mp—ﬂ’ (7)
2=y expler)
-1, 4 Wahj: is the initial attention score computed
with user state ht 1,u and hidden state hj; in a session-level RNN,

where ej; = nT

—_— e ——_—— — =

User

Figure 3: Structure of the AHNQS model.

Table 1: Dataset statistics.

Variable Training Test
Queries 1,545,543 576,817
Unique queries 61,641 33,519
Sessions 166,414 67,716
Users 23,308 19,255
Average # queries per session 9.28 8.52
Average # sessions per user 7.14 3.52

where the parameters W, can be jointly trained with all the other
components of AHNQS as the attention mechanism allows the
gradient of the loss function to be backpropagated.

Thus, AHNQS combines a hierarchical user-session RNN and
an attention mechanism for query suggestion; the hierarchical
structure models the user’s short and long-term search behavior,
while the attention mechanism captures the user’s query preference.

3 EXPERIMENTS

Research questions. (RQ1) Do the hierarchical structure and at-
tention mechanism incorporated in HNQS and AHNQS help to
improve the performance of the neural query suggestion model
and beat the state-of-the-art method? (RQ2) What is the impact
on query suggestion performance of session length, i.e., short vs.
medium length vs. long sessions?

Model summary. As AHNQS is based on a neural network to
capture the dependencies between queries and users, we compare
it with the state-of-the-art neural models for query suggestion. As
an aside, Sordoni et al. [10] incorporate a neural query suggestion
model as a feature into a learning to rank approach and thus be-
longs to the feature engineering approaches we do not compare
with. We consider the following baselines for comparison: (1) ADJ:
original co-occurrence based query suggestion method [7]; (2) NQS:
a simple session-based RNN method for query suggestion [5], §2.1.
In addition, we consider: (3) HNQS: a hierarchical structure with
user-session level RNN for query suggestion, §2.2; (4) AHNQS: an
attention-based hierarchical RNN model for query suggestion, §2.3.

Datasets and parameters. We use the AOL query log [9] and
preprocess the dataset following [4]. Queries are separated into
sessions by 30 minutes of inactivity. We remove queries with less
than 20 occurrences and keep sessions with length larger than 5
as well as users with at least 5 sessions to provide sufficient user-
session information. The training set consists all but the last 30
days in the search history; the test set consists of the last 30 days
in the log after filtering out queries that do not exist in the training
set. Table 1 details the statistics of the dataset used.

Table 2: Parameters used for each model.

Model Batch Dropout Learning rate Momentum
NQS 50 0.5 0.01 0.0
HNQS 50 0.1 0.1 0.0
AHNQS 50 0.1 0.1 0.0

We use GRUs as the RNN units and optimize the neural models
using TOP1 loss function and AdaGrad with momentum for 20
epochs. The number of hidden units is set to 100 in all cases and
we use dropout regularization. We optimize the hyperparameters
by running 100 experiments at randomly selected points of the
parameter space. Optimization is done on a validation set, which is
partitioned from the training set with the same procedure as the
test set. We summarize the best performing parameters in Table 2.
Training and evaluation. As the lengths of sessions are different
and our goal is to capture how a session evolves over time, tra-
ditional methods to form batches in natural language processing
are not suitable for our query suggestion task. We thus use par-
allel mini-batches with the identifications of users and sessions
following [5]. We evaluate the models by providing queries in a
session one by one and measure the ranking performance of query
suggestions with MRR and Recall on the test set.

4 RESULTS AND DISCUSSION

Overall performance. To answer RQ1, we examine the query
suggestion performance of the baselines as well as the HNQS and
AHNQS models. Table 3 shows the results. ADJ outperforms NQS,

Table 3: Performance of query suggestion models. The re-
sults by the best baseline and the best performer in each col-
umn are underlined and in boldface, respectively. Statistical
significance of pairwise differences of HNQS and AHNQS vs.
the best baseline) is determined by a t-test (4/Y for a = .01).

Model Recall@10 MRR@10
ADJ 7072 6922
NQS 6444 6148
HNOQS 81384 78744
AHNQS .86184 .85144

with 9.74% and 12.58% improvements in terms of Recall@10 and
MRR@10, respectively. This may be because that the NQS model
(without knowing about individual users) fails to capture informa-
tion from the past search history. HNQS shows significant improve-
ments over ADJ, with Recall@10 improved 15.07% and MRR@10
improved 13.75%. The hierarchical structure effectively incorpo-
rates a given user’s previous search behavior and thus improves
accuracy. The best performance is obtained by AHNQS, which out-
performs AD] by 21.86% (Recall@10) and 22.99% (MRR@10), and
HNQS by 5.9% (Recall@10) and 8.13% (MRR@10). The latter differ-
ence indicates that attention can strengthen the model’s ability to
rank query suggestion candidates effectively.

To determine the impact of the hierarchical structure and at-
tention mechanism, we consider a sample session and user, and
compare the hidden states of an RNN in NQS and HNQS, respec-
tively (Fig. 4a and 4b), as well as the hidden states of an RNN in
HNQS and AHNQS, respectively (Fig. 4c and 4d). The lighter the

(c) user-level RNN in HNQS. (d) user-level RNN in AHNOQS.
Figure 4: Visualizing hierarchical structure ((a) and (b)) and
attention mechanism ((c) and (d)). The lighter the area in the
plot, the more important the information is.

1

:
[ADJ
0.97 [NQS 1
I HNQS
I AHNQS

Recal @10
o
(2]

short medium long
Session length

Figure 5: Performance with different session lengths.

area in the plot, the more important the information is. In Fig. 4a
and 4b, the session contains 102 queries (x-axis); the number of
hidden units is 100 (y-axis). Compared with Fig. 4a, we can see
that the hierarchical structure modifies the user’s search intent
especially at the first positions in a session in Fig. 4b. There is a
fluctuation around the 36th to 40th queries in Fig. 4b, which may
be due to the fact that we use a GRU unit inside the session-level
RNN to transport the user state information within the network.

Turning to the attention mechanism (Fig. 4c and 4d), we select
a user with 105 sessions (x-axis) and the number of hidden units
in the user-level RNN is set to 100 (y-axis). Compared with Fig. 4c,
the user’s preference towards different information is more equally
distributed inside the user-level RNN in Fig. 4d. Moreover, going
from left to right there are fewer abrupt shifts form high interest
(light) to low interest (dark) areas, or vice versa, in Fig. 4d than
in Fig. 4c: the attention mechanism can help to describe a user’s
long-term search preferences towards different topics.

Impact of current session length. For RQ2, we expect the cur-
rent session length to have an impact on the performance of query
suggestion models. We report separate results for short (2 queries),
medium (3 or 4 queries) and long current sessions (at least 5 queries)
on the test set in Fig. 5.

As the session length increases, the performance in terms of
Recall@10 of all query suggestion models improves and AHNQS al-
ways achieves the highest scores. As for baselines, ADJ outperforms
NQS; the margin between them shrinks as the session length in-
creases. For short current sessions, HNQS and AHNQS vyield larger

improvements than for medium and long current sessions. This is
due to the fact that when predicting a user’s search intent at the
first positions of a session, the hierarchical structure within RNN
models can provide effective information from a user’s past search
history and thus can improve the accuracy for query suggestion
(compared to ADJ and NQS).

For MRR a similar picture emerges (not shown). AHNQS shows
bigger improvements over HNQS, of 11.23%, 7.13% and 8.74% in
terms of MRR@10, for short, medium and long sessions, respec-
tively, vs. improvements of 5.88%, 5.97% and 3.61% for Recall@10.
This confirms our intuition about attention mechanisms, i.e., that
they help to improve precision.

5 CONCLUSIONS AND FUTURE WORK

We have proposed an attention-based hierarchical neural query sug-
gestion model (AHNQS) that combines a hierarchical user-session
RNN with an attention mechanism. The hierarchical structure can
model both the user’s short-term and long-term search behavior
effectively, while the attention mechanism captures a user’s prefer-
ence towards certain queries over others. The experimental results
also confirm the effectiveness of the proposed model for query
suggestion across sessions with various lengths. As to future work,
we plan to evaluate our model on other datasets so as to verify its
robustness. We also want to investigate the performance of AHNQS
when combining semantic similarity with the hierarchical structure,
i.e., different encoding methods for input queries.

Acknowledgments. This research was supported by the National
Natural Science Foundation of China under No. 61702526, the Na-
tional Advanced Research Project under No. 6141B0801010b, Ahold
Delhaize, Amsterdam Data Science, the Bloomberg Research Grant
program, the China Scholarship Council, the Criteo Faculty Re-
search Award program, Elsevier, the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agree-
ment nr 312827 (VOX-Pol), the Google Faculty Research Awards
program, the Microsoft Research Ph.D. program, the Netherlands
Institute for Sound and Vision, the Netherlands Organisation for
Scientific Research (NWO) under project nrs CI-14-25, 652.002.001,
612.001.551, 652.001.003, and Yandex. All content represents the
opinion of the authors, which is not necessarily shared or endorsed
by their respective employers and/or sponsors.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate. In ICLR’14.

[2] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2017. Personalized
query suggestion diversification. In SIGIR’17. ACM, 817-820.

[3] Kyunghyun Cho, Bart van Merrienboer, Caglar Giilcehre, et al. 2014. Learn-
ing phrase representations using RNN encoder-decoder for statistical machine
translation. In EMNLP’14. ACL, 1724-1734.

[4] Jiafeng Guo, Xueqi Cheng, Gu Xu, and Xiaofei Zhu. 2011. Intent-aware query
similarity. In CIKM’11. ACM, 259-268.

[5] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, et al. 2016. Session-based
recommendations with recurrent neural networks. In ICLR’16.

[6] Sepp Hochreiter and Juergen Schmidhuber. 1997. Long short-term memory.
Neural Computation 9, 8 (Nov 1997), 1735-1780.

[7] Chien-Kang Huang, Lee-Feng Chien, and Yen-Jen Oyang. 2003. Relevant term
suggestion in interactive web search based on contextual information in query
session logs. 7. Am. Soc. Inf. Sci. Technol. 54, 7 (May 2003), 638-649.

[8] Kezban Dilek Onal et al. 2018. Neural information retrieval: At the end of the
early years. Information Retrieval Journal (2018). To appear.

[9] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.

In InfoScale’06. ACM, Article No. 1.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, et al. 2015. A hierarchical
recurrent encoder-decoder for generative context-aware query suggestion. In
CIKM ’15. ACM, 553-562.

=
2

	Abstract
	1 Introduction
	2 Approach
	2.1 Session-level RNNs for query suggestion
	2.2 Hierarchical user-session RNN for query suggestion
	2.3 Attention-based hierarchical RNN for query suggestion

	3 Experiments
	4 Results and Discussion
	5 Conclusions and Future Work
	References

