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ABSTRACT
Dynamic Sampling is a novel, non-uniform, statistical sampling
strategy in which documents are selected for relevance assessment
based on the results of prior assessments. Unlike static and dynamic
pooling methods that are commonly used to compile relevance as-
sessments for the creation of information retrieval test collections,
Dynamic Sampling yields a statistical sample from which substan-
tially unbiased estimates of effectiveness measures may be derived.
In contrast to static sampling strategies, which make no use of rele-
vance assessments, Dynamic Sampling is able to select documents
from a much larger universe, yielding superior test collections for
a given budget of relevance assessments. These assertions are sup-
ported by simulation studies using secondary data from the TREC
2017 Common Core Track.

ACM Reference Format:
Gordon V. Cormack and Maura R. Grossman. 2018. Beyond Pooling. In SIGIR
’18: The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3209978.3210119

1 INTRODUCTION
This paper argues that the pooling method should be replaced by
“Dynamic Sampling” (“DS”), in which active learning is used to
select a stratified sample of documents for assessment to form the
“gold standard” of relevance in an information retrieval (“IR”) test
collection. The essential idea is to adapt Scalable Continuous Active
Learning (“S-CAL”) [4]—a technology-assisted review method that
repeatedly draws samples for assessment from strata of exponen-
tially increasing size—for this task.

Each stratum consists of the documents deemed next-most-likely
to be relevant by a learning algorithm, based on prior assessments.
The feature representation employed by the learning algorithmmay
be derived from the relevance rankings afforded by the systems
to be evaluated, relevance rankings afforded by reference systems,
document content, or any combination of these approaches.

Together, the samples comprise a statistical sample of an arbi-
trarily large portion of the entire corpus—not just the top-ranked
documents submitted for evaluation—whose size is bounded by a
fixed assessment budget, regardless of the number of relevant doc-
uments in the corpus (R). An unbiased Horvitz-Thompson estimate
of recall-independent measures, such as precision at rank (P@k),
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or R, can be derived from this sample [11]. Estimators for recall-
dependent measures, such as average precision, R-precison (P@R),
or NDCG, which employ a non-linear combination of these elemen-
tary estimators, entail bias, which can be mitigated by arranging a
low-variance estimate of R.

Dynamic Sampling is particularly suitable for creating test col-
lections that may be used to evaluate the effectiveness of methods
that are not available at the time of construction. Provided enough
relevant documents are found by DS to provide a low-variance
estimate of R for each topic, future methods have no systematic
advantage or disadvantage relative to those whose rankings were
used as input to the DS process.

Using data from the TREC 2017 Common Core Track1 [1], we
simulate the use of DS to create test collections using assessment
budgets of 100, 200, 300, and 600 documents per topic, which com-
pare favorably to the official Common Core test collection, which
was derived using the “max mean” dynamic-pooling strategy [9].

2 THE TREC 2017 COMMON CORE TRACK
The TREC 2017 Common Core Track (“Core Track”) offered a strong
baseline depth-100 subset pool consisting of 30,030 relevance as-
sessments over 50 topics [9]. The authors employed the AutoTAR
active learning method [5] to assess 11,825 documents for the same
50 topics. These two efforts yielded 9,002 and 8,986 positive assess-
ments, respectively, but only 3,715 in common between them. For
the purpose of this exposition, we consider ground truth to be the
union of these two sets.

The Core Track baseline is atypical because of two factors that
enured to its advantage. First, the topics had been previously used
for the TREC 2004 Robust Track [16], yielding 76,783 relevance
assessments, albeit for a different set of documents. Thirty-three
of the topics had also been used for the TREC 2005 Robust Track
[17], yielding 23,911 assessments for yet another set of documents.
Of the 55 system rankings used to form the Core Track depth-100
pool, 14 were influenced by these 100,694 prior assessments.

A second factor enuring to the advantage of the baseline was
the influence of manual assessments conducted by participating
teams such as ourselves. At least one other team also employed
active learning and assessed many thousands of documents in the
course of their participation; a total of 12 system rankings (including
three of ours) were influenced by manual effort. The remaining 29
rankings used to form the pool were derived using fully automatic
methods, without influence from historical or current relevance
assessments.

While 75 runs, each consisting of 10,000 documents per run,
were submitted by participating teams, the Core Track assessment
effort considered only the top-ranked 100 documents from 55 runs
deemed “highest priority” by each of the Track participants.

1See https://trec-core.github.io/2017/.
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The experiments detailed below evaluate Dynamic Sampling
methods that consider all submitted documents; a pool consisting
of one-third more runs and one-hundred times the pool depth.
We also consider the effect of restricting the pool to the 29 fully
automatic methods. Finally, we consider DS methods that use no
pool at all, selecting documents for assessment from the universe
of documents, based on their tf-idf word representation.

3 DYNAMIC POOLING
Move-to-front pooling (“MTF”) [6] is arguably the first application
of active learning to the selection of documents for assessment and
inclusion in an IR test collection [13]. Unlike the depth-k pooling
method, which selects the top-ranked k documents from each of a
set of participating runs for assessment, active learning methods
repeatedly select documents from among those not yet assessed,
based on the relevance assessments rendered for previously selected
documents. A number of studies [9, 13] indicate that for k < 100,
MTF and other active learning methods yield better test collections
than depth-k pooling, for the same number of assessments, relative
to a gold-standard test collection constructed using depth-1002
pooling, which has been the de facto standard for nearly three
decades.

The assumption that depth-100 pooling constitutes ground truth
has influenced current practice, which typically applies active learn-
ing methods to select documents only from the depth-100 pool. This
“dynamic pooling” approach requires fewer relevance assessments
than the depth-100 pool, but yields an inferior test collection that
can, at best, approach the quality of the depth-100 pool. Hereafter,
we use the term “subset pooling” to refer to any strategy that se-
lects a subset of a fixed-depth pool for assessment, and “dynamic
pooling” to refer to a subset-pooling strategy that employs active
learning. Thus, depth-k , meta-ranking, and statistical sampling are
subset-pooling strategies, while MTF, hedge, and “bandit” methods
[9] are dynamic-pooling strategies.

4 SUBSET SAMPLING
The literature describes several methods to employ statistical sam-
pling as a subset-pooling strategy [3, 11, 19]. The general approach
is to draw a uniform or stratified random sample from the pool
for assessment, and then to measure the effectiveness of a run by
applying a statistical estimator to approximate the value of some
effectiveness measure (e.g., P@k or average precision), were the
entire pool to be judged.

The “infAP” family of methods [19] (generically, “infAP”) use
a separate statistical estimator for each stratum, and combine the
results to form an overall estimate. The “statAP” family of methods
[11] (generically, “statAP”), on the other hand, employ a Horvitz-
Thompson estimator [10] to form an overall estimate based on
the inclusion probabilities of the relevant documents in the strata,
without regard to the strata from which the documents came. The
minimal test collections family of methods [3] (generically, “MTC”)
are not statistical sampling methods, as they provide intentionally
biased estimates for the purpose of distinguishing among runs.

2The arguments here apply to depth-K pooling where K > k , but depth-100 is nearly
universal, and should be considered synecdoche for depth-K .

Dynamic Sampling differs from subset sampling in that it is not
constrained to selecting documents from a pool, and it identifies
strata sequentially in response to the relevance assessments for pre-
vious strata. Of the methods used for subset sampling, only statAP
is amenable for DS, because it provides a reasonably unbiased es-
timate, even with many sparsely sampled strata. In our empirical
work, we use Pavlu’s reference implementation of statAP.3

5 TOTAL RECALL
Interactive Search and Judging (“ISJ”), which involves a sustained
search effort to identify and label a substantial fraction of all rele-
vant documents in a collection, has been shown to yield test collec-
tions of comparable quality to those yielded by depth-100 pooling,
with less effort [6, 14]. More recently, a particular active learning
approach has been shown to compare favorably to ISJ, while obvi-
ating the need for repeated query reformulation by a search expert
[5]. The TREC 2002 Filtering Track [15] coordinators used a simi-
lar method to construct a substantially complete set of relevance
assessments prior to the conduct of the Track, so that the relevance
assessments could be used to simulate real-time feedback, as well
as to evaluate the effectiveness of the submitted runs. Subsequent
application of depth-100 pooling uncovered a number of relevant
documents that were not discovered by the prior effort, but those
additional documents were found to have an insubstantial impact
on the resulting effectiveness estimates.

The current state of the art in active learning for this purpose is
AutoTAR [5], as realized by the TREC Total Recall Track Baseline
Model Implementation (“BMI”).4 AutoTAR was used to label test
collections prior to the TREC 2015 and 2016 Total Recall Tracks, and
also was provided to Track partcicipants as a baseline method. No
submitted run consistently bettered BMI, whether the effectiveness
was measured using the official AutoTAR-selected assessments,
statistically sampled assessments, or post-hoc assessments by one
of the participating teams [7].

The authors used a modified version of BMI to prepare their
submission to the Core Track [2]. Although at the time of this writ-
ing, only 50 of the Core Track topics had been assessed, 250 topics
were provided to participants. For 250 topics, the authors spent 64.1
hours assessing 42,587 documents (on average, 15.4 mins/topic; 5.4
secs/doc), judging 30,124 of them to be relevant (70.7%). Of these
judgments, 11,825 pertained to the 50 topics that have, to date, been
officially assessed. Given the Core Track’s tight timeline, our ef-
forts were necessarily incomplete. Nonetheless, we judged relevant
roughly the same number of documents as the Core Track’s offi-
cial assessors. Of these, more than one-third were not in the Core
Track’s assessment pool. A statistical sample embedded in one of
our submissions indicates that the majority of these unassessed doc-
uments would have been judged relevant, had they been assessed
[2].

The TREC 2015 and 2016 Total Recall results show that AutoTAR
can achieve near-perfect recall given 2R+100 assessments per topic,
where R is the number of relevant documents to be found [8, 12].
According to this rule of thumb, we would have had to expend
3See http://trec.nist.gov/data/million.query/07/statAP_MQ_eval_v3.pl. This implemen-
tation corrects a serious error in an unpublished but commonly cited manuscript [10].
The description in Pavlu’s dissertation [11] is correct.
4See http://cormack.uwaterloo.ca/trecvm/.
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about 2 12 times as much assessment effort to achieve near-perfect
recall, if we assume that there were 14,273 relevant documents, in
accordance with our ground-truth assumption.

Over and above the absolute cost of obtaining relevance assess-
ments is the problem of budgeting and resource allocation. It is
not known in advance how many documents will be relevant to
each topic, and therefore how assessment resources should be ap-
portioned or scheduled over topics. The variance of R in the Core
Track topics is huge, ranging from 9 to 1,377, with an average of
285 and a mean of 191. Topics with large R consume an inordinate
fraction of the budget, as may topics with very small R, where it
could be a challenge to find any relevant documents.

6 DYNAMIC SAMPLING
Dynamic Sampling adapts AutoTAR to identify a sequence of strata
with exponentially increasing size, which are sampled with dimin-
ishing frequency, so that the total number of documents assessed
per topic is equal to a sampling budget that is fixed in advance. A
sampling budget of precisely 600 assessments per topic, or 30,000
assessments in total, nearly equals the 30,030 assessments of the
Core Track depth-100 subset pool.

The exponentially increasing strata are precisely the exponen-
tially growing batches of documents identified by AutoTAR; how-
ever, a uniform random sample of each batch is selected for assess-
ment, and used to train the learning method, which then identifies
the next batch. The main idea is derived from Cormack and Gross-
man’s “S-CAL” [4], which is itself derived from AutoTAR. While the
purpose of S-CAL is to achieve the best possible classifier over an
infinite population, with statistical estimation playing a supporting
role, the purpose of Dynamic Sampling is to achieve the best pos-
sible statistical estimator, with classification playing a supporting
role. In response to this difference in emphasis, we amended the
procedure by which the sampling rate decays.

Algorithm 1 Dynamic Sampling Algorithm (from S-CAL [4]).
1: Construct a relevant pseudo-document from topic description.
2: The initial training set contains only the pseudo-document.
3: Set the initial batch size B to 1.
4: Set the initial decay threshold T to hyper-parameter N .
5: Temporarily augment the training set by adding 100 random

documents from the collection, labeled “not relevant.”
6: Score all documents using a model induced from training set.
7: Remove the random documents added in step 5.
8: Select the highest-scoring B documents not previously selected.
9: Draw n =

⌈B ·N
T

⌉
≤ B random documents from step 8.

10: Render relevance assessments for the n documents.
11: Add the assessed documents to the training set.
12: Increase B by

⌈ B
10
⌉
.

13: If the number of assessed relevant documents R ≥ T , double T .
14: Repeat 5 through 13 until assessment budget A is reached.

The Dynamic Sampling method is outlined in Algorithm 1. The
only input to the method, other than the document collection, topic
statement, and assessment budget A, is a hyper-parameter N con-
trolling the decay of the sampling rate. At the outset, and until
at least N relevant documents are discovered, every document in

every batch presented by AutoTAR is presented for assessment, and
used to train the model. In the event that N documents are never
found, documents are examined exhaustively until the assessment
budget is met. Once N relevant documents are found, the sampling
rate is halved until N more relevant documents are found, and so
on, until the assessment budget is reached.

N quantifies a tradeoff between the objectives of selecting the
largest possible number of relevant documents for assessment, and
sampling a universe containing the largest possible number of rele-
vant documents. In the extreme case where N = A, and also in the
extreme case where R ≤ N , DS is exactly AutoTAR. In the opposite
extreme where N ≪ R, the sampling frequency will nearly vanish,
and the universe will approach the entire document population. We
evaluated all twenty combinations of A ∈ {100, 200, 300, 600} and
N ∈ {12, 25, 50, 100, 200}.

7 FEATURE ENGINEERING
In one version of DS, we represented each document as a tf-idf
word vector, exactly as calculated by BMI. In a second version,
we represented each document as a reciprocal-rank vector with d
dimensions, corresponding to d runs used to form a depth-10000
pool. For the full pool consisting of all Core Track submissions,
d = 75; for the automatic pool consisting exclusively of automatic
runs, d = 29. The value of each feature is set to 1

d · 1
50+ρ , where ρ

is the rank of the document according to the corresponding run. In
Table 1, rows labeled “DN ” denote results using tf-idf and hyper-
parameter N ; rows labeled “RN ” denote results using rank features
from the full pool; and rows labeled “AN ” denote results using the
automatic pool. Rows labeled “RDN ” and “ADN ” denote results
that average the scores from two separate models in Algorithm 1,
step 6: one using tf-idf features; the other using rank features from
the full pool or automatic pool, respectively.

8 RESULTS
The quality of a test collection may be characterized by how well it
computes effectiveness measures for particular runs, or by howwell
it ranks the relative effectiveness of the various runs that it may be
called upon to evaluate. For this short paper, we focus on how well
a test collection ranks the 75 Core Track runs according to MAP,
using Kendall’s τ to compare rankings. We have also computed τAP
[18], variance, and bias, which show the same effect. Table 1 shows
τ for three subsets of the Core Track pool, and the variants of our
Dynamic Sampling method, sorted by the column labeled A = 600.

“Core” denotes the 30, 030-document pool identified by the Core
Track. “Core-Auto” denotes a subset of Core containing assess-
ments only for documents that are among depth-100 pool formed
using only the 29 automatic rankings. Core-Auto contains 15,024
assessments—about 300 per topic—and is therefore included under
A = 300 in Table 1. “Core-Sample” denotes a two-stratum sample,
drawn by the Core Track organizers, of the depth-75 pool of the
55 runs used to form the Core Track pool. The first stratum con-
sists of all documents in the top-10 pool, while the second stratum
consists of a 20% sample of all documents in the top-75 pool, ex-
cluding the documents in the first stratum. Core-Sample contains
15,024 assessments—also about 300 per topic—and is included under
A = 300.
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Table 1: Kendall τ correlation between ground truth and test
collections built using pooling and dynamic sampling.

Method Assessment Budget Per Topic*
A=100 A=200 A=300 A=600

AD50 .835 .932 .971 .986
RD25 .881 .956 .969 .982
R25 .734 .936 .970 .982
R50 .531 .887 .941 .981
R100 .431 .843 .914 .980
RD100 .813 .908 .953 .978
RD50 .837 .933 .963 .977
AD200 .814 .895 .940 .977
A25 .735 .912 .951 .975
RD200 .813 .897 .940 .974
AD100 .815 .918 .945 .972
Core .971†
R12 .873 .947 .962 .967
D50 .794 .918 .956 .967
RD12 .930 .939 .956 .966
D12 .873 .943 .966 .965
AD12 .892 .954 .962 .964
D100 .802 .890 .931 .962
AD25 .882 .946 .949 .961
Core-Sample .944†
D200 .796 .886 .926 .960
A100 .458 .807 .888 .960
D25 .838 .925 .958 .959
R200 .436 .794 .881 .958
A50 .550 .853 .918 .957
A12 .839 .921 .942 .955
A200 .450 .775 .850 .941
Core-Auto .420†

Key
Core Core Track assessment pool
Core-Sample Core Track depth-75 stratified sample
Core-Auto Core Track pool, automatic only
RN Dynamic, all 75 rankings
AN Dynamic, 29 automatic rankings only
DN Dynamic, content
RDN Dynamic, all 75 rankings + content
ADN Dynamic, 29 automatic rankings + content
N denotes hyper-parameter N (see text)
* Fixed budget per topic unless indicated by †

† Variable budget per topic

9 CONCLUSIONS
For assessment budget A = 600, the Core Track collection is near
the median of the various Dynamic Sampling methods. Remarkably,
the top-scoring system for this budget is AD50, which uses only
automatic rankings and document content—along with relevance
feedback—to select documents for assessment. While we cannot say
that the difference between AD50 and RD50 results is substantial,
it does appear that RDN offers no material advantage over ADN .

It also appears that ADN and RDN compare favorably with Core,
except for the smallest N = 12. Of the single-model methods, RN
fares the best, and offers an apparently superior plug-in replacement
to the dynamic-pooling method used by the Core Track. The results
for DN appear to be slightly inferior to those for Core; however,
it should be noted that DN uses no pooling whatsoever, and is
the only technique presented here that could be used to construct
a test collection prior to the conduct of an evaluation task. AN
is remarkably good, considering the narrow set of rankings from
which it is derived, but inferior to the other methods.

For A = 300, the results for ADN , RDN , and RN are nearly as
good as for A = 600, and better than Core-Sample. Perhaps un-
surprisingly, the results for Core-Auto are abysmal, confirming
received wisdom that the pooling method depends on the pres-
ence of manual runs. The extreme difference between between
Core-Auto and AD50 is noteworthy because both methods rely on
information from the same set of automatic runs, and use the same
number of assessments.

The results forA = 100 andA = 200 show an overall degradation
and an increase in variability, but may still reflect useful methods,
as they require one-sixth to one-third as many assessments as the
Core Track effort. An open question remains: Would assessing all
250 topics with DS and a budget of A = 120 have yielded a better
test collection, for the same total effort of 30,000 assessments? We
believe so.
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