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ABSTRACT
Learning to rank is a key component of modern information re-
trieval systems. Recently, regression forest models (i.e., random
forests, LambdaMART and gradient boosted regression trees) have
come to dominate learning to rank systems in practice, as they
provide the ability to learn from large scale data while generalizing
well to additional test queries. As a result, efficient implementations
of these models is a concern in production systems, as evidenced
by past work.

We propose an alternate method for optimizing the execution of
learned models: converting these expensive ensembles to a feed-
forward neural network. This simple neural architecture is quite
efficient to execute: we show that the resulting chain of matrix
multiplies is quite efficient while maintaining the effectiveness of
the original, more-expensive forest model. Our neural approach
has the advantage of being easier to train than any direct neural
models, since it can match the previously-learned regression rather
than learn to generalize relevance judgments directly.

We observe CPU document scoring speed improvements of up
to 400x over traditional algorithms and up to 10x over state-of-the-
art algorithms with no measurable loss in mean average precision.
With a GPU available, our algorithm is able to score every document
in a batch in parallel for another 10-100x improvement. While we
are not the first work to observe that neural networks are efficient
as well as being effective, our application of this observation to
learning to rank is novel and will have large real-world impact.
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1 INTRODUCTION
Forest-based regression models are the leading approach to train a
learning to rank model [9, 19, 22], especially in industry [3, 5, 26].
These models have numerous benefits: they can be trained directly
based on observed gradients of traditional IR metrics, unlike other
learning to rank approaches [15], and learning is fairly efficient
while achieving state-of-the-art results.

The drawback of forest models for production systems is that the
cost of prediction is quite high: the naive algorithm for executing
a tree is interpretation. This means that for a forest of size T and
depth d , an interpreter will visit O(Td) nodes for every point, and
at each node it must compare a feature value and branch on the
result. Given that pipelining is the ubiquitous strategy to making
modern CPU architectures fast, these branch-heavy models are a
worst-case scenario. At every decision point, pipeline is flushed,
and actual instruction-level parallelism and therefore throughput
will be quite low. This limits both query throughput and query
latency of a learning to rank server, using a lot of machines and
resources.

Efficiency of learning to rank approaches has drawn a greater
amount of interest in recent years [19]. Before that work, Asadi and
Lin argued that we should train these models to be more runtime-
aware [1]. For many years now, researchers have been pursuing the
question “How do we minimize the runtime cost of forest-based
learningmodels?” [1, 4, 8, 13, 14, 19, 21, 25]. In this work, we propose
answering this question by a key observation about the nature of
these ranking ensembles.

Our key observation is that any ranking model will produce
scores, given a set of document features as input. Once such a
model is trained and validated, our goal for ranking is to output the
predictions of that model as fast as possible. Therefore, if we had
available to us a black box that could produce the same scores but
faster, then we would be effectively executing our learned model.
Hornik identifies feed-forward neural networks as valid universal
function approximators [11]. In practice, this means that we can
take these popular ranking ensembles and fully approximate them.

In this work, we first present analytic arguments for the effec-
tiveness of feed-forward neural networks as full-approximators
of regression forests (§3). Next, we provide an empirical demon-
stration of this technique: showing that we can learn approxima-
tions with no loss in mean average precision for LambdaMART
ensembles trained on the MSN30k dataset, and for a Random Forest
ranker trained on MQ2007 and trained on GOV2 (to demonstrate
generalizability under more train/test skew). Simultaneously, we
demonstrate the difficulties of directly training the same neural
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model on document judgments which reflects that using a gener-
alized model (LambdaMART) leads to a generalized neural model.
Finally, we present a brief sketch of our performance gains and
observe a 2-10x improvement (Table 2) over previous published
results.

In some sense, the core task we propose is not novel as it was
possible and known since the introduction of the XOR-problem in
1969 alongside the perceptron [24], and confirmed for our specific
functions later [11, 18]. However, recent works on faster algorithms
for learning to rank ensembles (e.g., [19]) suggest that our revisiting
of this theoretical work and empirical confirmation is of significant
research value and will lead to important discussions in the learn-
ing to rank and information retrieval communities. We hope that
industrial production systems employing such models can use our
techniques to reduce their energy footprint while still satisfying
users.

2 RELATEDWORK
Our related work section is brief because we address the majority
of related literature inline.

The Universal Approximation Theorem (UAT), proven byHornik,
shows that a single layer neural network under certain conditions
is capable of fully approximating a continuous function [11]. While
neural models did not gain traction in other fields for over a decade,
this foundational contribution provides the base of current state-of-
the-art neural architectures. Recently, Kraska et al. propose learning
index structures to replace b-tree nodes for static on-disk index-
ing [17]. they make a case for approximating expensive tree-based
functionality with cheaper, feed-forward neural networks, but they
do not make the connection to learned trees.

In the realm of IR, Dehghani et al. show that approximating
BM25 as a form of weak supervision is an effective way to train a
feed-forward model for retrieval [10]. However, their work shows
that while relevance is learned, the model only achieves parity
with the signal function by including additional information not
contained within the domain of BM25.

3 METHODOLOGY
The crux of this work comes from the UAT shown by Hornik [11],
where the authors prove that a single layer neural network of
sufficient width can approximate any continuous function within a
set of conditions. Thus given N such that

N (x) = σ (Wx + b)

and assuming σ is a Lebesgue function, and
∫ b
a |σ (x)|pdx < ∞, for

any f ∈ Lp (K) (p ≥ 1) where K is a compact set in Rd , then ∃ N
for some ϵ > 0 such that

| |N − f | |K,p < ϵ (1)

This theorem has been applied in [10] where they copy the BM25
function, which satisfies the above conditions on finite collections.
However, the same advantage that allows forest-based models to
perform well for ranking, dividing the space into splits, also causes
the relevance function, s(x), to be piecewise continuous. This vio-
lates the UAT assumption, and presents the condition where f fails

to converge pointwise at c . Thus

| |N (c−) − s(c+)| | > | |s(c−) − s(c+)| | > ϵ

We leverage work by Llanas et al. [18] that shows a piecewise
continuous f can be approximated via a series of single layer neural
networks within some ϵ . Thus, only each segment must satisfy
the constraints proposed in Equation (1), which all current forest-
based methods fulfill. Our empirical results demonstrate that ϵ is
acceptable in practice.

This leads to N approximating the approximate function of a
random forest within some error bound ϵ via a multilayer feed-
forward neural network. As we can treat the domain of s as finite
on a set of finite documents, this results in a compact subset of R .

3.1 Neural Model Architectures
We use a four layer neural network with hidden dimensions [2000,
500, 500, 100] and a two-layer network with hidden dimensions
[500,100]. We use ReLU6 as the non-linear activation. While the
universal approximation theorem was shown with the sigmoid
function, ReLU6 is continuous and bounded, which satisfies the
assumptions set forth in [11]. In addition, ReLU6 has been shown to
be robust to low precision operations, allowing for greater speedup
in production if needed [12].

We use mean squared error as the loss function, with a batch
size of 5000. Adam [16] is used to optimize the parameters with
a learning rate of 0.001. While Llanas et al. [18] empirically show
that a neural model is able to fully approximate s , they do so over
the entire domain. We attempt to broaden our learned model from
the training data by synthetically generating samples for which to
train N . For each batch size of 5000, 2500 samples are created by
randomly sampling around the discontinuous points of s in order
to fully approximate the L2R function s .

Those familiar with neural networks used for ranking will note
that we are using a “pointwise” learning and ranking style, which
is often considered to be weaker than pairwise or listwise learning,
but since we are learning from a pre-existing function (our existing
forest model) rather than relevance, this pointwise model is more
than sufficient.

3.2 Generating Random Training Data
In addition to leveraging our learned forest predictions on our
training data, we also generate points from the learned model in
order to guarantee that our system is matching the shape learned
by the forest.

First, we create an empty list of points for each of the D features
in our training set. We initialize these lists with the upper and
lower bounds of each feature based on the training data. Then,
we walk over every branch in our trained trees, and add each of
these split points into our list of points for the appropriate features.
At this point, we have identified where all of the discontinuities
occur in the feature spaces of our piecewise model. We sort these
discontinuity points, and replace them with ordered midpoints.

Now, generating a training point x is a simple as selecting ran-
dommidpoints of interest for each feature, and evaluating the result
using the original ensemble.
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4 EXPERIMENTAL SETUP
We trained our LambdaMART and Random Forest models using
the implementation available in RankLib [7]. This toolkit was pre-
ferred to others (e.g., XGBoost) because it accepted TREC-formatted
relevance judgments and data without modification.

The MSN30k learning to rank dataset1 is a commonly-used
benchmark for the efficiency of ranking ensembles. We use this data
for ease of comparison to reported numbers in past [19] and future
work. However, a few observations we made about this dataset
led us to believe that we should create our own secondary dataset
rather than use an additional industry-released set of features.

For our second dataset, we explore our own version of the
LETOR2 dataset that is built from GOV2 and MQ2007. We do this
for a variety of reasons that end up making our evaluation more
robust. We naturally provide the extracted features, trained models,
and the code used to run our experiments for future work3.

4.1 Our Extracted Features
Although a complete listing of our features and code for extraction
is provided in our source release, we give an overview of the features
used here. We used web-based quality features [2], and common
retrieval models [23] across the title, body, and document fields
available to us in the GOV2 collection as parsed by the JSoup Java
library. These features are quite similar in spirit to the original
features for the LETOR set and similar to the MSN30k features,
however we use a wider variety of retrieval models that require
more sophisticated combinations.

5 RESULTS

Table 1: Effectiveness of L2R function and N approximation.
There is no significant difference in mean average precision scores
with p < 0.05. While most works using such datasets focus on early
metrics like NDCG@10, we use mean average precision because it
is a deeper measure to better show the effectively lossless nature of
our approach. Significant differences are marked with an asterisk.

MSN30k GOV2
Method # Layers MAP MAP

Regression Forest - 0.6004 0.2995
Napprox 4 0.5950 0.2995
Napprox 2 0.5955 0.3007
Nrelevance 4 0.5639* 0.2531*

5.1 Retrieval Effectiveness
As seen in Table 1, the neural model is able to almost completely
approximate LambdaMart on MSN, while achieving parity on the
GOV2 evaluation. The small difference in performance can be at-
tributed to the stochastic nature of training deep neural models,

1https://www.microsoft.com/en-us/research/project/mslr/
2https://www.microsoft.com/en-us/research/project/
letor-learning-rank-information-retrieval/
3https://github.com/jjfiv/ltr2net

and past work has shown that neural models have numerous local
optima that closely approximate the global optimum [6].

Additionally, directly training N on the true relevance labels,
referenced as Nrelevance, results in significantly worse effectiveness.
This can be attributed to the interpretation that relevance is not a
function; for the same query, an identical document may be relevant
for one user while non relevant for another. This results in the
neural model fitting a new function rather than approximating a
true functions, and reflects the success found in [10].

Examining the performance during training, Napprox in fact gen-
eralizes better than the forest based model in 93% of epochs prior
to convergence. Thus while some accuracy is sacrificed, this results
in improved performance on held out samples prior to completely
over fitting on the training data and can be viewed as an additional
form of regularization on the forest based model if desired.

5.2 Efficiency
While we refrained from re-implementing the Quickscorer algo-
rithm [19], since it is undergoing a patent process4, we present a
brief sketch here that demonstrates our claim that feed-forward
neural networks are much more efficient than forest based models,
even without moving to GPU computation.

We therefore constructed an artificially low-baseline for our
approach: Python/Tensorflow-CPU implementation of the same
network on laptop hardware. We run these baselines on a Lenovo
T430 laptop, with an Intel i5-3230M CPU @ 2.60GHz, and 16GB of
RAM. And we compared directly to publication numbers available
in the Quickscorer paper [19], which was run on a machine with
an i7-4770K clocked at 3.50Ghz, with 32GiB RAM. Although the
python-numpy version of the baseline is especially competitive
with QuickScorer for very large forests we are able to significantly
improve speed in comparison to the heavily engineeredQuickScorer
for large forests. Our GPU-based implementation is run on via
PyTorch on a single NVIDIA TITAN X (Maxwell) GPU.

Our CPU-based implementation achieves a speedup of between 2-
10x on the larger regression forests studied. Larger batches are more
efficient, and this is especially true of our GPU implementation,
which manages to score documents in under a microsecond on
average for either our small or large network case.

Our dramatic improvements have the potential to change the
story of production re-ranking, which is likely to be dominated
by the branching needed to execute forest ensembles. With GPU
scoring, there is essentially no cost to executing expensive models.
We note that our GPU timing numbers include the time needed to
transfer feature vectors from main memory to GPU memory, which
shows the advantage of such a simple model.

We acknowledge that there are newer extensions of QuickScorer
that focus on limiting tree count [21], exploting SIMD instruc-
tions [20], and potentially other optimizations are always possible.
However, these papers present at most 3-5x improvements over the
QuickScorer algorithmwhile being significantly more complex than
our approach which provides an order of magnitude improvement
for larger ensembles over the blockwise-Quickscorer.

We are confident that our results will carry over to production
systems in terms of both latency and throughput. Whether these

4https://github.com/hpclab/quickscorer

Short Research Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1019

https://www.microsoft.com/en-us/research/project/mslr/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/
https://github.com/jjfiv/ltr2net
https://github.com/hpclab/quickscorer


Table 2: Efficiency Comparison. All numbers refer to time to score an individual document in µs. Bounds represent the set of previously
reported means and 5th and 95th percentiles for our models. Our simple numpy python approaches become competitive with large-tree
executions of the QuickScorer algorithm. Production ranking models are likely to gain greatly in efficiency from our approach.

1000 Trees 20,000 Trees
Impl Source 8 Leaves 64 Leaves 8 Leaves 64 Leaves
Generated C++ for Forest If-Then-Else 8.2-10.3 55.9-55.1 709.0-772.2 4462.0-4809.0
QuickScorer [19] QS 2.2-4.3 9.5-15.1 40.5-41.8 343.7-425.1
Blockwise-Quickscorer BWQS Unreported 33.5-40.5 236.0-274.7

Documents to re-rank (batch size): 100 200 500 1000
Tensorflow-CPU 4-layer N 64.4-66.5 56.9-60.2 52.3-54.0 51.1-53.3
Tensorflow-CPU 2-layer N 14.1-16.7 9.29-11.25 6.49-7.98 5.83-7.04
PyTorch GPU 4-layer N 0.528-0.786 0.530-0.546 0.620-0.662 0.976-1.01
PyTorch GPU 2-layer N 0.305-0.324 0.308-0.321 0.323-0.325 0.323-0.335

scoring systems have GPUs available for high-throughput or lean on
the SIMD instructions in modern CPUs, the elimination of branch-
ing from our approach is an improvement that will generalize to
architectures of the future.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we show that a forest based learning to rank function
can successfully be approximated by a series of matrix multiplies
in the form of a small neural network. This is supported both by
theoretical guarantees and by empirical examination. Furthermore,
the approximation results in slightly improved generalization in
some cases which suggests that we have proposed a relatively
safe method to improve efficiency without negatively impacting
performance.
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