University

of Glasgow

Dalton, J., Ajayi, V. and Main, R. (2018) Vote Goat: Conversational Movie
Recommendation. In: 41st International ACM SIGIR Conference on Research and
Development in Information Retrieval, Ann Arbor, MI, USA, 8-12 Jul 2018, pp.
1285-1288. ISBN 9781450356572.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© The Authors 2018. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was
published in the Proceedings of the 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval, Ann Arbor, MI, USA, 8-12
Jul 2018, pp. 1285-1288. ISBN 9781450356572,
https://doi.org/10.1145/3209978.3210168

http://eprints.qgla.ac.uk/162272/

Deposited on: 15 May 2018

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1145/3209978.3210168
http://eprints.gla.ac.uk/162272/
http://eprints.gla.ac.uk/162272/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Vote Goat: Conversational Movie Recommendation

Jeffrey Dalton
University of Glasgow
jeff.dalton@glasgow.ac.uk

ABSTRACT

Conversational search and recommendation systems that use natu-
ral language interfaces are an increasingly important area raising
a number of research and interface design questions. Despite the
increasing popularity of digital personal assistants, the number
of conversational recommendation systems is limited and their
functionality basic. In this demonstration we introduce Vote Goat,
a conversational recommendation agent built using Google’s Di-
alogFlow framework. The demonstration provides an interactive
movie recommendation system using a speech-based natural lan-
guage interface. The main intents span search and recommenda-
tion tasks including: rating movies, receiving recommendations,
retrieval over movie metadata, and viewing crowdsourced statistics.
Vote Goat uses gamification to incentivize movie voting interactions
with the ‘Greatest Of All Time’ (GOAT) movies derived from user
ratings. The demo includes important functionality for research
applications with logging of interactions for building test collec-
tions as well as A/B testing to allow researchers to experiment with
system parameters.

CCS CONCEPTS

« Information systems — Users and interactive retrieval; Rec-
ommender systems; - Computing methodologies — Discourse,
dialogue and pragmatics;

KEYWORDS

Conversational search, Multimedia, Recommender systems, Collab-
orative filtering

ACM Reference Format:

Jeffrey Dalton, Victor Ajayi, and Richard Main. 2018. Vote Goat: Conver-
sational Movie Recommendation. In SIGIR ’18: The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, July
8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.1145/3209978.3210168

1 INTRODUCTION

Recent advancements in speech recognition technology and natural
language understanding are leading to renewed attention on digital
personal assistants, such as Apple’s Siri, Microsoft Cortana, and the
Google Assistant. Each of these assistant platforms provides its own
framework to create agents. One common personal assistant task is
the recommendation of relevant content based on user preferences.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR ’18, July 8-12, 2018, Ann Arbor, MI, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5657-2/18/07...$15.00
https://doi.org/10.1145/3209978.3210168

Victor Ajayi
University of Glasgow
dsvictor.ajayi@gmail.com

Richard Main
University of Glasgow
rmain.gla@gmail.com

Dialog Dialog
based based
input response
A
Assistant interface
Trigger o Used_: _Google'Assmtant Server Gomputed
intent Specifically: Dialogflow intent
action Background service (web hook) —J "#sPonse
Used: Firebase cloud function
HTTPS Specifically: NodeJS Computed
GET/PUT , JSON
Request ~ Backend computation response
0" "_Used: HUG REST API
Specifically: Python
pyMongo Computed
Read/Write Database storage layer Read/Write
Request Used: MongoDB response

Figure 1: Architectural overview

For this demo, we focus on the creation of a movie recommendation
agent, Vote Goat, which is an open-source agent built using Google’s
DialogFlow platform and released on the Google Assistant.

Vote Goat is a prototype agent system that demonstrates a num-
ber of functions important for research. It supports the logging
of user interactions through Dialogflow and Google analytics, in-
cluding recommendation session history and A/B test data. These
features are implemented for studying the impact of recommender
system algorithm quality as well as gamification.

The Vote Goat demonstration system encompasses multiple di-
mensions and challenges of creating a robust and effective recom-
mendation agent system:

o Designing robust grammars for intents using Dialogflow’s web
interface, accounting for alternative language formulations.

e Sourcing reliable and large-scale movie metadata.

o System design of a low-latency open source software architecture
capable of meeting Google’s response constraints.

e Collecting a crowdsourced movie rating dataset through the
movie ranking intent.

o Gamification of repeated movie ranking through a leaderboard
and input on Great Of All Time (GOAT) lists.

o Flexible APIs for experimenting with collaborative filtering algo-
rithms for movie recommendation.

The goal is to accelerate research and development of new con-
versational recommendation agents by reusing components. Vote
Goat is one of the few open and freely available exemplars of more
complex agents.

https://doi.org/10.1145/3209978.3210168
https://doi.org/10.1145/3209978.3210168

SIGIR ’18, July 8-12, 2018, Ann Arbor, MI, USA

2 SYSTEM OVERVIEW

2.1 Architecture overview

The end user interacts with Vote Goat through the Google Assistant
platform using a compatible device/application and then invoking
Vote Goat explicitly by requesting to ‘“Talk to Vote Goat’ or implic-
itly by requesting a Vote Goat sub-function such as "What are the
best movies of all time?" Once in the Vote Goat agent, the user’s
natural language input is interpreted by Google’s Dialogflow API
and matched to an appropriate intent which transparently trig-
gers the intent’s Firebase cloud function action (webhook) with
any user input in order to perform complex fulfillment (computa-
tions/operations) and returns data formatted for consumption via
the Google Assistant interface.

We now provide an overview of the agent intents and backend
system functionality. A HUG REST! miroservice API bridges be-
tween the NodeJS cloud functions running on Firebase and backend
systems (in Python) running in Google Cloud virtual machines. For
data storage, MongoDB is used to store movie and user data due to
its flexibility and use of JSON as a native format. To fulfill an intent
the backend system retrieves movie data from MongoDB to build a
metadata field response for Dialogflow to render to the end user.
Beyond this, additional service proxy and process management are
performed using NGINX and Gunicorn.

2.2 Recommendation System

The fundamental component of a conversational recommendation
engine is the recommendation algorithm. There are a wide vari-
ety of algorithms for movie recommendation. Instead of a single
model or framework, Vote Goat supports multiple recommendation
algorithms and libraries: Tensorflow-based neural collaborative
filtering models served via Google CloudML [5], PyTorch models
via the Python backend interfaces, as well as deterministic models.
The demonstration system also supports basic random or popu-
lar movie baselines. For demonstration purposes, the models are
trained on publicly available MovieLens (20M) data [4] as well as
user generated Vote Goat movie ratings from interactions with the
system. We note that this architecture could be extended to further
support additional recommendation and retrieval algorithms using
the flexible micro-architecture design.

2.3 Open Source Stack

The technology stack for Vote Goat is intended to be simple to
use and extend (using Node]JS and Python), highly scalable (using
Gunicorn and HUG), modular, and easily replicated. All source
code components within Vote Goat are fully open-source and MIT
licensed on GitHub 2.

2.4 Ul Device functionality

Vote Goat is designed to be multi-platform with support for both
visual and speech interfaces. It seamlessly handles differences in
device capability throughout every intent. For devices with a touch
screen it displays rich responses containing cards, suggestion chips,
outbound links, and result carousels. For hands-free (voice only)

Uhttp://www.hug.rest/
https://github.com/know-ail

Jeffrey Dalton, Victor Ajayi, and Richard Main

devices there is descriptive (less verbose) speech rendering. The
optimal way to address differences across platforms remains one of
the usability challenges, particularly for hands-free devices with
limited information bandwidth.

Vote Goat is compatible with all Google Home devices (Home,
Mini, Max) and the Google Assistant mobile application for iOS and
Android. Vote Goat is published on the Google Assistant directory
and is available to all users without any additional installation
required.

2.5 Logging support

Each layer of the Vote Goat architecture has logging support. The
Actions on Google console provides high-level analytics when the
agent is published in the Assistant directory. The Dialogflow frame-
work provides high-level intent analytics. Firebase provides cloud
function debug logging. Chatbase provides low-level conversation
analytics throughout the cloud functions and Google Analytics is
used to instrument the HUG REST API usage. Using these logging
mechanisms allows developers and researchers to both optimize
the system and develop user models of conversational interaction.

For demonstration purposes, we use the Google provided tempo-
rary identifier that is not linked to any permanent user profile. The
anonymous user ID is used to store all user-specific data including:
the user movie rankings, the movies recommended, and interac-
tions with the movie recommendations for explicit and implicit
feedback. The anonymous IDs are transient and expire after thirty
days of inactivity.

2.6 Gamification

In order to maximize user movie ranking participation the demon-
stration system implements the following forms of gamification:

o Personal leaderboard ranking statistics that enable users to com-
pare their participation compared to the entire user population.

e ‘Greatest Of All Time’ (GOAT) lists of the most popular movies
based on the user ratings (overall or within user defined genres).
e Leaderboard progress notifications as users rank movies the sys-
tem notifies the user of their leaderboard status and progression.

The demonstration system provides a platform to experiment
with these incentives as well as future mechanisms.

2.7 A/B Testing

The system includes support for A/B testing to vary the recommen-
dation algorithm as well as other system parameters. The testing is
implemented using a test id session field that is stored in MongoDB.
This is flexible depending on the scope of experiment required. It
allows switching between recommendation models depending on
the experiment field. The model selected is logged alongside the
movie recommendation session history enabling later analysis of
test data.

The implemented A/B testing participation solution is quite ag-
gressive since all users are subjected to A/B testing in production.
In future work, the demo may be extended for more targeted and
selective test participation. This is important to balance user expe-
rience with the need to collect experimental data. Also, one current
limitation is that experiments require manually extracting the A/B
test data from MongoDB for analysis.

http://www.hug.rest/
https://github.com/know-ail

Vote Goat: Conversational Movie Recommendation

3 MOVIE AND RATING DATA

Vote Goat uses movie description and metadata from ‘The Open
Movie Database’ (OMDB). The data is publicly available, supported
by Patreon, and has non-restrictive licensing (CC BY-NC 4.0) for
non-commercial research purposes. Vote Goat has wide coverage
with approximately 160,000 movies crawled from OMDB in Decem-
ber 2017. From this data, approximately 30,000 movies are removed
because they lack IMDB ratings. Also, adult or pornographic movies
are removed in accordance with Google’s content restriction poli-
cies. The final movie count available is approximately 114,000. The
data used is available on the Vote Goat online appendix, as well the
code to crawl new data and update the database.

For the recommendation algorithm, we use the MovieLens 20M
ratings research dataset [4]. We translate between the MovieLens
movie identifiers and the OMDB item identifiers. Additional (anony-
mous) rating data collected by Vote Goat is also used for training
and we plan to release it on the website in the future.

4 DIALOGFLOW IMPLEMENTATION

We use Dialogflow to implement Vote Goat’s voice-based interface
for the Google Assistant. This includes the creation of 11 intents
that trigger cloud functions depending on the user’s response to
the prompt. To infer each intent DialogFlow uses machine learning
to learn intent grammars from a small number of examples. Also,
every intent that prompts the user for information has a unique
fallback that provides the error handling.

A fully detailed list of all the intents and how they are triggered
is beyond the scope of this paper, but is documented with the source
code online. An example of the primary intent is shown in Figure 2
and other intents in Figure 3.

4.1 Dialog context management

Managing ongoing dialogue state context is an important aspect
of conversational agent design. Whenever a user interacts with an
intent, Vote Goat stores temporary intent flags in the Dialogflow
context data storage, enabling error-handling fallback intents to
provide relevant error text and the passing of movie metadata in
JSON between intents. These are used for intent handling as well
as constructing rich responses to display to the user.

The lifetime of contexts controls when they expire between
intent interactions, if set too high it can cause unexpected issues
such as showing the wrong fallback text if a context lives longer
than it should (zombie context) or an unexpected error warning if
the context expires prematurely despite being required for the next
intent. The latest DialogFlow API also allocates a small quantity of
local storage to store data across sessions.

5 LESSONS AND CHALLENGES

In this section we detail some the challenges and experiences de-
veloping the system. We highlight areas that require future devel-
opment both in the DialogFlow framework as well as Vote Goat.
Discoverability of the agent and agent’s capabilities is an im-
portant feature for virtual assistants. It is also a new adversarial
domain for the agent vs. platform. The platforms are federated
agent search systems that route conversations to agents both on
explicit as well as implicit intents. The explicit invocation requires

SIGIR ’18, July 8-12, 2018, Ann Arbor, MI, USA

Default
Invocation

Explicit

Welcome .
Invocation

Ranking

(Optional: Genre)

Movie

Recommendation —
(Display Carousel)

—| Leaderboard
—{ Goat Movies |———

Anywhere in
assistant

Figure 2: Dialogflow primary intent overview.

relatively unambiguous names of agents, which is quite limiting.
Additionally, many platforms support ‘implicit’ invocation of an
agent based on the agent’s declared capabilities. As currently de-
fined in DialogFlow, each agent intent has an implicit invocation
entry point that is an opportunity to attract user traffic towards
the agent. However this is not appropriate for all intents as users
who experience an irrelevant agent invocation for an utterance are
likely to abandon the agent or inflate fallback statistics. Similar to
previous work on webspam and search engine optimization, meth-
ods for effective detection and filtering of abuse and relevance of
an agent for an implicit invocation need to be developed. In the
current system, this can lead to inadvertent implicit invocations of
the agent that may unintentionally trigger for irrelevant intents.

One current limitation of DialogFlow is support for rich third-
party knowledge bases of entities with thousands or more entities.
Initially, search functionality was added to the system to allow
users to search for movies with specific names of actors, genres,
and every other feature of the movie metadata, however, this proved
problematic. Although a small file of entities can be added (via JSON
files), for example movie genres, the rest of the data was not easily
imported. DialogFlow imposes limits on the number of entries
uploaded (both rows and attributes), which precluded the millions
of actors (with tens or hundreds of attributes in the form of movie
roles). This is a barrier to creating large-scale agents. As a result,
this functionality must be managed by the webhook backend. This
results in overly complex agent systems with parsing and NLP
happening in multiple locations. Similarly, complex search that
involve multiple variables (actor + genre) simultaneously was not
easily supported.

Another limitation of the current platform is support for rich
visual interface elements. One of the most requested features is the
ability to share recommendations socially. However, it is currently
impossible to insert social icons in the visual interface. Similarly,
displaying rich cards was challenging and all complex elements are
generated in the backend system. This again shifts processing to
the agent backend unnecessarily.

SIGIR ’18, July 8-12, 2018, Ann Arbor, MI, USA

Another current challenge is fallback handling. In case the user
does not enter a recognized input valid for the intent, the desired
behavior is a meaningful fallback dialog to prompt the user and re-
cover fluidly. However, system testing revealed that current fallback
mechanisms do not always work correctly.

6 FUTURE DEVELOPMENT

The current demonstration system has several areas for further
development.

Vote Goat needs a backend data pipeline to continually update
the agent’s data. The movie and rating data needs to be refreshed
regularly to stay up-to-date with current movies and ratings. There
also need to be automatic jobs to retrain and update recommenda-
tion models from the user rating data. This is currently a manual
and offline process.

Second, the current system does not implement safeguards for
users spamming the agent. The gamification aspect of using leader-
boards should be extended to prevent abuse by limiting the quantity
of ratings and detecting spam users (possibly other agents!). This
could also be addressed by requiring mandatory sign-in to Google.

Third, improved support for multiple platforms needs to be de-
veloped. The current agent is optimized for voice input, but visual
output with rich card displays. The current hands-free voice output
is overly verbose, leading to long interaction times and fewer over-
all interactions. The movie result lists needs to be more concisely
summarized. The other intents also need refinement to reduce the
text content and make the instructions clearer and more concise.

Finally, we plan to extend Vote Goat in multiple possible research
directions. One possible area is collaborative recommendation, to
allow a group of users to use Vote Goat together to decide joint
movie recommendations. We also plan to further generalize the
framework to support additional domains (videos, music, etc...).

7 DEMONSTRATION

We demonstrate a full end-to-end demo of Vote Goat that is released
on the Google Assistant. This will cover all aspects of the system,
with a primary focus on ranking and recommending movies on
YouTube and the Google Play store. It will also utilize checking the
leaderboard and searching for movies based on metadata. We may
create a customized SIGIR leaderboard and GOAT lists to incentivize
participation at the conference.

8 RELATED WORK

The implementation of task-oriented dialog systems has been done
in various fields from sales to customer service automation. These
systems are often developed for specific domains and use carefully
crafted keyword matching to trigger intents. In conversational
recommender systems, previous work on preference elicitation [2]
showed a conversational model could be effective at rapidly learning
users’ preferences. In this work we build on this, developing a task-
oriented movie recommendation agent that elicits user’s movie
preferences to improve recommendation quality.

Movie recommendation systems are well-studied, with initia-
tives such as the Netflix prize challenge [1]. Beyond movies, recent
work used neural collaborative filtering methods to recommend
YouTube videos to watch [3]. An early example of research in media

Jeffrey Dalton, Victor Ajayi, and Richard Main

GOAT movies intent Leaderboard intent

greatest funny movies of all time £ Show Stats
@ The greatest Comedy movies of all time, @ You're currently ranked 18 out of 239
as determined by our userbase are: users!

: "Forrest Gump" (1994)

: "Deadpool’ (2016)

: "Toy Story" (1995)

: "Finding Nemo" (2003)

: "How to Train Your Dragon" (2010)

1 You've rated 20 movies in total, of which
2

3

4

5.

6: "The Wolf of Wall Street" (2013)

7

8

9

7

12 were upvotes and 8 were downvotes!

What do you want to do next? Rank
Movies, or get a Movie Recommendation?

:"A Florida Enchantment” (1914)
: "Back to the Future" (1985)

: "Monsters, Inc." (2001)

0:"Up" (2009)

You're rank 18 out of 239 users!

Keep ranking movies to improve your leaderboard
position! Note that 30 days of inactivity will wipe your
statistics!

GOAT (Greatest Of All Time) Movie Tips!

These GOAT results are dynamically generated by our
active userbase’s movie rankings. You can specify mul-

tiple genres to view different GOAT results (E.g "greatest
scary funny movies of all time) "Try looking for these '
movies on YouTube o the Google Play Movie store. v

s Rank Movies & Movie Recommendations

What do you want to do next? Rank
Movies, get a Movie Recommendation,
view your stats, get help or quit?

sa Rank Movies 2 Movie Recommendation

Figure 3: GOAT and Leaderboard intents

recommendation for dialogues is Warnestal et al. [6], who examine
human-to-human recommendation dialogue for movie recommen-
dation in spoken dialogue systems.

Directly related to the system are other existing movie recom-
mendation agents. The Andchill agent 3 asks the user for a movie
they like and the aspect they like about it. The Google Assistant also
provides rudimentary movie recommendation capability. In con-
trast to both systems, Vote GOAT provides a richer set of possible
intents.

9 CONCLUSION

The Vote Goat demo movie agent provides a conversational ap-
proach to a task-based movie recommender system. It provides
a rich set of interaction intents to learn about movies as well as
receive movie recommendations. It uses gamification to incentivize
participation. The demonstration system is fully-open source using
data and systems that are freely available for research purposes.
Vote Goat provides an example of a research agent with support for
A/B testing and logging of user interactions. Follow-up work will
enhance the voice UX design for hands-free devices. Additionally,
work on features for new domains and collaborative recommenda-
tion will be explored.

REFERENCES

[1] James Bennett and Stan Lanning. The netflix prize. In KDD Cup Workshop, 2007.

[2] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. Towards
conversational recommender systems. In KDD, 2016.

[3] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In RecSys, 2016.

[4] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. TiiS, 5:19:1-19:19, 2015.

[5] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In WWW, 2017.

[6] Pontus Wirnestal. Modeling a dialogue strategy for personalized movie recom-
mendations. In Beyond Personalization Workshop, pages 77-82, 2005.

3http://www.andchill.io/

http://www.andchill.io/

	Abstract
	1 Introduction
	2 System Overview
	2.1 Architecture overview
	2.2 Recommendation System
	2.3 Open Source Stack
	2.4 UI Device functionality
	2.5 Logging support
	2.6 Gamification
	2.7 A/B Testing

	3 Movie and Rating Data
	4 Dialogflow implementation
	4.1 Dialog context management

	5 Lessons and Challenges
	6 Future Development
	7 Demonstration
	8 Related work
	9 Conclusion
	References

