1805.06353v1 [cs.IR] 16 May 2018

arxXiv

SmartTable: A Spreadsheet Program with Intelligent Assistance

Shuo Zhang
University of Stavanger
shuo.zhang@uis.no

ABSTRACT

We introduce SmartTable, an online spreadsheet application that
is equipped with intelligent assistance capabilities. With a focus
on relational tables, describing entities along with their attributes,
we offer assistance in two flavors: (i) for populating the table with
additional entities (rows) and (ii) for extending it with additional
entity attributes (columns). We provide details of our implemen-
tation, which is also released as open source. The application is
available at http://smarttable.cc.

CCS CONCEPTS

« Information systems — Environment-specific retrieval; Users
and interactive retrieval; Recommender systems; Probabilistic re-
trieval models;

KEYWORDS

Table completion; intelligent table assistance; semantic search

ACM Reference Format:

Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog. 2018. SmartTable: A
Spreadsheet Program with Intelligent Assistance. In SIGIR ’18: 41st Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, July 8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3209978.3210171

1 INTRODUCTION

Tables are a powerful, effective, and easy-to-use tool for both visual
organization and manipulation of data. Tables can be found in vast
quantities on the Web, and spreadsheet programs are among the
most commonly used desktop applications. Our objective is to equip
spreadsheet programs with intelligence assistance capabilities, to
aid users while working with tables. In this paper, we focus on one
particular type of tables, known as relational tables [8, 9]. Relational
tables describe a set of entities along with their attributes. We
shall refer to the column containing the entities as the core column.
Typically, it is either the leftmost table column or the second column
from the left, in case row sequence numbering is used. The heading
labels of the table refer to particular attributes, while data cells hold
the values of those attributes. It is also assumed that the table is
given a title (caption). See Figure 1 for an illustration.

There exists a number of online tools and resources for table-
related tasks, such as table search (Google Fusion Tables [3] and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5657-2/18/07...$15.00
https://doi.org/10.1145/3209978.3210171

Vugar Abdul Zada

University of Stavanger
v.abdulzada@stud.uis.no

Krisztian Balog
University of Stavanger
krisztian.balog@uis.no

E Highest-grossing films c
Rank Title Worldwide gross Year Peak - L
1 |Avatar $2,787,965,087 2009 1

Titanic $2,187,463,944 1997

$2,068,223,624 2015
$1,671,713,208 2015
$1,518,812,988 2012
$1,516,045,911 2015

Star Wars: The Force Awakens

Jurassic World

The Avengers

olo|s|lw|n
plow|lw|w|=

Furious 7

Figure 1: Example of a relational table T, where c is the table
caption, E denotes the core column entities E = {eq,...,e,},
and L is the set of column labels L = {l4,...,[,}.

WikiTables [1]), question answering [6], and entity linking in ta-
bles [1]. To the best of our knowledge, our system, called SmartTable,
is the first online spreadsheet program that provides intelligent ta-
ble content recommendation. Specifically, our application is capable
of providing two kinds of assistance: (i) recommending additional
entities, from an underlying knowledge base, to be added to the
core column (row population) and (ii) recommending additional
entity attributes to be included as columns (column population).
Such recommendations are particularly useful in scenarios with an
exploratory or recall-oriented nature, i.e., when the user does not
have a very clear idea beforehand as to what should be included
in the table. Additionally, SmartTable also provides regular table
operations, such as adding, deleting, and moving rows and columns,
editing cells, and supporting various value types (entities, numbers,
currencies, dates, etc.).

Both types of assistance, that is, row and column population, are
based on probabilistic models that we developed in prior work [10].
The main contributions of this paper are twofold. First, we integrate
the above assistance functionality into an online spreadsheet appli-
cation. Second, we describe the task-specific indexing structures
employed, and evaluate the efficiency of our implementation in
terms of response time. SmartTable is implemented using a HTML5
front-end and a Python+ElasticSearch back-end. It uses DBpedia
as the underlying knowledge base and a corpus of 1.6M tables ex-
tracted from Wikipedia. The implementation is made open source
at https://github.com/iai-group/SmartTable and the application is
available online at http://smarttable.cc.

2 OVERVIEW

In this section, we provide an overview of the functionality of the
SmartTable application, by walking through the process of creating
a table from scratch.

e Initially, we start with an empty table, with the table caption,
core column entities, column labels, and cell values waiting
to be filled. The user is expected to add a few entities and
column labels first, along with an optional table caption, to


http://smarttable.cc
https://doi.org/10.1145/3209978.3210171
https://doi.org/10.1145/3209978.3210171
https://github.com/iai-group/SmartTable
http://smarttable.cc

supply the system with some data to base recommendations
on. We shall refer to this (incomplete) table as the seed table.
See Fig. 2a.

e When adding entities to the core column, the user is pre-
sented with a ranked list of suggestions. Additionally, the
user can search the underlying knowledge base for entities.
See Fig. 2b.

e When adding new columns, the user needs to specify the
data type for that column (which can be one of entity, text,
date, number, currency, or percentage) and provide a label
for that column. For the latter, a ranked list of suggestions
are offered, along with a search box to search for additional
labels. See Fig. 2c.

3 METHODS

In this section, we introduce the methods underlying the assistance
functionality. We refer to Fig. 1 for the notation used for the various
table elements. As for the data, we employ a table corpus (TC)
extracted from Wikipedia and use DBpedia as the knowledge base
(KB); further details about the datasets are given in Sect. 4.1.

3.1 Row population

Row population is the task of generating a ranked list of entities
to be added to the core column of a given seed relational table.
It is closely related to the task of entity set expansion [2, 5, 7],
which is about expanding a seed entity set with additional instances.
The main difference between row population and entity entity set
expansion is that we can also leverage additional data from the
seed table as input, not only the core column entities. The row
population task is split into two sub-tasks, which are candidate
selection and ranking entities, respectively.

3.1.1 Candidate selection. We identify candidate entities using
both the knowledge base and the table corpus. From the knowledge
base, we take entities that share the assigned semantic categories
with those of the seed entities. From the table corpus, we first find
tables similar to the seed table, based on table caption, core column
entities, and column heading labels. Then, we take the core column
entities from those similar tables as candidates.

3.1.2  Ranking entities. We implement the probabilistic model
proposed in [10], which is a multi-conditional probability:

P(e|E, L, c) o P(e|E)P(Lle)P(cle) ,
where P(e|E) is entity similarity, P(L|e) denotes column labels like-

lihood, and P(c|e) is caption likelihood.

Entity similarity is estimated using
P(e|E) = AgPg(e|E) + (1 — Ap)Prc(e|E) ,

where Px p(e|E) is the average Jaccard similarity between the
candidate entity e and each seed entity e’ € E, and Prc(e|E)
is fraction of tables in the table corpus that contain both
the seed and candidate entities out of the number of tables
containing the seed entities.

Title: Population growth of European cities

City Country  Population growth ~ ©

1 Helsinki Finland 0.12%
2  Oslo Norway 3.00%
3  Stavanger Norway 0.50%
4 (]

(a) Seed table with some initial data.
Title: Population growth of European cities

City Country  Population growth (+)

1 Helsinki Finland 0.12%
2  Oslo Norway 3.00%
3  Stavanger Norway 0.50%
4
Search...

Raseborg

Ronne

Haven ports

Sola

Jamsa

(b) Row population assistance.

Title: Population growth of European cities

City Country  Population growth

1 Helsinki  Finland 0.12% [ Column Name
2 QOslo Norway 3.00%
3  Stavanger Norway 0.50% A € %
4 (]
Language
Continent
Capital

Venue/Event

(c) Column population assistance.

Figure 2: Screenshots from the SmartTable system.

Column labels likelihood considers the table corpus and is
estimated using a Dirichlet-smoothed language model:!

P(Lle) = Z 1—[ tf(t.e) + pP(t|0) ’

leL tel lel tH

'In our original approach [10] this estimate was a two-component mixture. Due to

efficiency considerations, we use a simplified version here. The relative difference in
terms of effectiveness is below 5%.



where ¢ f(t, e) is the term frequency of ¢ in the column labels
of tables containing e and |e| is the sum of all term frequen-
cies for e. The collection language model P(¢|0) is computed
based on the column labels of all tables in TC.

Caption likelihood is a two-component mixture:

P(ele) = [ | (AcPp(tl6e) + (1= Ac)Pre(tle)) ,
tec

where the KB component is estimated using a Dirichlet-
smoothed entity language model. The TC component is com-
puted as Prc(t|e) = #(t, e)/#(e), where #(t, e) is the number
of tables in the table corpus containing entity e in the core
column and term ¢ in the table caption, and #(e) is the total
number of tables contaning e.

3.2 Column population

Column population is the task of generating a ranked list of column
labels to be added to the column headings of a given seed table. It
is also implemented as a sequence of two steps: candidate selection
and column label ranking.

3.2.1 Candidate selection. Candidate labels are obtained from
related tables. To find related tables, we use (i) the table caption, (ii)
table entities, and (iii) seed column heading labels as queries. From
the matching tables, column labels are extracted as candidates.

3.2.2  Ranking column labels. The related tables, identified in the
candidate selection stage, are also utilized in the ranking step. Ac-
cording to the model in [10], the probability of a candidate column
label is given by:

P(|E,c,L) = Z P(I|T)P(T|E,c,L),
T

where T represents a related table, P(I|T) is the label’s likelihood
given T, and P(T|E, c, L) expresses that table’s relevance. The prob-
ability P(I|T) is set to 1 if the candidate label [ is present in table T
and is 0 otherwise. The relevance of a table is estimated as:
P(T|E,c,L) < P(T|E)P(T|c)P(T|L),
where P(T|E) denotes entity coverage, P(T|c) is caption likelihood,
and P(T|L) is the column labels likelihood.
Entity coverage is the overlap of core column entities in the
seed table and in T: P(T|E) = |Tg N E|/|E|.
Caption likelihood is estimated using term-based similar-
ity between the seed table’s caption and the content of T:
P(T|c) « sim(T¢, c). Here, we employ BM25 scoring.
Column labels likelihood is the overlap between labels of
the seed table and those of T: P(T|L) = |Ty, N L|/|L|.

4 IMPLEMENTATION

In this section, we describe the datasets used and indices built, along
with technical details of our implementation.

4.1 Datasets

We rely on two data sources: a table corpus and a knowledge base.
The knowledge base is DBpedia, version 2015-10.2 We filter out
entities that do not have a short textual description (abstract). After

Zhttp://wiki.dbpedia.org/dbpedia- dataset-version-2015-10

{
"_index": "entities",
" _type": "doc",
" id": "Hot pot",
" _version": 1,
"found": true,
"_source": {

"category": [
"hong_kong cuisine",
"cantonese cuisine",
"beijing cuisine",
"sichuan_cuisine",
"yunnan_cuisine",
"table-cooked_dishes",
"chongging cuisine",
"stews"

1,

"category count": 8,

"label": "Hot pot"

}
}

Figure 3: Example entry from the entity index.

filtering, we are left with a total of 4.6M entities. As for the table
corpus, we use the WikiTables collection [1], which comprises of
1.65M tables, extracted from Wikipedia. We preprocess tables as
follows. Entities are marked up in the original table with hyperlinks.
If the link points to an entity that exists in DBpedia, we replace
that link with the corresponding entity identifier. Otherwise, we
replace the link with the anchor text.

4.2 Indices
We build the following inverted indices:

Table index It contains 1.65M Wikipedia tables (6.4GB). For
each table, the following fields are stored: page title, section
title, table caption, column labels, table data, and core column
entities.

Entities It contains 4.6M DBpedia entities (2GB). For each en-
tity, we store its canonical name (label), and the list and
number of categories it is assigned to. See Fig. 3 for an ex-
ample.

Categories We use Wikipedia’s category system, comprising
of around 1M categories. For each category, we store the
list of entities that are assigned to that category. This index
occupies 2GB.

4.3 Implementation

SmartTable is a web application that is comprised of a HTML5
front-end and a back-end based on Python and Elasticsearch.

4.3.1 Front-end. The front-end stack is made up of HTML, CSS,
and JavaScript (ECMAScript6 standard). We build on a third-party
JavaScript spreadsheet framework called Handsontable,> which
provides a rich set of functionality for tables, including sorting, con-
ditional formatting, contextual menus, moveable and resizable rows
and column, etc. Additionally, we utilize the Gulp. js, Babel. js,
and Node. js JavaScript libraries.

Shttps://handsontable.com/


http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
https://handsontable.com/

Sra-party |s TableContaner
spreasheet library
[ fields:
I ] + tableModel: TableModel
| Handsontablejs |«------------1 + viewManager: TableViewManager
] + hot: HandsOnTable
[ - restCliant: RestClient

metheds:

+ initTable (string): void

- _adasmanEntity (): void
- _addSmartHeader (): void

R 4 ¥ ¥

TableViewManager TableModel RestClient
fields: fields: fields
+_smanHeaders: Object + callback: Function
+_smanEntites: Object
methods: methods
+get EntityAssistant (
methods: + sendRequest
[dedadh + getSmanHeader (int id): Object path Soing ¢
etiveiement O unclion, |, setSmartHeader (int id, Object header): void b Function,
y e +getSmartEntity (int ic): Object data Object
+ setSmartHeader (int id, Object header): void method Striry
+ get EntityAssistant ( + getAllHeaders (): Array J: void q

payload Object
elementCallback Function,
activeElement Object

): void

+ getAlEntities (): Array

Figure 4: Overview of the application front-end.

For development, we follow the MVC (Model View Controller)
software architecture pattern. The system is divided into self-conta-
ined components that are easy to debug and maintain, with loose
coupling and modularity between the fundamental parts. Figure 4
provides an overview. At the center of front-end lies the TableCon-
tainer class, connecting the following components:

e Handontable.js: Third party JavaScript spreadsheet frame-
work.

o TableViewManager.js: Smart Assistant view controller.

o TableModel.js: Provides storage and accessibility to all core
column entities and column heading labels.

o RestClient.js: Communication component, which is respon-
sible for request sending and response provision via the
respective callback calls.

4.3.2  Back-end. The back-end consists of two parts: a web ser-
ver and a recommendation engine. The main role of the former is
to connect the front-end spreadsheet application (client) with the
recommendation engine. The web server is implemented in Python,
using the Flask framework. Communication is done over HTTP,
with request and response messages encoded in JSON format. The
recommendation engine is responsible for generating the ranked
list of suggestions (entities and column labels). It uses Elasticsearch
as the underlying indexing and retrieval engine. All indices are
built using the Nordlys toolkit [4].5

5 EVALUATION

In previous work [10], we have performed an extensive evaluation
of the row and column population methods in terms of effectiveness.
Here, we evaluate our system in terms of efficiency. We measure
response time as the time elapsed between receiving the request
and sending off the response on the back-end, i.e., net computation
time without the network overhead. Using 10 random tables, we
vary the number of core column entities (seed entities) and the
number of heading column labels (seed labels). The measurements

“http://flask.pocoo.org/
Shttp://nordlys.cc

3500
240 4
2204 3000
w 2004 «
£ £ 2500
£ 180 =
v [
£ 160 £ 2000 A
= =
1407 1500
120 4
100 — 10001 —

12 3 456 7 8 910
# Seed Labels

12 3 45 6 7 8 910
# Seed Entities

(a) Row population (b) Column population

Figure 5: Performance in terms of response time.

are repeated 10 times and averages are reported in Figs. 5a and 5b.
We can observe that, in both cases, response time grows linearly
with the size of the input. For row population, the response time is
beyond 250ms, even with the largest input size, which is considered
very acceptable. For column population, responses are a magnitude
slower. This is due to the fact that we consider all related tables in
our scoring formula. Limiting the computations to the top-k most
similar tables may provide a solution; it is left for future work to
find a k value that provides a good trade-off between effectiveness
and efficiency.

6 CONCLUSION AND FUTURE WORK

We have introduced SmartTable, an online spreadsheet application
that is equipped with smart assistance capabilities. Specifically, we
aid users working with relational tables by suggesting them addi-
tional entities and column heading labels to be included in the table.
In future work, we consider diversifying recommendations and
plan to extend the scope of content recommendation to data cells
as well, by suggesting possible values for them. Furthermore, we
intend to integrate table search and table generation functionality,
which we developed in recent work [11, 12].

REFERENCES

[1] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015. TabEL:
Entity Linking in Web Tables. In Proc. of ISWC ’15. 425-441.

[2] Marc Bron, Krisztian Balog, and Maarten de Rijke. 2013. Example Based Entity
Search in the Web of Data. In Proc. of ECIR ’13. 392-403.

[3] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data Integra-
tion for the Relational Web. Proc. of VLDB Endow. 2 (2009), 1090-1101.

[4] Faegheh Hasibi, Krisztian Balog, Dario Garigliotti, and Shuo Zhang. 2017. Nordlys:
A Toolkit for Entity-Oriented and Semantic Search. In Proc. of SIGIR ’17. 1289~
1292.

[5] Yeye He and Dong Xin. 2011. SEISA: set expansion by iterative similarity aggre-
gation. In Proc. of WWW ’11. 427-436.

[6] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on
Semi-Structured Tables. In Proc. of ACL ’15. 1470-1480.

[7] Chi Wang, Kaushik Chakrabarti, Yeye He, Kris Ganjam, Zhimin Chen, and
Philip A. Bernstein. 2015. Concept Expansion Using Web Tables. In Proc. of
WWW ’15. 1198-1208.

[8] Yalin Wang and Jianying Hu. 2002. Detecting Tables in HTML Documents. In
Proc. of DAS "02. 249-260.

[9] Yalin Wang and Jianying Hu. 2002. A Machine Learning Based Approach for
Table Detection on the Web. In Proc. of WWW °02. 242-250.

[10] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-
Focused Tables. In Proc. of SIGIR ’17. 255-264.

Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval using Semantic
Similarity. In Proc. of WWW ’18. 1553-1562.

Shuo Zhang and Krisztian Balog. 2018. On-the-fly Table Generation. In Proc. of
SIGIR ’18.

[11

[12


http://flask.pocoo.org/
http://nordlys.cc

	Abstract
	1 Introduction
	2 Overview
	3 Methods
	3.1 Row population
	3.2 Column population

	4 Implementation
	4.1 Datasets
	4.2 Indices
	4.3 Implementation

	5 Evaluation
	6 Conclusion and future work
	References

