
Sequential Machines, Ambiguity, and
Dynamic Programming*

RICHARD BELLMAN

The RAND Corporation, Santa Monica, California

Abstract. Given a sequential machine, in the terminology of E. F. Moore, Annals of
Mathematics Studies, No. 34, 1956, a problem of some interest is that of determining testing
procedures which will enable one to transform it into a known state starting from an initial
situation in which only the set of possible states is given.

To treat this problem, we introduce the concept of ambiguity, and show how the func-
tional equation approach of dynamic programming can be applied.

1. Introduction

Following previous authors, Moore, [6], Huzino, [4], we shall use the terms
sequential machine to signify a mathemat ical system consisting of a finite set of
quantities, i l , /2, . . . , iM, which we call inputs, a finite set of quanti t ies
j l , j2, • • • , jN, which we call outputs, and a finite set of quantit ies x l , x2, . . • , XK,
which we call the states of the system.

These quantities are interrelated by means of the following Markovian
properties:

(a) The present state of the system depends only upon the past s tate 1
and the past input. [

(b) The present output of the system depends only upon the present((1)
state and the present input.)

We then have two "multiplication tables" describing the states and outputs ,
given the past states and inputs. Table 1 shows the states, and a similar table
would describe the outputs, which we shall call O,s •

A fundamental problem in this field is tha t of using this information to deter-
mine the current state of a sequential machine, assumed constant until an input
is applied. One part of this problem is tha t of determining when this is possible,
and another par t is tha t of determining the state in some optimal fashion when
this can be done. Some work in this direction has been done; cf. Ginsburg, [3],
Mealy, [5].

We wish to show in this paper tha t the theory of dynamic programming can
be utilized to provide a conceptual and analytic basis for problems of this nature,
and, in addition, computat ional algorithms. As a simple example, we shall con-
sider the classical coin-weighing problem, which has by now been solved in a
large number of different ways.

An application of dynamic programming techniques to a closely related class
of problems may be found in Bellman, Holland, Kalaba [2].

• Received February , 1959

24

http://crossmark.crossref.org/dialog/?doi=10.1145%2F321008.321011&domain=pdf&date_stamp=1960-01-01

SEQUENTIAL MACHINES, AMBIGUITY, AND DYNAMIC PROGRAMMING 2 5

Present output

TABLE 1
Present state

Xl X2

11 Xll ~12
I ~ : :

IM XM1 XM2

XN

$~IN

XMN

Next state

2. Information Pattern

Let us now consider the formulation of the problem of determining optimal
testing methods within the framework of the theory of dynamic programming
[1]. To begin with, we must introduce state variables which describe the state of
our knowledge at any stage of the process.

Suppose tha t initially it is known tha t the system is in one of a number of
possible states, xal, xa2, . . • , xak. The set

(1) S = [x,1, x ~ , . - . , xo~]

is called the information pattern. Conceivably, S may be the set of all possible
x , , which we call ~.

As we insert inputs and observe outputs, the information pattern, which is to
say, the set of possible current states of the machine, will change.

3. Ambiguity

There are now two possibilities. Either the structure of the multiplication
tables given above is such tha t by means of some appropriate sequence of inputs
we can finally reach a point where we definitely know the state of the machine,
or we cannot.

If we cannot, it is of interest to determine the minimum uncertainty at-
tainable, measured perhaps in terms of the minimum number of possible states.
If we can, it is of interest to determine the least number of inputs required to
at ta in certainty.

In what follows, we wish to introduce the concept of ambiguity, and show how
to calculate it by means of functional equations.

4. Functional Equations

Given a set of elements S, we introduce the scalar function

(1) n(S) ~ the number of elements in S.

Let us call n(S) the norm of S.
Let us now pose the following problem: Given the information tha t the cur-

rent state of the sequential machine is a member of a set S, we wish to use a
sequence of inputs which will minimize the norm of the set resulting after k
stages.

26 RICHARD BELLMAN

This is to be a sequential, or feedback process, since we allow, and as a matter
of fact, encourage observation of the outputs as the testing proceeds.

Let us define

(2) s0(s) = n(S),
and

(3) ak(S) ~ the norm of the set describing the information pattern after k
trials, using an optimal testing policy.

In order to derive a recurrence relation connecting ak(S) with the function
ak-l(S), let us describe what happens when we use a particular input I. As a
result of observing the output O, and the knowledge of the previous information
pattern S, we deduce from the multiplication tables that the current state of the
system must belong to a new set which we shall call S~o.

Furthermore, from the multiplication table for outputs, we know that 0 itself
must be a member of a set which is determined by I and the set S. Call this set
of possible outputs T(I, S). We do not, of course, know the precise output be-
forehand, since we do not know the precise state of the machine.

Since we do not know the precise output, we must acknowledge the possi-
bility that it will be the worst possible from our point of view. With this in mind
the input I must be chosen so as to minimize.

Putting these remarks together, we see that the functional equation satisfied
by the functions ~k(S) is

(4) ~k(S) = Min Max ak-l(Sro), k => 1.
I OcT(I,8)

This is an application of the principle of optimality [1, p. 83].

5. Limiting Case

Let us now consider the limiting case obtained as we let the number of allow-
able tests become infinite. Since the function ak(S) is clearly weakly monotone
decreasing as a function of k as k increases, we can define for each set S the
function

(1) a(S) -- lim ak(S).
k...E*~

We call this function a(S) the ambiguity of S. I t satisfies the functional equation

(2) a(S) = Min Max a(S~o).
I OeT(I,8)

If a(S) = 1 for every S c ~, we say that the sequential machine is un-
ambiguous.

6. Discussion

In passing, let us note that we have used a rather useful analytic device in
discussing the problem of determining some state of the machine. Not only have

SEQUENTIAL MACHINES, AMBIGUITY, AND DYNAMIC PROGRkMMING 27

we posed a feasibility problem, but we have associated it with a variational
problem. Frequently, the two in combination are easier to at tack than the
feasibility problem alone.

7. Minimum Time

Along these very same lines, let us consider the problem of determining a
testing program that will reduce S to a single element as quickly as possible.

Define the new function

f (S) = O, if n(S) = 1,
(1) ~ the minimum number of trials required to reduce S to a single

element, provided that n(S) ~ 1 initially.

If it is not possible to reduce S to a single element, then f (S)wi l l have an
infinite value. The function clearly satisfies the functional equation

(2) f (S) = 1 + Min Max f(Sxo).
X OET(I,8)

The problem of determining whether or not a given sequential machine is am-
biguous or not has thus been made equivalent to solving the preceding functional
equation.

For a discussion of a problem of related type, see [2].

8. The Coin-Weighing Problem

As a simple illustration of these techniques, consider the classic puzzle of using
an equal-arm balance to detect one heavy coin in a lot of N coins of similar
appearance.

Let

(1) fN ~ the maximum number of weighings required using an optimal
policy.

At each stage, we are allowed to weigh one batch of k coins against another, and
observe the outcome. Two situations can arise. Either the two sets of coins will
balance, or they will not. If the two sets balance, the heavy coin must be one
of the remaining N - 2k coins; if they do not balance, we know that the heavy
coin is in one of the sets of k coins. Since we must take account of both con-
tingencies, we obtain the relation

(2) f~ = 1 + Min Max[fk, f~_~] .
l ~ k ~ N / 2

To minimize, we clearly want to make k and N -- 2k as equal as possible.
Consequently, we take k == IN/3] or IN/31 + 1, depending upon whether N

has the form 3m + 1 or 3m + 2.

REFERENCES

1. a. BELLMAN, Dynamic Programming (Princeton University Press, Princeton, N. J.,
1957)

28 "" RICHARD BELLMAN

2. R. BELLMAN, J. HOLLAND, AND R. KAL&BA, On an application of dynamic programming
to the synthesis of logical systems, Y. Assoc. Comp. Mach. 6 (1959), 486--493

3. S. GINSBURG, On the length of the smallest uniform experiment which distinguishes the
terminal states of a machine, Research Report, The National Cash Register Company,
Electronics Division, Hawthorne, California, 1957.

4. S. HUZINO, "On some sequential machines and experiments," Memoirs of Fac. Sei.,
Kyushu Univ., Ser. A, Vol. XII, No. 2, 1958.

5. G. H. MEALY, A method for synthesizing sequential circuits, Bell System Tech. J. ~
(1955), 1045-1079.

6. E. F. MOORE, "Gedanken-experiments on sequential machines," in Automata Studies,
Annals of Mathematics Series, No. 34, 1956, pp. 129-153.

