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Abstract. Given a sequential machine, in the terminology of E. F. Moore, Annals of 
Mathematics Studies, No. 34, 1956, a problem of some interest is that of determining testing 
procedures which will enable one to transform it into a known state starting from an initial 
situation in which only the set of possible states is given. 

To treat this problem, we introduce the concept of ambiguity, and show how the func- 
tional equation approach of dynamic programming can be applied. 

1. Introduction 

Following previous authors, Moore, [6], Huzino, [4], we shall use the terms 
sequential machine to signify a mathemat ical  system consisting of a finite set of 
quantities, i l ,  /2, . . .  , iM, which we call inputs, a finite set of quanti t ies 
j l ,  j2,  • • • , jN,  which we call outputs, and a finite set of quantit ies x l ,  x2, . .  • , XK, 
which we call the states of the system. 

These quantities are interrelated by  means of the following Markovian  
properties: 

(a)  The present state of the system depends only upon the past  s tate 1 
and the past  input. [ 

(b)  The present output  of the system depends only upon the present(  (1) 
state and the present input. ) 

We then have two "multiplication tables" describing the states and outputs ,  
given the past  states and inputs. Table  1 shows the states, and a similar table 
would describe the outputs,  which we shall call O,s • 

A fundamental  problem in this field is tha t  of using this information to deter- 
mine the current state of a sequential machine, assumed constant until an input 
is applied. One part  of this problem is tha t  of determining when this is possible, 
and another par t  is tha t  of determining the state in some optimal  fashion when 
this can be done. Some work in this direction has been done; cf. Ginsburg, [3], 
Mealy, [5]. 

We wish to show in this paper tha t  the theory of dynamic programming can 
be utilized to provide a conceptual and analytic basis for problems of this nature, 
and, in addition, computat ional  algorithms. As a simple example, we shall con- 
sider the classical coin-weighing problem, which has by now been solved in a 
large number  of different ways. 

An application of dynamic programming techniques to a closely related class 
of problems may  be found in Bellman, Holland, Kalaba  [2]. 
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2. Information Pattern 

Let us now consider the formulation of the problem of determining optimal 
testing methods within the framework of the theory of dynamic programming 
[1]. To begin with, we must  introduce state variables which describe the state of 
our knowledge at  any stage of the process. 

Suppose tha t  initially it is known tha t  the system is in one of a number  of 
possible states, xal, xa2, . .  • , xak. The set 

(1) S = [x,1, x ~ ,  . - .  , xo~] 

is called the information pattern. Conceivably, S may  be the set of all possible 
x , ,  which we call ~. 

As we insert inputs and observe outputs,  the information pattern,  which is to 
say, the set of possible current states of the machine, will change. 

3. Ambiguity 

There are now two possibilities. Either the structure of the multiplication 
tables given above is such tha t  by means of some appropriate  sequence of inputs 
we can finally reach a point where we definitely know the state of the machine, 
or we cannot. 

If  we cannot, it is of interest to determine the minimum uncertainty at-  
tainable, measured perhaps in terms of the minimum number  of possible states. 
If  we can, it is of interest to determine the least number  of inputs required to 
at ta in certainty. 

In  what  follows, we wish to introduce the concept of ambiguity, and show how 
to calculate it by  means of functional equations. 

4. Functional Equations 

Given a set of elements S, we introduce the scalar function 

(1) n(S )  ~ the number  of elements in S. 

Let  us call n(S )  the norm of S. 
Let us now pose the following problem: Given the information tha t  the cur- 

rent  state of the sequential machine is a member  of a set S, we wish to use a 
sequence of inputs which will minimize the norm of the set resulting after k 
stages. 
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This is to be a sequential, or feedback process, since we allow, and as a matter 
of fact, encourage observation of the outputs as the testing proceeds. 

Let us define 

(2) s0(s) = n(S), 
and 

(3) ak(S) ~ the norm of the set describing the information pattern after k 
trials, using an optimal testing policy. 

In order to derive a recurrence relation connecting ak(S) with the function 
ak-l(S), let us describe what happens when we use a particular input I. As a 
result of observing the output O, and the knowledge of the previous information 
pattern S, we deduce from the multiplication tables that the current state of the 
system must belong to a new set which we shall call S~o. 

Furthermore, from the multiplication table for outputs, we know that 0 itself 
must be a member of a set which is determined by I and the set S. Call this set 
of possible outputs T(I, S). We do not, of course, know the precise output be- 
forehand, since we do not know the precise state of the machine. 

Since we do not know the precise output, we must acknowledge the possi- 
bility that it will be the worst possible from our point of view. With this in mind 
the input I must be chosen so as to minimize. 

Putting these remarks together, we see that the functional equation satisfied 
by the functions ~k(S) is 

(4) ~k(S) = Min Max ak-l(Sro), k => 1. 
I OcT(I,8) 

This is an application of the principle of optimality [1, p. 83]. 

5. Limiting Case 

Let us now consider the limiting case obtained as we let the number of allow- 
able tests become infinite. Since the function ak(S) is clearly weakly monotone 
decreasing as a function of k as k increases, we can define for each set S the 
function 

(1) a(S)  -- lim ak(S). 
k...E*~ 

We call this function a(S)  the ambiguity of S. I t  satisfies the functional equation 

(2) a(S) = Min Max a(S~o). 
I OeT(I,8) 

If a(S) = 1 for every S c ~, we say that the sequential machine is un- 
ambiguous. 

6. Discussion 

In passing, let us note that we have used a rather useful analytic device in 
discussing the problem of determining some state of the machine. Not only have 



SEQUENTIAL MACHINES, AMBIGUITY, AND DYNAMIC PROGRkMMING 27 

we posed a feasibility problem, but  we have associated it  with a variational 
problem. Frequently,  the two in combination are easier to at tack than the 
feasibility problem alone. 

7. Minimum Time 

Along these very  same lines, let us consider the problem of determining a 
testing program that  will reduce S to a single element as quickly as possible. 

Define the new function 

f (  S)  = O, if n( S)  = 1, 
(1) ~ the minimum number of trials required to reduce S to a single 

element, provided that  n(S) ~ 1 initially. 

If it is not possible to reduce S to a single element, then f (S )wi l l  have an 
infinite value. The function clearly satisfies the functional equation 

(2) f (S)  = 1 + Min Max f(Sxo). 
X OET(I,8) 

The problem of determining whether or not a given sequential machine is am- 
biguous or not has thus been made equivalent to solving the preceding functional 
equation. 

For  a discussion of a problem of related type, see [2]. 

8. The Coin-Weighing Problem 

As a simple illustration of these techniques, consider the classic puzzle of using 
an equal-arm balance to detect one heavy coin in a lot of N coins of similar 
appearance. 

Let  

(1) fN ~ the maximum number of weighings required using an optimal 
policy. 

At each stage, we are allowed to weigh one batch of k coins against another, and 
observe the outcome. Two situations can arise. Either the two sets of coins will 
balance, or they will not. If the two sets balance, the heavy coin must be one 
of the remaining N - 2k coins; if they do not balance, we know that  the heavy 
coin is in one of the sets of k coins. Since we must take account of both con- 
tingencies, we obtain the relation 

(2) f~ = 1 + Min Max[fk, f~_~] .  
l ~ k ~ N / 2  

To minimize, we clearly want to make k and N -- 2k as equal as possible. 
Consequently, we take k == IN/3] or IN/31 + 1, depending upon whether N 

has the form 3m + 1 or 3m + 2. 
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