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Abstract. Frequently, as in missile control systems, linear differential equations are 
simultaneous with nonlinear but slower acting differential equations. The numerical solu- 
tion of this type of system on a digital computer is significantly speeded up by approximat- 
ing the forcing functions with polynomials, solving the linear equations exactly, and nu- 
merically integrating the nonlinear equations with Milne integration. Automatic interval 
adjustment is possible by comparing errors in the nonlinear integration. The interval 
selected is related to the shortest time constant of the nonlinear equations rather than the 
shortest of all the equations. With this system, both detailed transient response and steady 
state conditions are revealed with a minimum of machine time. 

Introduction 

The engineering analysis of a missile guidance system led to arrays of simul- 
taneous ordinary differential equations, many  of which were too complicated to 
be solved analytically. Analog computer simulation of these systems has been 
found quite useful but  somewhat limited in some areas, especially where the 
necessary linearization is unrealistic or where the number  of equations is too 
large. 

The guidance system being studied consisted of an electronic and hydraulic 
control system with a fast response combined with an aerodynamic system which 
had an inherently slower response. 

This system of equations was programmed for a digital computer  to be inte- 
grated numerically. I t  was found tha t  the t ime interval required to achieve 
reasonable accuracy was very small, making the computer t ime usage prohibitive 
for the number  of solutions that  were needed. 

Examination of this equation system pointed out tha t  the time interval re- 
quired for numerical stability was of the order of the smallest t ime constant in 
the fast acting control system, whereas the nonlinearities which made analytic 
solutions impossible existed in the equations describing the slower acting aero- 
dynamics. 

In  many  cases, it is possible to approximate a control system with a simple 
t ime delay without adversely affecting the numerical solution. Replacing differ- 
ential equations with fast  response by a simple time delay allows the numerical 
integration to proceed at  a time interval of the order of the shortest t ime constant  
of the aerodynamic par t  of the guidance system. However, the effect of transients 
in the control system is ignored by so doing and significant errors would have 
been made in our particular study. 

The method herein described was developed to overcome these problems, 
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allowing a complete transient analysis of the guidance system with a reasonable 
amount of computer time. 

Description of Method 

Typically, a missile guidance system can be represented by 

El 0 

where 
H is a set of nonlinear ordinary differential equations which describe a con- 

trolled mechanism, 
G is a set of linear ordinary differential equations with constant coefficients 

which describe a controlling device with a fast response in comparison with H, 
E is the error function, 
0 is the correction function. 
The control system differential equations are of the form 

(i) (*) (~) 
A s O W  . . .  T AoO = F(E,  E, . . . , E )  

Because the aerodynamic system is relatively slow acting, the function F can 
be accurately approximated by a low order polynomial in time, that is, 

(-) (*) 

F ( E , E ,  . . .  , E )  ~ p(t) .  

If the polynomial p is substituted for F as the forcing function, the differential 
equation can be solved analytically. Thus, the dependent variable 0 can be 
found as 

0 ---- Z B~e-t/~j + P( t ) ,  

where the first term consists of a transient response and the second term is a 
polynomial in time. The coefficients of both terms can be calculated directly from 
the polynomial p(t)  and from the coefficients of the differential equation. In 
principle, then, the function 0 can be derived analytically from the original 
differential equation and a suitable polynomial approximation to the forcing 
function. Further, it would be possible to feed the function 0 into the nonlinear 
equations to solve for the forcing function F by means of numerical integration. 

In this application, it was necessary to cause the analytic solution for 0 to 
conform to the step-by-step evaluation required by the numerical integration of 
the nonlinear equations. By the same token, the information from which the 
forcing polynomial, p, must be derived is available at discrete points. With 
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these simplifications it becomes possible to write the solution in the following 
form: 

0.+, = a,O~ + a~O.-i + "" + a~O~_j+1 

where: 

0,+, ~ 0(t~ -{- h), etc., 
3 is the order of the differential equation, 
k is the degree of the forcing polynomial, 
h is the time interval between adjacent calculated points. 
In this expression the a's and B's depend on the coefficients of the differential 

equation and the interval h. That is, for a given interval of integration the a's 
and B's will be constant. 

EXAMPLE. A simple control system might be represented by 

~-0 + 0 = E (1) 

(or G = 1 / ( r S  -{- 1) in Laplace notation). 
Assume that E has been calculated through time t.+~ and that 0 has been 

calculated through time t~ (where t,+~ is defined as t~ + h). Using the three 
latest values of E, a quadratic function of time can be derived to approximate 
E of the form 

E = K~ + K2( t  - t~) -{- K3( t  - t~) ~ 
where 

K1 -~ E n ,  

K2 = 2~ (E'+I -- E~-i  ) ,  

1 
Ks = ~ (E~+i - 2E~ + En_l ) .  

Equation (1) becomes 

r O T  8 = K i  -F K~(t  - t , )  + K~(I  - t~) ~ (2) 

which has the analytic solution 

0 -- Ae-(t-tn)/'+ C, -F C~(t - tn) -t- C~(t - t~) ~. (3) 

Then, differentiating, 

= A -(*-t.)/, 
- - -  e + C2 + 2Ca(t - t , ) .  (4) 

T 

To solve for the C's, equation (3) and equation (4) are substituted into equa- 
tion (2) and like coefficients are equated. Thus: 

C1 + C~r = K1 

C~ + 2C~ = Ks 

C3 = Ks 
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o r  

and 

C1 = KI - ~'K2 -t- 2~'2K3~ 

C2 = K~ 2TK3 

Cs = Ks 

(5) 

o r  

2 
T 

C1 = E,` - ~ (E , `+ i  - E , ` - i )  + ~ (E,`+i -- 2E,` + E,`-i) 

C2 = (E,`+, --  E,`_,) - ~ (E,`+, --  2E,` -t- E,`- l)  

1 
C3 = ~ (E,`+i -- 2E,` --}- E,`-i) 

To obtain the coefficient A, substitute t = t~ into equation (3) and obtain 

O,, = A -t-Ci 

2 
T T 

A = 0, - E ,  T ~ (En+l -- En_l) -- ~ (E,+, - 2E,  + E,`_~). 

To get the next needed value for 0, tha t  is, 0,`+1, the value t,`+~ must be substi- 
tuted into equation (3) with the values of the C's found in equation(5). The result- 
ing expression will relate the value of 0,`+1 to a combination of terms containing, 
0~, E . + i ,  E., , E . -1  • 

T e--h/v r T 
0,,+1 = O R e  - h : ' W E , ` + l  -- ~ - -  ~ + h  - ~ -  2-h + 1 

W E , ` [ ( - - i - k ~ ) e  -^'~ - 2r 2h__T. ~ ~ ]  

~" e _ h / r  T ~" 

Generalizahon 
In general, as in this example, the new value 0.+1 is a linear expression of the 

previous values of 0 and the known values of the forcing variable where the co- 
efficients of this linear expression depend only on the coefficients of the linear 
differential equation, the time interval h, and the degree of the forcing poly- 
nomial. 

I t  is important  to note tha t  while the coefficients in the linear expression are 
functions of the differential equation coefficients, the accuracy of the solution 
depends only on how well E can be fit by the polynomial in time. In the example, 
if E is a quadratic from tn-1 to t .+l ,  then the solution is exact. During transient  
periods a small interval is used to insure a good fit by the polynomial. 
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This method may be applied to a linear differential equation with constant 
coefficients of any order, and the degree of the polynomial fit can be varied. 
However, the complexity of the derivation and evaluation of the coefficients 
increases considerably as the order of the equation increases. Fortunately, this 
type of equation can be broken up into a series of second order equations where 
the numerical solution of one equation serves as the forcing function of the next. 
The selection of the degree of the polynomial depends on the accuracy required; 
a quadratic polynomial will suffice in most cases. 

The solution of the equation 

L1# + L20 + O = AoE + BoE + CoN 

takes the form 

0.+, = alO. + a20._x + ~,E.+, + ~2E. + ~ . - ,  

where 

al = 2  

a2 = --[exp (-hL2/2L,)] ~ 

+ - 

~n 3 ~ 1 - -  ~ I  ~ ~:~ 

m4 -= I "{- a~ 

m 5  ~ 1 - -  a 2  

/ ~ t = ~  ( --L2Ao) + ~ [ C o - L , ( B o - - L ,  Ao) - -L tAo l  

(6) 

L2 2 ~ 4L, 

L2 2 => 4L, 

1 
- -  A o ) ~  + 

-- ~ [Co -- L2(Bo -- ~ Ao) -- Li Ao 

+m, -~(Bo--L, Ao) +m~{-Ao} 

--'< ol} 1~3 2hi  -- (Bo -- L2 Ao) + ~ [Co -- L2(Bo - L2 Ao) -- L~ A 
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Method of Application 

This method lends itself nicely to digital computer applications. The nonlinear 
equations must be separated from the linear equations and solved by a regular 
numerical integration. Since the coefficients of equation (6) require successively 
evenly spaced intervals, Milne Integration, a compatible system, was selected 
to integrate the nonlinear differential equations. To achieve the desired result of 
large enough intervals of integration to keep the computer time reasonable as 
well as small enough intervals to accurately calculate transient conditions, it 
was necessary to use a varying time interval selected automatically by means of 
an error check in the Milne Integration. The coefficients from equation (6) re- 
quired for the variety of time intervals that may be used during the course of the 
integration can be calculated initially and stored in the computer for use as 
needed. 

To start the integration, a very small interval is used and then is successively 
doubled until a desirable interval is reached as indicated by the error check. 
Although it is straightforward to increase the interval by doubling in both 
Milne Integration and equation (6) by just dropping out alternate values, it is 
quite difficult to cut the interval down. When the detected error becomes too 
large, the program restarts from the last accurate point. 

The stability of this overall system depends only on the stability of the non- 
linear equations integrated by Milne Integration. To stabilize these equations it 
was found helpful to iterate when the errors were detected as significant. 

Results 

This method of numerical integration has been used successfully in a major 
engineering guidance system study. To mathematically simulate the control 
system it was necessary to include drastic discontinuities in the control system 
differential equations. For engineering convenience, there were some parameter 
discontinuities in the nonlinear differential equations. The system of numerical 
integration selected large intervals for integration while the variables were pro- 
ceeding smoothly, but restarted when the integration became more difficult. 
Since restarts were always initiated when discontinuities occurred in either type 
of equations even though the errors were detected only in the nonlinear equations, 
it was felt that transients occurring for any reason were detected by this system. 
Through the use of this method, it was possible to reduce the computer running 
time from fifty hours to one hour retaining all of the transient characteristics. 
An IBM 650 Computer System was used to perform the calculations. 

As a by-product of this effort, it was found useful to use equation (6) to deter- 
mine the response of a given control system to any given forcing function. This 
system replaced the less accurate Tustin's method formerly used by this group. 

Conclusions 

On the basis of the success of this system on this application, it is planned to 
program it in a general way to extend it to other sets of differential equations. 
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The method has room for improvement by increasing the stability of the Milne 
Integration, c.f. [1]. In particular, if iteration could be eliminated, the computer 
time would be cut down even further. The accuracy criterion appeared to be ade- 
quate to insure the accuracy of the solution regardless of problems of stability or 
discontinuities. 
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S u m m a r y  

A typical control system might well consist of a high speed electronic con- 
trolling mechanism working with a slower nonlinear mechanical system. A 
mathematical simulation of this system usually consists of a set of simultaneous 
differential equations. Because of their nature, high speed control systems can 
usually be represented as linear differential equations with constant coefficients. 
Frequently, the mechanical system cannot be linearized so that the entire set 
of differential equations must be considered nonlinear. If size, accuracy and non- 
linear limitations prohibit the use of an analog computer, a digital simulation is 
required. However, a normal digital computer solution which would include the 
fast acting linear control equations might lead to a prohibitive solution time. 
Thus, many digital simulations neglect the effect of high speed transfer functions, 
in effect assuming that their transient terms are negligible. This paper describes 
a method of including these high speed transfer functions in a digital simulation 
with only a small increase in computer time. 

Linear control system differential equations can be written: 
O) (°) (s) 

A~ 0 + • . .  -{- AoO = F ( E ,  E, . . . ,  E )  

where the A's are constant. 
This can be solved exactly for 0 if F is in a simple form. If we approximate 

the forcing function F by a polynomial in time, 8 can be solved analytically. 
This analytical solution can be manipulated into a step-by-step procedure which 
is compatible with other numerical methods of integrating differential equations. 

Milne Integration is used to integrate the nonlinear differential equations. In 
this solution the stability of the differential equations is the basic limitation on 
the time interval. To stabilize the Milne Integration, an iteration technique was 
used and found to be quite profitable. In order to start the Milne Integration 
without special starting formulas, it is required that the first few time intervals 
be very small. As enough intervals are calculated and as transient conditions dis- 
appear, the time interval is successively doubled until it is of the order of the time 
constants in the nonlinear equations. Since Milnc Integration allows the trunca- 
tion error to be estimated, it is possible to establish an error criterion and auto- 
matically adjust the interval of integration so that the error is kept within pre- 
determined bounds. It is important to note that the integration interval selected 
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will depend on the short time constants of the linear equations only during 
transient periods. During most of the calculations, the time constants in the 
nonlinear equations will determine the integration interval. However, when the 
error criterion indicates that the time interval is too large, a restart is initiated 
at a smaller time interval. Therefore, the larger time intervals which result from 
using this method do not detract from the accuracy of the solution. 

This technique has been programmed and applied to a specific missile control 
problem with the result that a solution which previously required 50 hours of 
machine time now is completed in less than one hour. 

REFERENCES 

1. W. E. MILNE AND R. R. REYNOLDS, Stability of a numerical solution of differential 
equations, J. Assoc Comp. Mach. 6 (1959), 196-203. 

2. Memo from R. B. REDDY to A. G. Carlton, The numerical integration of differential 
equations containing small time constants, JHU Applied Physics Laboratory, April 
6, 1954 


