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CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies → Machine learning; •
Software and its engineering→ Software notations and tools;
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1 INTRODUCTION
Machine Learning (ML) techniques have begun to dominate data
analytics applications and services. Recommendation systems are
the driving force of online service providers such as Amazon. Fi-
nance analytics has quickly adopted ML to harness large volume of
data in such areas as fraud detection and risk-management. Deep
Neural Network (DNN) is the technology behind voice-based per-
sonal assistance, self-driving cars [1], image processing [3], etc.
Many popular data analytics are deployed on cloud computing
infrastructures. However, they require aggregating users’ data at
central server for processing. This architecture is prone to issues
such as increased service response latency, communication cost,
single point failure, and data privacy concerns.

Recently computation on IoT and mobile devices has gained
rapid growth, such as personal data analytics in home [5] and DNN
application on a tiny stick [6].HUAWEI has identified speed and
responsiveness of native AI processing on mobile devices as the
key to a new era in smartphone innovation [4].

Many challenges arise when moving ML analytics from cloud
to IoT devices. One widely discussed challenge is the limited com-
putation power and working memory of IoT devices.Personalising
analytics models on different IoT devices is also a very interesting
topic [7]. However, one problem is not yet well defined and inves-
tigated: the deployment of data analytics services. Most existing
machine learning frameworks such as TensorFlow and Caffe focus
mainly on the training of analytics models. On the other, the end
users, many of whom are not ML professionals, mainly use trained
models to perform inference. This gap between the current ML
systems and users’ requirements is growing.
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Figure 1: Zoo System Architecture

Another challenge in conducting ML based data analytics on
IoT devices is model composition. Training a model often requires
large datasets and rich computing resources, which are often not
available to normal users. That’s one of the reasons that they are
bounded with the models and services provided by large companies.
To this end we propose the idea Composable Service. The idea is
that many services can be constructed from basic ML ones such as
image recognition and recommendation to meet new application
requirements. We believe that modularity and composition will be
the key to increasing usage of ML-based data analytics.

Existing service deployment systems such as Clipper [2] and
TensorFlow Serving [8] do not support type-safe service compos-
ing, nor do they offer flexible cross platform automatic deployment
solutions. To this end, we present the design of the Zoo system
to address the aforementioned two challenges. It provides concise
Domain-specific Language (DSL) to enable composition of differ-
ent data analytics services, and also deploys services to multiple
backends. More detailed background can be seen in the authors’
previous work [11].

2 SYSTEM DESIGN
The Zoo system is implemented on Owl [9], an open-source sci-
entific computing library in OCaml language. Owl provides a full
stack support for numerical methods, scientific computing, and
advanced data analytics such as ML and DNN on OCaml.

Initially, Zoo system is designed to make it convenient for de-
velopers to share their OCaml code snippets via Github Gist. We
further extend it to address the composition and deployment chal-
lenges. Fig. 1 shows the workflow of Zoo. It consists of two parts:
development on the left side and deployment on the right. Develop-
ment concerns the design of interaction workflow and the compu-
tational functions of different services. A normal Gist script will be
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Figure 2: Performance of map and fold operations on ndarray on laptop (a-b) and RaspberryPi (c).

loaded as a module in OCaml. Functions from different Gists can be
imported and composed to make new functions, which can then be
saved to another Gist. Deployment takes a Gist and creates models
in different backends. These models can be deployed to IoT devices.
Service deployment and development are separated.

After showing the general workflow, the rest of this section will
briefly introduce some major components in the Zoo system.

Gist is a core abstraction in Zoo. It is the centre of code shar-
ing. However, to compose multiple analytics snippets, Gist alone
is insufficient. For example, it cannot express the structure of how
different pieces of code are composed together. Therefore, we in-
troduce another abstraction: service in Zoo.

We observe that most current popular deep learning models can
generally be categorised into three fundamental types: image, text,
and voice. To make sure the type matches in service composition,
we use generalised algebraic data types (GADTs) in OCaml. Type
checking in OCaml ensures type-safe and meaningful composition
of high level services.

Recognising the heterogeneity of IoT device deployment, one key
principle of Zoo is to support multiple deployment methods. Zoo
supports deploying services as Docker containers. Each container
provides RESTful API for end users to query. Another backend is
JavaScript. Using JavaScript to do analytics aside from front end
development begins to attract interests from academia [10] and
industry, such as Tensorflow.js and Facebook’s Reason language.
We also initially explore using MirageOS as an option. Mirage is
an example of Unikernel, which builds tiny virtual machines with
a specialised minimal OS that host only one target application.
Deploying to Unikernel is proved to be of low memory footprint,
and thus quite suitable for resource-limited IoT devices.

Zoo provides a minimal DSL for service composition and deploy-
ment. A user can simply use “[$gid # n] $> s $@ backend” in
a script to get a service of name n from gist gid, compose it with
service s , and deploy the new service in the format of a chosen
backend.

Developers would modify and upload their scripts several times.
As such, each version of a script is assigned a unique id in Gist.
The naming scheme of a Gist is “gid?vid?tol”, where a user can
specify a version of a Gist using vid, and how often should the
local Gist cache be updated using tol.

3 EVALUATION
As part of our evaluation, we compare the performance of different
backends in Zoo. Since the Owl library contains functions that are
implemented in C, it cannot be directly supported by js-of-ocaml,
the tool we use to convert OCaml code into JavaScript. Therefore
in Owl we have also implemented a “base” library in pure OCaml
that shares the core functions of the Owl library. We compare two
kinds of executables in OCaml: bytecode and native. Specifically,
we observe the representative operations: map and fold operations
on ndarray.

Fig. 2(a-b) show the performance of these two operations on
ndarray. We use simple functions such as plus and multiplication
on 1-d (size < 1, 000 ) and 2-d arrays. The log-log relationship be-
tween total size of ndarray and the time each operation takes keeps
linear. For both operations, the C/OCaml implementation of Owl
is faster than base, and native executables outperform bytecode
ones. The performance of Mirage executables is close to that of
native code. Generally JavaScript runs the slowest, but note how
the performance gap between it and the others converges when
the ndarray size grows. For fold operation, JavaScript even runs
faster than bytecode when size is sufficiently large. Fig. 2(c) shows
similar conclusions on RaspberryPi 3 Model B.
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