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ABSTRACT

Byte addressable persistent memory eliminates the need for serial-
ization and deserialization of data, to and from persistent storage,
allowing applications to interact with it through common store
and load instructions. In the event of a process or system failure,
applications rely on persistent techniques to provide consistent
storage of data in non-volatile memory (NVM). For most of these
techniques, consistency is ensured through logging of updates,
with consequent intensive cache line flushing and persistent fences
necessary to guarantee correctness. Undo log based approaches re-
quire store interposition and persistence fences before each in-place
modification. Redo log based techniques can execute transactions
using just two persistence fences, although they require store and
load interposition which may incur a performance penalty for large
transactions. So far, these techniques have been difficult to integrate
with known memory allocators, requiring allocators or garbage
collectors specifically designed for NVM.

We present Romulus, a user-level library persistent transactional
memory (PTM) which provides durable transactions through the
usage of twin copies of the data. A transaction in Romulus requires
at most four persistence fences, regardless of the transaction size.
Romulus uses only store interposition. Any sequential implementa-
tion of a memory allocator can be adapted to work with Romulus.
Thanks to its lightweight design and low synchronization over-
head, Romulus achieves twice the throughput of current state of
the art PTMs in update-only workloads, and more than one order
of magnitude in read-mostly scenarios.
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1 INTRODUCTION

Persistent mechanisms can provide resilience against power outages
and non-corrupting software failures. The advent of storage-class
memory or non-volatile memory (NVM) as a commercial product
has brought this research to the front stage, allowing data and
data structures to be directly persisted to NVM, avoiding serial-
ization and deserialization of data, as is typically done for block
devices. Non-volatile memory constitutes an opportunity to build
applications that require resilience to failures with improved perfor-
mance. Persistent application data is not guaranteed to be stored in
a consistent state. A consistent state must satisfy application-level
invariants or other correctness criteria.

To guarantee consistent persistence, in case of a failure during
a modification of application data, one must ensure that only the
following two scenarios can occur: either the modification is per-
sisted in its entirety, or application data is reverted to the previous
consistent state. This behavior of all or nothing fits naturally into
the concept of a transaction.

Prior research on this topic has identified the same behavior and
expose a persistent transactional memory (PTM) interface to the end
user. Most of these PTMs use an underlying software transactional
memory (STM), thus providing safe concurrent access in addition
to durable transactions. These transactions are sometimes referred
in the literature as failure-atomic-sections (FASEs).

To enable transactions, previous works on transactional persis-
tence employ one of two logging techniques: write-ahead logging
(WAL) with undo [7, 16, 20] or redo [16, 31] log. Both techniques
require a log, containing the new value (redo log) or the current
value (undo log) to be persisted. This adds complexity, given that
the log used to revert to a consistent state must itself be allocated
in persistent memory and be reverted in case of failure. Another
approach is to use copy-on-write, which consists in copying the
data in its existing state, applying the modifications to the new
copy, and finally replacing the existing state with the new one with
a single atomic operation. This technique is commonly used for
disk storage and has also been considered for NVM [9, 26, 30]. Due
to the lengthy copy procedure, the copy-on-write technique has
not been deemed to be a viable alternative to in-place modifications
via logging [1].

In this paper we present Romulus, a novel user-space library
for consistent application recovery from a non-corrupting failure,
which allows application developers to take advantage of byte-
addressable non-volatile memory, with safe memory reclamation.
Romulus was developed to be fast, lightweight and simple to use. Its
code is written in processor-agnostic C++ and integrates a custom
persistent memory allocator.

In short, with Romulus we make the following contributions.
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e We introduce a novel PTM algorithm that relies on two copies
of the data to be persisted, with three different algorithms that
provide different trade-offs in terms of performance and sophis-
tication. Unlike previous approaches, Romulus maintains a redo
log in volatile memory instead of persisting it, hence significantly
reducing overheads on log accesses. Romulus also allows con-
current access through a highly scalable reader-writer lock and
a flat-combining array.

e We specifically address concurrency with a second implemen-
tation of Romulus that guarantees wait-free progress for read
operations and blocking starvation-free update operations. Con-
current read-only transactions use lightweight synchronization
mechanisms and are very efficient.

o Romulus performance is unprecedented with 4 persistence fences
per transaction, independent of the transaction size and the num-
ber of threads. Another source of potential delay are the number
of cache line flushes (pwb), which were also studied and signifi-
cantly reduced.

e We formally present the different variants of the Romulus algo-
rithm, study and discuss their properties, and give proofs of their
correctness.

o Finally, we evaluate experimentally its performance in real-world
use cases. In particular, we develop a fully-functional persistent
key-value store, RomulusDB, and test it with state-of-the-art
benchmarks.

The rest of the paper is organized as follows. We first discuss re-
lated work in §2. We then present background concepts in §3 before
introducing the basic version of the Romulus algorithm in §4. We
extend the original algorithm in §5 to efficiently handle concurrent
transactions. We provide an in-depth evaluation of Romulus in §6
and finally conclude in §7.

2 RELATED WORK

Vista [20] was the first system to provide consistent persistent
memory, using the Rio file cache. Vista does in-place modifications
and guarantees consistent recovery through an undo log stored
in persistent memory. To use transactions in Vista, the user must
manually interpose every store to persistent memory. For every
range of stores, the current value of those memory locations are
saved in the log, requiring one persistence fence per range of stores.
Each log entry in Vista uses at least three words: one word for the
address, one word for the length of the range, and one word for the
original value. Although not originally designed for NVM, Vista
can be adapted to use it.

Atlas [4] also uses a WAL with an undo log. An entry in the undo
log is created for every store to persistent memory. Each log entry
has four words: the destination address of the store, the original
value at the address, a pointer to the next node, and the size of the
store combined with the log type. This implies that a persistent
store in user code will cause a total of 5 stores to NVM. To minimize
cache line flushes, Atlas uses a helper thread to aggregate memory
locations and to guarantee that a consistent state is persisted to
memory. As with any undo log approach, the algorithm has to
guarantee that the log entry is made persistent before any in-place
modification, which implies one persistence fence per log entry.

JustDo [16] uses WAL with a per-thread redo log that saves the
last store and program counter. A failure recovery will re-execute
the last store in the log, resuming the program at the exact point
where it has stopped execution. The persistent store has to be idem-
potent, so that if the store is re-executed, it will result in the same
modification on the destination address. This approach assumes
that both the main memory and cache local memory are persistent.
It requires that all memory loads and stores within FASEs access
only persistent data, where a FASE, as in Atlas, encompasses the
outermost critical sections of all acquired locks (nested or hand-
over-hand). The log has two fixed entries, only one of which is
active at a time, each contains the destination address of the store,
the size of the write, and the value to be placed at the destina-
tion. An extra 64-bit variable holds the program counter with one
bit indicating which of the two fixed entries is active. During a
FASE, a persistence fence is needed after saving the new value and
destination address, and another after saving the program counter.

NV-Heaps [7] uses an undo log system that provides extra func-
tionality, like garbage collection and pointer safety, managing refer-
ences from volatile to non-volatile memory and vice versa. It aims
at facilitating the programmer’s task of using persistent memory.

Mnemosyne [31] combines a redo log and the TinySTM [25]
underlying STM. For every modified word it uses 8 words on the
persisted log. The persistent data is modified only at commit time,
which means that during a transaction, the data of variables stored
in memory still contains unmodified data. When called to read
data from persistence by the user code, the PTM interposes the
load and checks if the data was modified. If so, it returns the new
value from the log and not the value from memory. This approach
can incur a high cost for large transactions because every load on
the persistent memory region needs to first check for an updated
value on the log. The longer the transaction, the bigger the log,
and the longer it will take to search for the existence (and updated
value) of a given variable. The authors of Mnemosyne mention
that the choice of using a redo log was deliberately made, because
it reduces the ordering constraints on writes to persistence, thus
allowing this technique to perform only two persistence fences per
transaction using a torn bit log. However, Mnemosyne’s default
implementation does not use the torn bit log technique, and there-
fore requires 4 persistence fences. Furthermore, in our benchmark
experiments we noticed an increase in the number of persistence
fences in concurrent settings; for example, with two concurrent
threads, we identified transactions with more than 50 fences.

Table 1 summarizes the main features for failure-resilient trans-
actional techniques, where Nygnges represents the number of con-
tiguous ranges of data modified during a transaction and Nizores
represents the number of word-sized stores to persistent memory
done by the user code in the transaction. Some techniques are
capable of logging a contiguous range of data instead of single
word-sized stores, thus implying that Nygnges < Nitores-

The columns respectively indicate: which log type each of the
techniques utilizes; the amount of persistent memory (in words)
that may be used during a transaction associated with the persis-
tence of the log; the number of persistence fences (pfence and
psync) needed per transaction; how many stores are done to per-
sistence, taking into account the stores done by the user code;
whether the technique needs to interpose only stores, or both loads



Log Persistent memory  Nb. pfence+psync Interposition Write
type used per transaction per transaction type amplification
Vista [20] undo 3 X Nyanges n/a stores 300%
Atlas [4] undo 4 X Nyanges 2+ 3 X Nyanges stores 400%
JustDo [16] | done-to-here 3 words 2 + 3 X Nstores stores 400%
Mnemosyne [31] redo 8 X Nitores 4 or more loads + stores 300 — 600%
Romulus | volatile redo n/a 4 stores 100%

Table 1: Comparison of the main transactional persistence techniques.

and stores to persistent memory; and the write amplification factor
for each of the techniques (see §3). Notice that JustDo is the only
algorithm in the table that requires specialized hardware.

3 BACKGROUND AND CONCEPTS

We briefly overview in this section the main concepts and features
of persistent memory, as well as programming models and tools to
exploit it in software.

3.1 Persistent memory

Persistent storage has been so far mainly based on disk persistence,
with data being persisted through the whole I/O stack of the op-
erating system, involving costly user/kernel mode switches from
read/write system calls and data copying between kernel space and
user space [6]. Recent studies propose to exploit high-performance
next-generation NVM storage [6] for memory mapped file I/O. Map-
ping a file onto user memory space with an mmap system call enables
users to access the file directly in the same way as data on memory.
This approach minimizes overhead and simplifies application de-
velopment, even though it suffers from some limitations, such as
dynamically resizing the file and the pre-defined memory region to
which it is mapped. Access to these new types of persistent memory
using the direct access (DAX) feature available in both Linux and
Windows allows for a much finer granularity of persistence at the
cache line level.

For a correct understanding of the concepts used in the paper, we
refer to the definitions proposed by Izraelitz et al. and extensively
described in [16]. Failures are events that may corrupt application
data, for example application process crash or an abrupt failure of
the machine. We distinguish from corrupting and non-corrupting
failures: corrupting failures cause damage to data required for re-
covery, which prevents restoring a consistent state, whereas non-
corrupting failures allow for the recovery procedure to complete.
Data are persistent if after a non-corrupting failure are accessible
by the recovery procedure. The same is true for persistent memory
locations and persistent cache lines where data resides. A persis-
tent memory region is a contiguous range of persistent memory
locations, and it is not guaranteed to be in a consistent state after
a failure. Data are in a consistent state if the relevant application-
level correctness criteria hold. Hereafter, we use the term failure to
simply refer to a non-corrupting failure.

Another concept, more performance related, is write amplifica-
tion described in [23]. Write amplification is the number of addi-
tional bytes written to persistent memory for every byte of user data
stored in persistent memory during a transaction. Additional bytes
are incurred by the log, whether undo or redo, and the memory
allocator’s metadata.

3.2 Interposition of memory accesses

PTMs require at least the interposition of stores to persistent mem-
ory. This interposition is necessary to flush modified cache lines to
persistence and, in the case of an undo log, to save the original data.
Techniques with a redo log need the interposition of loads from per-
sistent memory as well. This load interposition is required so as to
have the latest modified data during a transaction. There are three
different ways of achieving interposition: manual interposition by
the user, compiler interposition, and language interposition.

With manual interposition, it is up to the user to explicitly call a
method before a store is done to persistent memory. Techniques
like Vista [20] and Atlas [4] use manual interposition of stores. As
the user must identify where the stores to persistent memory are
done in the code within the transaction, this approach is prone
to errors and may yield non-recoverable transactions if the user
misses some of the stores.

With compiler interposition, the compiler will insert a call to the
PTM method responsible for handling stores and loads. This can
be achieved by modifying the compiler or by extending an exist-
ing framework like gnu-tm in gcc. Mnemosyne [31] uses compiler
interposition for stores and loads.

With language interposition, instrumentation of the stores or
loads is done at the level of the programming language itself, typi-
cally through operator overloading. When using a language like
C++ that supports operator overloading, one can trigger a method
responsible for persistence management upon every access to a
variable that has been annotated as persistent. This method can, for
instance, save the original value in a log. We use this approach in
our implementation of the algorithms shown in this paper. Except
for rare cases, programs written in C can also be compiled with a
C++ compiler and, therefore, provide the same functionality.

4 THE BASIC ALGORITHM

We first describe in this section the basic Romulus algorithm. We
will then introduce additional variants that improve on the basic
design and work around some of its performance limitations (§5).
Proofs of correctness can be found in a companion technical report.

4.1 Model and assumptions

In the following description of Romulus, we rely on the C++ mem-
ory model [11]. As in [17], we assume that threads control the
ordering and timing of persistence using three special instructions:
(i) a persist write-back (pwb) initiates write-back of a specified lo-
cation to persistent memory, but does not block; (ii) a subsequent
persist fence (pfence) enforces an ordering between previous and
subsequent writes-back in the current thread; finally, (iii) a per-
sist sync (psync) blocks until all preceding pfences in the current



thread have become persistent. In the absence of fences, pwb in-
structions are allowed to reorder with respect to both ordinary and
synchronization instructions. The implementation of each of these
instructions on Intel and ARM processors is summarized in the
following table:

NVM on x86 ‘ NVM on ARM
pwb | CLFLUSH | CLWB or CLFLUSHOPT DC CVAC
pfence nop SFENCE DSB
psync nop SFENCE DSB

We also use the persistent cache store order (PCSO) protocol [8]
that guarantees that: (i) each pwb is ordered with respect to each
preceding or subsequent pfence in its thread; and (ii) for any given
thread and location, each pwb is ordered with respect to each pre-
ceding pwb of the same location in the same thread.

4.2 Principle and architecture

The design of Romulus has the objective of minimizing the num-
ber of persistent fences, knowing that this is a slow operation and
represents a bottleneck of existing approaches. To achieve 4 persis-
tent fences per transaction independent of the number of modified
memory locations, Romulus uses twin copies of the data stored
in persistent memory, so that at every point in time at least one
of these copies is consistent. We name these two copies main and
back (see Figure 1).

Application
Durable transactions
Concurrent transactions
Persistence primitives
Persistent regions

ot

DRAM NVM

o ]

Figure 1: Architecture of Romulus.
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The main region is where the user-code executes in-place modi-
fications. At the end of a successful transaction, the modifications
in main are copied over to back to bring it up-to-date. The back
region is never accessed directly by the user-code and serves solely
as a backup of the previous state of main. If the user code were to
be allowed to access the back data, any pointer dereference would
redirect to a memory location inside main.

In the event of a failure of the process that is mutating main, the
recovery procedure will copy the contents of back over to main
so as to revert any of the incomplete modifications done to main,
thus restoring it to its previous consistent state. If a failure occurs
during the copy from main to back, then the recovery procedure
will copy the full contents of main to back.

Romulus follows a copy-on-write approach and will hence suffer
from the associated performance issues when applied to large data
sets. We will propose a variant of the algorithm to overcome these
limitations in §5.

The architecture of Romulus is shown in Figure 1. The imple-
mentation of the algorithm and supporting libraries are entirely

in user space, without any modification of the kernel. They are
exposed to the application via a unified C/C++ library, 1ibromulus,
which provides support for durable and concurrent transactions,
mediating all interactions with the NVM in a safe and consistent
manner.

4.3 Data structures

The memory layout of Romulus is shown in Figure 2. The per-
sistent memory area is separated into three regions: a persistent
header (head) that is placed at the start of Romulus’s persistent
memory area, immediately followed by the main and back regions
themselves.

NVM
~|head] main | back |.
tat Objects | Allocator =
state]|.. array metadata | X |Y |z [~ | Free memory ...
“Objects | Alocator
| array metadata | X |y | z | | RIS (AR o |
R R main_size -------------------- -

Figure 2: Memory layout of Romulus.

The persistent header holds medadata used to ensure consis-
tency of persistent memory. It is initialized the first time a Romulus
instance is created. The most important fields of the header are:
(i) an atomic variable state that can take any of the three values
indicating whether the current thread is executing outside a trans-
action (IDL), inside an active transaction (MUT), or immediately after
the transaction has committed while modifications are being copied
from main to back (CPY); (ii) a reference to the objects array—also
designated as root pointers—maintained in the persistent memory re-
gion that allows user code to access persisted objects; (iii) a pointer
to the metadata of the memory allocator, also maintained in the
persistent memory region; (iv) the amount of bytes effectively used
in the main region; (v) as well as internal variables to guarantee
correct initialization of the header, maintain consistency of the data
structure upon recovery, and perform bookkeeping operations.

As can be seen in Figure 2, the persistent header is not repli-
cated to the back region, it is used to guarantee at initialization
that the main region is in a valid consistent state before being ac-
cessed by user code. Furthermore, all the data present in the main
region will be replicated at the end of the transaction, when calling
end_transaction. The replication process is simply a raw copy of
the bytes from the main to the back region. The back region is a
snapshot of the previous consistent state of the main region and
is never accessed directly by the user code. It does not contain a
second copy of the objects present in the main region, but holds
instead pointer values that refer to addresses in the main region.

4.4 Memory allocation and reclamation

One of the main challenges in designing and implementing transac-
tional persistence is providing correct memory allocation and recla-
mation. Persistent transactions must recover from failures, even
if those occur during memory management operations. For most
PTMs described in the literature, a failure occurring while updating



the allocator’s metadata can lead to inconsistencies. These incon-
sistencies are categorized as internal or external with respect to
the allocator [2]. Internal inconsistencies can often have disastrous
consequences, such as failure to restart properly upon recovery,
erroneous re-allocation of memory objects currently in use, or leak-
age of large chunks of memory. External inconsistencies can occur
when a failure happens after a call to the allocator has returned a
pointer to a newly allocated block, but before this pointer has been
made persistent, thus causing memory leaks.

Previous PTMs in the literature [4, 20, 31] tend to ignore these
issues, and for correctness they rely on specialized garbage collector
like Makalu [2]. Mnemosyne deliberately accepts the possibility
of leaking in the event of a failure for performance reasons [31].
None of the Romulus algorithms suffer from any of these issues
and, therefore, can be used with any memory allocator.

The memory allocator used in our implementation is based in the
sequential allocator designed by Doug Lea [19]. Both the memory
allocator and objects refer to data structures that are placed in
the persistent region and have to follow the same procedure as any
other user code, where every store to a persistent data requires a
subsequent pwb. This is achieved by wrapping all attributes of every
data structure used by the memory allocator with the persist
class. The persist<T> class is a wrapper that allows to interpose
every access to the underlying data of type T that is meant to
be persistent. Every mutative access to the underlying data has
its update operation redefined inside of persist, where a call to
pwb is done after executing the store on the persistent data. This
technique, which is also used by PMDK [27], significantly reduces
the amount of modifications when porting user code written for
volatile memory, while not requiring a special compiler. We only
had to modify 61 lines in the memory allocator’s original code, and
we expect that other standard sequential memory allocators can be
just as easily adapted.

In our approach, allocating and reclaiming memory is itself part
of the transaction, meaning that, in the event of a failure during a
transaction, any modifications on the allocator’s metadata will be
rollbacked along with all modifications of user variables pertaining
to that transaction.

4.5 The Romulus algorithm

Romulus provides a persistent transactional memory in-
terface, shown in Algorithm 1, with two main methods
begin_transaction and end_transaction surrounding critical
sections of user code accessing persistent data. The transaction
provides consistency for the persisted data modified within the
critical section. The consistency of the data relies on the state
variable that indicates in what stage the transaction is. Upon
start, a transaction changes the state from IDL to MUT indicating
it is in progress. Thereafter, every access to persistent data
from the transaction’s user code is instrumented using language
interposition, in particular every modification triggers a call to pwb
for the modified cache line. Once the user code has completed its
execution, end_transaction updates the state from MUT to CPY
indicating the transaction has already committed to persistent
memory, but modifications are still being propagated to the back
region. The back region serves as a consistent state for the next

Algorithm 1 Basic Romulus algorithm.

1 void begin_transaction() {

2 state.store(MUT, memory_order_relaxed);
3 pwb(&state);

4+ pfence();
5

}

7 void end_transaction() {

s pfence();

s state.store(CPY, memory_order_relaxed);
10 pwb(&state);
u  psync(); // Provide ACID durable modifications on 'main’
12 copyMainToBack(); // pwb() for each cache line
13 pfence(); // No need for durability on 'back’

14 state.store(IDL, memory_order_relaxed);

17 void recover() {

15 int [state = state.load(memory_order_relaxed);
19 if (Istate == IDL) return;

20  if (Istate == CPY) {

21 copyMainToBack();

22 }else if (Istate == MUT) {

23 copyBackToMain();

24

s pfence();

2 state.store(IDL, memory_order_relaxed);

2}

transaction in case a failure occurs during execution of the user
code. Finally, state reverts to IDL after the transaction has ended.

In the event of a failure, the recover method is called upon
restart to restore the persistent memory to a consistent state. The
state variable indicates which of the main or back region is in a
consistent state: when IDL, both regions are consistent; when MUT,
the back region is consistent; and finally when CPY, the main region
is consistent. Once the restore method has completed, both the main
and back regions are in a consistent state, with back containing an
exact byte per byte copy of main.

// pwb() for each cache line

// pwb() for each cache line

4.6 Romulus API

To illustrate the programming interface of Romulus, we provide
in Algorithm 2 sample code for a persistent set implemented as a
sorted single linked list. Every data structure that must be persisted
by Romulus has to be wrapped within the persist<T> class; this
ensures transparent interposition of accesses to its attributes.

Algorithm 3 illustrates how one can instantiate and invoke persis-
tent objects with Romulus. The linked list must first be created and
stored in the persistent memory region (lines 2-8). Thereafter it can
be accessed using regular method invocations, with transparent in-
terposition ensuring data persistence and consistency (lines 10-13).
Finally, the list is deallocated and removed from persistent mem-
ory (lines 15-21). All three steps are wrapped within independent
Romulus transactions.

4.7 Log optimization

One of the main drawbacks of Romulus, which is shared with other
copy-on-write designs, is that it must copy the whole data from
main to back on each transaction. While simplifying the algorithm,
this approach inevitably reduces throughput and wastes resources
by repeatedly copying many unchanged bytes. Furthermore, the



Algorithm 2 Romulus-based linked list.

1 struct Node {

2 persist<K> key;

3 persist<Node »> next;
4+ Node(const K& key) : key { key }, next{ nullptr } {}
5§

6 persist<Node > head { nullptr };
7 persist<Node »> tail { nullptr };

// All node attributes are persisted

// Head and tail are also persisted

s void find(const K& key, Node+& prev, Node=& node) {

10 for (prev = head; (node = prev->next) != tail; prev = node) {
1 if (node->key >= key) break;

2}

13}

15 bool contains(const K& key) {

16 bool found = false;

17 Romulus:read_transaction([&] () {

18 Node «prev, «node;

19 find(key, prev, node);

20 found = (node != tail && node->key == key);

// Read-only transaction

;
22 return found;

2}

25 bool add(const K& key) {

26 bool added = false;

27 Romulus::update_transaction([&] () {

28 Node =prev, *node;

29 find(key, prev, node);

30 added = !(node != tail && key == node->key);
31 if (ladded) return;

// Update transaction

32 Node «n = Romulus:alloc<Node>(key);
33 prev->next = n;
34 n->next = node;

36 return added;

Algorithm 3 Using Romulus-based linked list.

1 LinkedListSet<int> *set;
2 Romulus::begin_transaction();
3 set = Romulus::get_object<LinkedListSet<int>>(0);
4 if (set == nullptr) {
s set = Romulus:alloc<LinkedListSet<int>>();
s Romulus:put_object(0, set);
7
}

s Romulus::end_transaction();

// Allocate list in NVM

10 Romulus::begin_transaction(); // Invoke operations on list
11 set->add(33);
12 assert(set->contains(33));

13 Romulus::end_transaction();

15 Romulus:begin_transaction(); // Deallocate list from NVM
16 set = Romulus::get_object<LinkedListSet<int>>(0);
17 if (set != nullptr) {
18 Romulus::free(set);
19 Romulus:put_object(0, nullptr);
20
}

21 Romulus::end_transaction();

performance penalty increases as the size of main grows and the
length of transactions decrease.

To address this issue, we incorporate a logging technique into
Romulus, where all persistent stores inside a transaction are logged
for later replication to back. The redo log keeps the memory loca-
tions that are being modified by the current transaction. At the end
of the transaction, only these memory locations are copied from

main to back rather than the whole persistent region. The log is
not required for consistency since, in the event of a failure, the re-
covery procedure can simply use the same strategy as Romulus (see
algorithm 1). Therefore, the log is not stored in persistent memory,
residing in faster volatile memory for optimized performance.

With the log optimization, every store done by the user code is
interposed and an entry is added to the log, followed by the in-place
modification on main and the final pwb instruction. The order of
these three steps is not important as long as the pwb is done after
the in-place modification on main.

Unlike other log-based approaches in the literature, Romulus log
stores only the addresses and ranges of modified data, but not the
actual data. Furthermore, whereas other techniques that rely on
persistent logs suffer from high write amplification because each
byte written to persistent memory causes several additional bytes
to be persisted to the log, Romulus’s persistent writes are limited
to the replication of the back region. Another advantage is that,
since the log resides in volatile memory, its size does not need
to be fixed beforehand. In our implementation, we simply use a
dynamic array of address/range pairs (pseudo-code omitted for
space considerations).

5 ALGORITHM EXTENSIONS

We describe in this section extensions of the basic Romulus algo-
rithm, focusing in particular on the efficient support of concurrent
transactions. These extensions leverage scalable synchronization
mechanisms for achieving good performance even when many
threads contend on shared persistent data structures.

5.1 Concurrent transactions

Similarly to most other persistent memory frameworks (e.g.,
Vista [20], Atlas [4], JustDo [16] and PMDK [27]), Romulus pro-
vides durable transactions for single-threaded applications. Support
for concurrency in such settings can be as simple as using mutual
exclusion locks—typically a single global lock—to embed transac-
tions within critical sections and serialize them. Mnemosyne [31]
allows concurrent transactions by leveraging a software transac-
tional memory (STM) library based on TinySTM [25]. NV-Heaps [7]
embeds its own lock-based STM.

The global lock approach has the advantage to be simple to im-
plement and reason about, but it does not scale well. On the other
hand, the STM approach has the drawback of being tightly coupled
with the underlying transactional memory mechanisms and capa-
bilities, and that the price of concurrent synchronization must be
paid for every transaction even in single-threaded applications.

Our approach is to provide two different APIs, one for concur-
rent usage in multi-threaded applications, and another one for
single-threaded applications. We have developed two different con-
currency mechanisms for Romulus, as described next. Each of these
mechanisms provides two types of concurrent transactions, update
and read-only transactions, which are both “irrevocable”, i.e., they
never need to abort and restart. Read-only transactions are by their
very nature disjoint-access parallel, which theoretically allows them
to scale.



5.2 C-RW-WP synchronization

Our first concurrency approach uses flat combining [12, 14], essen-
tially replacing the mutual exclusion lock with a C-RW-WP reader-
writer lock [3]. With flat combining, multiple update transactions
can be aggregated and processed with a single lock acquisition
and release. An update transaction first announces itself in the flat
combining array by registering a pointer to its actual code. There-
after, the C-RW-WP algorithm acquires the lock, traverses the array,
executes all registered transactions, and finally releases the lock.

In our C-RW-WP implementation we replace the cohort lock
by a simpler spin-lock, but thanks to the flat combining technique
starvation-free progress [15] is still guaranteed for update trans-
actions. We implement the C-RW-WP lock’s “read indicator” as
an array where each entry is statically assigned to a thread and
extends over two cache lines, so as to avoid false sharing; this en-
sures low contention, and consequently low overhead and high
scalability for read-only transactions. The coupling of flat com-
bining with C-RW-WP is a novel approach which takes the best
of both techniques, providing scalable read-only transactions and
starvation-free update transactions.

All the variables used in the implementation of the C-RW-WP
lock are stored in volatile memory, even though the lock protects
data that may be persistent. A reader-writer lock grants exclusive
access to a single writer. To guarantee durable linearizability [18],
all modifications to persistent memory must be completely per-
sisted before the lock is released by the writer, with their effects
visible to other threads. In addition, reader-writer locks provide
linearizability, only allowing visibility of operation effects to other
threads after the release of the exclusive lock. As for other writer
threads that have published their operations on the flat combine
array, visibility and durability is guaranteed as soon as an opera-
tion is marked as executed by flushing the associated cache line
and resetting its entry in the array (refer to actual code in [10] for
implementation details). This approach provides complete sepa-
ration between durability and linearizability: it allows the actual
synchronization to not be persisted and avoids extra persistence
fences that could adversely impact the performance of readers. No
persistence fence is required for shared-lock acquisition.

5.3 Left-right synchronization

Romulus requires two persistent copies of the data to guarantee
consistent recovery. The existence of these two copies makes it a
natural fit for integration with the left-right (LR) [24] synchroniza-
tion primitive. LR is a universal construct that provides wait-free
population-oblivious progress for read-only operations, and block-
ing starvation-free progress for update operations. The integration
of LR with Romulus creates the first persistent universal construct
with partial non-blocking progress. Any user application will not
only have durable linearizable transactions, but read-only trans-
actions will also automatically profit from the scalability and low
latency provided by wait-free population-oblivious progress.

The LR concurrency control technique is based on two replicas of
the same data and allows an unlimited number of readers to access
one instance, while a single writer modifies the other instance. This
synchronization mechanism can be summarily described as follows,
where the two instances of the data are referred as left and right.

The synchronization is achieved using a control variable indicating
to readers which of the two copies to access. The writer starts by
modifying the right instance, whereas the left instance is attributed
to the readers. Once the writer completes the modification, the
control variable is changed and new readers will read from the
right instance. The writer then waits for the completion of all the
readers still running on the left instance and finally repeats its
modification on the left instance, bringing both instances up-to-
date. It is hence up to the writer to ensure that readers are always
running on the instance that is not being modified.

This approach has some similarities with the basic Romulus
algorithm, yet with one significant difference: for LR to work cor-
rectly both regions must be traversable by the read-only operations,
whereas in Romulus only the main region can be traversed. Any at-
tempt to traverse data in back will re-direct to memory locations in
main, given that all pointers refer to objects within the main’s mem-
ory range. In other words, the two instances are shallow copies in
LR while they are byte-per-byte copies in Romulus. Fortunately, we
can overcome this limitation through the use of synthetic pointers.

Read-only traversals of the back instance are done with inter-
position of loads, such that an offset is added on every variable
access. This offset is equal to the size of the main memory region,
so as to create a synthetic pointer that refers to the equivalent
memory location within back (see Figure 3). During a transaction,
we use a thread-local variable to indicate to the load-interposing
method which of the instances to use and adjust the offset appropri-
ately. This synthetic pointer approach allows us to use an efficient
raw memory copy operation at the end of transactions or during
recovery, without the need to perform shallow copying.

Objects Allocator
array metadata Data
——A—— ———— - ~
main I3Z‘ I I33‘34‘ L | Free memory ... I
[addr] 20 21 22 .. 26 27 28 29 30 31 32 33 34 35 36 37 38 .. 42 43
back |32] | I33[34] | Free memory ... |
[addr] 44 45 46 .. 50 51 52 53 54 55 56 57 58 59 60 61 62 .. 66 67
<o main_size = 24 -------------------n >

Figure 3: Memory layout of RomulusLR for a minimal exam-
ple of linked list with three nodes and values 32, 33, 34.

Figure 3 shows an example of the memory layout with Romu-
lusLR. In this specific example, each load instruction executed in
the back region will be adjusted with an offset of 24 bytes added to
references from the main region; for instance, address 32 + 24 = 56
refers to the head of the linked list. This transformation allows read-
ers to always access data on the back region when they operate on
that region.

Some adaptations to LR were also necessary for update transac-
tions. While in the original LR algorithm writers can start execution
on any of the two instances, in RomulusLR the control variable is
toggled twice during an update transaction. This guarantees that
update transactions always start execution on the main region and
greatly simplifies the implementation because the memory allocator
can operate on just the main region.

The integration of LR with Romulus requires that readers can
only access the main region after it is guaranteed that all updates
to that region are persisted by calling psync (see algorithm 1).



Thereafter, accesses to the main region are durable linearizable and,
in the event of a failure, the recovery method will complete the
transaction by copying the entire main region to the back region.
From this moment on, the effects of the current update transaction
can be made visible and the control variable is changed so that new
readers can start executing on the main region.

For both concurrent solutions proposed, there is always a single
writer executing an update transaction that aggregates all mutations
previously published by other writer threads in the flat combin-
ing array. All mutations are hence serialized and performed by a
single writer. This approach minimizes lock acquisition and con-
flicts while providing starvation freedom for update operations. It
is also less prone to cache line bouncing and generates less cache
coherence traffic while maintaining cache locality for larger update
transactions. Furthermore, the average number of persistent fences
per mutation can be smaller than 4 because several updates are
aggregated within a single update transaction. Regarding memory
allocation, providing exclusive access to a single writer thread al-
lows Romulus implementations to directly leverage state-of-the-art
sequential memory allocators.

In the rest of the paper, Romulus refers to the basic algorithm
with concurrent accesses synchronized using C-RW-WP; Romu-
lusLog denotes the basic algorithm with volatile log optimization
and C-RW-WP; and finally RomulusLR corresponds to the basic
algorithm with volatile log optimization and LR synchronization.

6 EVALUATION

We present in this section a detailed evaluation of Romulus and
compare it against other state-of-the-art techniques using both
synthetic benchmarks and real-world applications.

6.1 Experimental setup

Our microbenchmarks were executed on a dual-socket 2.10 GHz
Intel Xeon E5-2683 (“Broadwell”) with a total of 32 hyper-threaded
cores (64 HW threads), running Ubuntu LTS and using gcc 7.2
with the -03 optimization flag. The CPU does not support the
CLFLUSHOPT and CLWB instructions and, therefore, we implement
pwb with the CLFLUSH instruction and map the pfence and psync
operations to NOP.

We compare Romulus against Mnemosyne [31] and PMDK [27]
as they are considered to be the most generic and efficient ap-
proaches, they are representative of different designs (respectively
redo and undo log), and their code is freely available. Mnemosyne
was compiled using the latest available version on github (com-
mit 855f452), which requires compilation with the -00 flag. As for
PMDXK, we use the latest 1ibpmemobj from github (commit f697¢52)
executed with the environment variable PMEM_IS_PMEM_FORCE=1.
Since PMDK does not provide built-in support for concurrent trans-
actions, in our evaluation we protect concurrent accesses with
a standard reader-writer lock (std: : shared_timed_mutex) with
reader preference. We rely on a memory-mapped file located in the
/dev/shm/ folder for all implementations.

Unless otherwise noted, our evaluations use DRAM to mimic
systems that implement persistent memory using supercapacitor-
backed DRAM (e.g., Viking NVDIMMs [28] or HPE NVDIMMs [29]),
and no artificial delays are added. The data points labeled STT

emulate STT-RAM persistent memory, with delays of 140, 200 and
200 ns respectively injected for each pwb, pfence and psync [5].
Data points labeled PCM emulate PCM-RAM, with delays of 340, 500
and 500 ns respectively injected for each pwb, pfence and psync.
Similarly to Mnemosyne, delays are measured using rdtsc and no
delays are added for loads from persistent memory. Each data point
is the median of 5 runs with each run executing for 20 seconds,
unless otherwise noted in the figure.

6.2 Data structures

Application data is typically stored in complex structures, such as
a hash map or a tree, and therefore our benchmarks cover multiple
data structures. We conduct evaluations on a linked list, a resiz-
able hash map and a red-black tree, as representative examples of
structures used by real-world applications to store data. Figure 4
shows throughput for update-only and read-only workloads (note
the logarithmic scales) with data structures holding 1,000 entries.!
An update operation is composed of two consecutive transactions,
a removal followed by an insertion whereas a read operation is
composed of two consecutive read-only transactions, each executes
a search for an existing random key.

Looking at the performance of these data structures, we observe
that the linked list has higher throughput than the red-back tree.
This can be explained by the small size of the data structures and the
fact that the linked list performs on average fewer stores, and hence
fewer costly accesses to persistent memory. Further investigation
shows that the linked list executes an average of 10 pwb instruc-
tions, while the red-black tree has a more disperse histogram, with
two peaks at 50 and 130 pwbs per transaction. Another interesting
finding is that most of the stores inside transactions are triggered
by the memory allocator. RomulusLog performs generally at least
4X better than Mnemosyne thanks to its lower write amplification
and lighter synchronization mechanism.

PMDXK performs better than would be expected from an undo-log
based technique, but one should keep in mind that the tests were
conducted on a machine only supporting the CLFLUSH instruction.
In this case, all the extra persistence fences that would be necessary
to implement an undo log are omitted, because the CLFLUSH instruc-
tions already guarantee strict ordering between themselves. On a
machine that provides solely CLFLUSH, performance is therefore
mainly dominated by the number of pwb instructions per trans-
action. After investigation, it turns out that Romulus and PMDK
execute a similar number of pwb instructions. The memory alloca-
tor of PMDK for the hash map issues only one CLFLUSH to allocate
memory and one when memory is freed, for a total of 11 CLFLUSH in-
structions per transaction. This demonstrates that PMDK’s memory
allocator is highly optimized for small allocations and offers room
for improvement for Romulus, which uses a much less efficient al-
locator. Even so, in update scenarios with small sized transactions,
RomulusLog still provides the best results with at least twice the
performance of PMDK.

IThis is the limit beyond which Mnemosyne starts becoming unstable and exhibits
random crashes. In addition, Mnemosyne only support up to 31 threads and hence
samples are missing beyond this point in scalability tests. We have been in touch with
the authors to work around these limitations but did not manage to completely solve
them for our experiments.
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As expected, read-only transactions represent a good example of
workload for which Romulus excels. The throughput of Romulus is
10x to 400X higher than PMDK, while compared with Mnemosyne
it is 25X to 50X higher. Indeed, read-only operations can be done
in-place, either directly in main memory or more likely within the
cache. Furthermore, the reader-writer lock and LR concurrency
mechanism provide excellent performance and scalability with
read-mostly workloads.

We were intrigued to find out that Mnemosyne’s performance
degraded on the hash map when increasing the number of threads,
since the performance evaluation of the original paper exhibits
good scalability. Therefore, in order to better reproduce these re-
sults, we have developed a second hash map implementation with
a fixed number of 2,048 buckets. As one can observe in Figure 5, the
throughput becomes much better for such a statically-dimensioned
hash map. This difference can be explained as follows. On the one
hand, Mnemosyne supports concurrent access using TinySTM, a
software transactional memory that relies on fine grain locking to
allow multiple threads executing disjoint transactions to progress.
On the other hand, the implementation of our resizable hash map
relies on a shared counter to keep track of the number of elements
and determine when to resize. Modifications to the counter upon
every update operation (insertion or removal) will generate con-
tention and trigger conflicts, which in turn will cause transactions
to abort and eventually hamper scalability. The Romulus imple-
mentations do not suffer from this issue as they rely on simpler
synchronization primitives and transactions never abort.

We also evaluated scalability to larger data structures up to one
million entries with update-only workloads.? The results, shown in

2Mnemosyne is omitted as the publicly available implementation does not support
allocation of sufficiently large amounts of data.
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Figure 6: Hash map with varying numbers of keys and
threads executing update-only operations.

Figure 6, do not differ much from those presented earlier for 1,000
entries and highlight that almost all implementations can support
large data structures without performance penalty. As expected,
the only exception is the basic Romulus algorithm, which suffers
from the data size due to the longer copy procedure necessary to
keep the back region up to date.

As previously mentioned, we also emulated STT-RAM persistent
memory by injecting a delay for every instruction to persistent
memory. Performance results, which are omitted because of space
constraints, are highly similar to those shown in Figure 4. We be-
lieve this is due to the limited number of persistent stores per
transaction and the fact that CLFLUSH is a costly instruction as com-
pared to CLFLUSHOPT and CLWB, which are available on more recent
processors. Note that our emulation only affects the throughput of
update operations because load instructions have no added delay.

6.3 Read-dominated workloads

Figure 7 shows the number of transactions per second for the hash
map data structure as the number of concurrent reader threads
increases. A logarithmic scale is used for both axes. The left graph
shows the number of read- and update-only transactions with 2 con-
current writer threads and an increasing number of reader threads,
while the right graph has no writer thread and only runs read-only
transactions. Note that PMDK uses an unfair reader-writer lock
that gives preference to readers and prevents writers from running
with 16 concurrent reader threads or more.

RomulusLR is the only one of the tested techniques that pro-
vides scalability for read operations, even with concurrent update
operations. This is possible thanks to the use of the left-right con-
currency mechanism that provides wait-free progress for read-only
transactions.



No concurrent writer

Rom
RomL
RomLR
Mne
PMDK

2 4 8 163264

With 2 concurrent writers

"I Read TX — 1
Write TX

T T T S
4 i i-.i_..' + |

—v—
——
——

—o—

)
.
.
.
)
)

8 163264 2 4 8 163264
Number of reader threads

Figure 7: Read operations with 2 concurrent writers (left)

and no writer (right) on a hash map with 1,000 entries.

Mnemosyne data points correspond to 1 run of 20s.

6.4 RomulusDB

Our three PTMs provide durable concurrent transactions with ACID
properties (atomicity, consistency, isolation, durability) and durable
linearizability when executed in concurrent settings. These PTMs
can be straightforwardly applied to any sequential implementation
of a map data structure and use it to construct a key-value store
with persistence. We used RomulusLog to wrap a hash map and
implement the same interface as the popular LevelDB [13] database.
We named our persistent key-value store RomulusDB.

Unlike LevelDB, RomulusDB is capable of executing real trans-
actions, with durability ensured for every transaction. By default,
update operations in LevelDB are not immediately durable—unless
the option WriteOptions.sync is enabled—which implies that in
the event of a non-corrupting failure, a possibly large amount of
recently completed operations may be lost. Furthermore, Level DB
does not provide transactional semantics, but provides instead the
simpler model of write batches.

LevelDB benchmarks utilize 16-byte keys and 100-byte values.
The fillseq benchmark measures the time for a thread to insert
one million distinct key-value pairs in the database, using sequential
keys. The fillrandom benchmark performs one million insertions
of random keys per thread (note that existing key-value pairs may
be overwritten because of the randomness). The overwrite bench-
mark is similar to fillrandom but starts from a pre-populated
database. The fillsync benchmark measures the time to insert
1,000 key-value pairs in a database, with durability enforced by en-
abling the WriteOptions.sync option. readseq and readreverse
do a single read-only iteration over the entire database.

Results are shown in Figure 8. For read-only operations Romu-
lusDB performs extremely well independently of the read pattern
(sequential or reverse). Indeed, the traversal order has no effect
because the random accesses to a hash map have no particular
extra cost. RomulusDB scales linearly with the number of threads
for read operations, with an operation execution time remaining
constant when increasing the number of threads. It outperforms
LevelDB in all of the read benchmarks.

As for update operations, the only truly comparable benchmark
is fillsync as it provides durable transactions on both systems.
With LevelDB, enforcing durable transactions triggers execution
of fdatasync on every transaction, which brings a huge penalty
to key-value databases that rely on disk persistence. For the other
update benchmarks, RomulusDB can be up to 50% slower than
LevelDB, but it provides durable transactions whereas LevelDB

flushes updates to disk approximately every 1,000 kB, hence pro-
viding a weaker consistency guarantee referred to in the literature
as buffered durability. The measured number of fdatasync sys-
tem calls per thread execution was less than 100 for one million
insertions of 116-byte objects.

Finally, the fil1-100k benchmark measures the time it takes
to write 1,000 key-value pairs of 100 kB. LevelDB executes around
100 fdatasync system calls per thread execution for 1,000 transac-
tions. In contrast, Romulus already persists on every transaction but
executes less costly persistence fences instructions and can take ad-
vantage of large transaction sizes to aggregate writes and flush full
cache lines, hence demonstrating impressive performance. Level DB
transaction throughput is 3x slower than RomulusDB in single-
thread execution, as the number of threads increases, performance
degrades even more to reach a factor of 25X for 64 threads.

6.5 Recovery cost

Recovery is a lengthy procedure that requires copying data from
main to back or vice versa. Yet, because Romulus can copy only
the region up to the last allocated object, the costs actually depend
on the size of the data structures stored in persistent memory. Mea-
surements on our machine for a hash map show that the recovery
method takes about 114 us for 1,000 key-values and 127 ms for
1,000,000 key-value pairs. Recovering an entire 1 GB region takes
around 1 second. This value grows linearly with the size of the per-
sistent memory region, with the largest source of overhead being
the pwb calls (measurements were done using CLFLUSH).

6.6 Overhead of different fences

To better study the cost of fences, we execute the simple SPS micro-
benchmark regularly used in the literature [7, 21, 22] that stores a
large array of integers in PM and randomly swap some of its values.
This benchmark allows us to understand the performance profile of
each PTM under different transaction sizes. Each swap exchanges
the values of two randomly selected entries of an array of 10,000
64-bit integers, hence modifying two memory words in PM.

Figure 9 shows the number of swaps executed per second as a
function of the transaction size (logarithmic scale), with a single-
threaded application running on a C5 compute-intensive instance
of AWS supporting the CLWB instruction. The five plots represent
different choices of fence implementations and/or delay injection:
(i) pwb is mapped to a CLWB and pfence/psync to SFENCE; (ii) pwb is
mapped to a CLFLUSHOPT and pfence/psync to a SFENCE; (iii) pwb
is mapped to a CLFLUSH and pfence/psync to a nop; (iv) pwb is
mapped to a delay of 140 ns and pfence/psync to a delay of 200 ns,
so as to simulate STT-RAM; and (v) pwb is mapped to a delay of
340 ns and pfence/psync to a delay of 500 ns, so as to simulate
PCM-RAM. The timings for the injected delays were taken from
previous work [5].

There is no memory allocation or de-allocation during execution
of the SPS benchmark because it consists of swapping integers
on an array. This allows us to examine the throughput of each
algorithm, without being affected by the implementation of the
NVM memory allocator specific to each PTM.

As observed previously, thanks to their small number of persis-
tence fences and low synchronization overhead, the RomulusLog
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and RomulusLR perform best on all workloads except for high
transaction sizes (1,024 swaps per transaction), where making a
copy of the entire array becomes advantageous enough for Romu-
lus to overtake them. When running short transactions, the pwbs
constitute the main bottleneck of RomulusLog and RomulusLR and,
as their cost increases, the difference between these two approaches
and Mnemosyne or PMDK diminishes. This benchmark highlights
that, when using the CLWB instruction instead of a more expensive
CLFLUSH, the gains of Romulus over other approaches becomes
even more important.

7 CONCLUSION

Romulus provides consistent recovery of persistent application data
from non-corrupting failures. Persistent transactions in Romulus
do not distinguish memory allocator metadata from user-defined
application data. Any modification during a transaction will only be
durable if the main region is left in a consistent state, otherwise the
recovery procedure will revert to the consistent state at the start
of the transaction. This approach, eliminates all issues inherent
to NVM memory allocators, such as memory leaks and allocator
metadata corruption.

Concurrent transactions in Romulus are durable linearizable. The
two synchronization mechanisms integrated into Romulus, C-RW-
WP and left-right, have low overhead. Read transactions require a
single store-load fence and their announcement mechanism allows
uncontended execution. Consequently, reader throughput scales
linearly with the number of threads. Moreover, RomulusLR is the
first PTM to provide wait-free progress for read-only transactions.

The low synchronization overhead, combined with a reduced
number of persistence fences and low write amplification, con-
tributes to the overall performance gains when compared with
other solutions. Ultimately, our evaluation reveals that Romulus
achieves twice the throughput of current state of the art PTMs in
update-only workloads, and more than one order of magnitude in
read-mostly scenarios.
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