1804.01018v2 [cs.DC] 25 Mar 2022

arXiv

Distributionally Linearizable Data Structures

Dan Alistarh Trevor Brown Justin Kopinsky
IST Austria IST Austria MIT
Jerry 7. Li Giorgi Nadiradze
MIT ETH Zurich
Abstract

Relaxed concurrent data structures have become increasingly popular,
due to their scalability in graph processing and machine learning appli-
cations ([24, 14]). Despite considerable interest, there exist families of
natural, high performing randomized relaxed concurrent data structures,
such as the popular MultiQueue [27] pattern for implementing relaxed
priority queue data structures, for which no guarantees are known in the
concurrent setting [3].

Our main contribution is in showing for the first time that, under a set
of analytic assumptions, a family of relaxed concurrent data structures,
including variants of MultiQueues, but also a new approximate counting
algorithm we call the MultiCounter, provides strong probabilistic guaran-
tees on the degree of relaxation with respect to the sequential specification,
in arbitrary concurrent erecutions. We formalize these guarantees via a
new correctness condition called distributional linearizability, tailored to
concurrent implementations with randomized relaxations. Our result is
based on a new analysis of an asynchronous variant of the classic power-
of-two-choices load balancing algorithm, in which placement choices can
be based on inconsistent, outdated information (this result may be of in-
dependent interest). We validate our results empirically, showing that
the MultiCounter algorithm can implement scalable relaxed timestamps,
which in turn can improve the performance of the classic TL2 transac-
tional algorithm by up to 3x, for some settings of parameters.

1 Introduction

Consider a system of n threads, which share a set of n distinct atomic counters.
We wish to implement a scalable approximate counter, which we will call a
MultiCounter, by distributing the contention among these n distinct instances:
to increment the global counter, a thread selects two atomic counters ¢ and j
uniformly at random, reads their values, and (atomically) increments by 1 the
value of the one which has lower value according to the values it read. To read
the global counter, the thread returns the value of a randomly chosen counter
i, multiplied by n. !

1This multiplication serves to maintain the same magnitude as the total number of updates
to the distributed counter up to a point in time.

The astute reader will have noticed that this process is similar to the classic
two-choice load balancing process [6], in which a sequence of balls are placed
into n initially empty bins, and, in each step, a new ball is placed into the
less loaded of two randomly chosen bins. Here, the individual atomic counters
are the bins, and each increment corresponds to a new ball being added. This
sequential load balancing process is extremely well studied [26, 23]: a series of
deep technical results established that the difference between the most loaded
bin and the average is O(log logn) in expectation [6, 23], and that this difference
remains stable as the process executes for increasingly many steps [9, 25]. We
would therefore expect the above relaxed concurrent counter to have relatively
low and stable skew among the outputs at consecutive operations, and to scale
well, as contention is distributed among the n counters.

However, there are several technical issues when attempting to analyze this
natural process in a concurrent setting.

e First, concurrency interacts with classic two-choice load balancing process
in non-trivial ways. The key property of the two-choice process which
ensures good load balancing is that trials are biased towards less loaded
bins—equivalently, operations are biased towards incrementing counters
of lesser value. However, this property may break due to concurrency:
at the time of the update, a thread may end up updating the counter
of higher value among its two choices if the counter of smaller value is
updated concurrently since it was read by the thread, thus surpassing the
other counter.

e Second, perhaps suprisingly, it is currently unclear how to even specify
such a concurrent data structure. Despite a significant amount of work on
specifying deterministic relared data structures [17, 1, 15] , none of the
existing frameworks cover relaxed randomized data structures.

e Finally, assuming such a data structure can be analyzed and specified, it
is not clear whether it would be in any way useful: many existing applica-
tions are built around data structures with deterministic guarantees, and
it is not obvious how scalable, relaxed data structures can be leveraged in
standard concurrent settings.

One may find it surprising that analysing such a relatively simple concurrent
process is so challenging. Beyond this specific instance, these difficulties reflect
wider issues in this area: although these constructs are reasonably popular in
practice due to their good scalability, e.g. [7, 24, 31, 27|, their properties are
non-trivial to pin down [3], and it is as of yet unclear how they interact with
the higher-order algorithmic applications they are part of [20].

Contribution. In this work, we take a step towards addressing these chal-
lenges. Specifically:

e We provide the first analysis of a two-choice load balancing process in
an asynchronous setting, where operations may be interleaved, and the
interleaving is decided by an adversary. We show that the resulting pro-
cess is robust to concurrency, and continues to provide strong balancing
guarantees in potentially infinite executions, as long as the ratio between
the number of bins and the number of threads is above a large constant
threshold.

e We introduce a new correctness condition for randomized relaxed data
structures, called distributional linearizability. Intuitively, a concurrent
data structure D is distributionally linearizable to a sequential random
process R, defined in terms of a sequential specification S, a cost func-
tion cost measuring the deviation from the sequential specification, and
a distribution P on the values of the cost function, if every execution
of D can be mapped onto an execution of the relaxed sequential process
R, respecting the outputs and the costs incurred, as well as the order of
non-overlapping operations.

e We prove that the randomized MultiCounter data structure introduced
above is distributionally linearizable to a (sequential) variant of the clas-
sic two-choice load balancing process. This allows us to formally define the
properties of MultiCounters. Moreover, we show that this analytic frame-
work also covers variants of MultiQueues [27], a popular family of con-
current data structures implementing relaxed concurrent priority queues.
This yields the first analytical guarantees for MultiQueues in concurrent
executions.

e We implement the MultiCounters, and show that they can provide a highly
scalable approximate timestamping mechanism, with relatively low skew.
We build on this, and show that MultiCounters can be successfully ap-
plied to timestamp-based concurrency control mechanisms such as the
TL2 software transactional memory protocol [13]. This usage scenario
presents an unexpected trade-off: assuming low contention, the resulting
TM protocol scales almost linearly, but may break correctness with very
low probability. In particular, we show that there exist workloads and pa-
rameter settings for which this relaxed TM protocol scales almost linearly,
improving the performance of the TL2 baseline by more than 3x, without
breaking correctness.

Techniques. Our main technical contribution is the concurrent analysis of the
classic two-choice load balancing process, in an asynchronous setting, where
the interleaving of low-level steps is decided by an oblivious adversary. The
core of our analysis builds on the elegant potential method of Peres, Talwar
and Wieder [25], which we render robust to asynchronous updates based on
potentially stale information. To achieve this, we overcome two key technical
challenges. The first is that, given an operation op, as more and more other
operations execute between the point where it reads and the point where it up-
dates, the more stale its information becomes, and so the probability that op
makes the “right” choice at the time of update, inserting into the less loaded
of its two random choices, decreases. Moreover, operations updating with stale
information will “stampede” towards lower-weight bins, effectively skewing the
distribution. The second technical issue we overcome is that long-running oper-
ations, which experience a lot of concurrency, may in fact be adversarially biased
towards the wrong choice, inserting into the more loaded of its two choices with
non-trivial probability. We discuss these issues in detail in Section 6.1.

In brief, our analysis circumvents this issues by showing that a variant of the
two-choice process where up to a constant fraction of updates are corrupted, in
the sense that they perform the “wrong” update, will still have similar balance
properties as the original process. It is interesting to note that even the order

in which corrupted updates occur can be controlled by the adversary through
increased concurrency, which is not the case in standard analyses [25]. The
critical property which we leverage in our analysis is that, while individual
operations can be arbitrarily contended (and therefore biased), there is a bound
of n on the average contention per operation, which in turn bounds the average
amount of bias the adversary can induce over a period of time. Our argument
formalizes this intuition, and phrases it in terms of the evolution of the potential
function.

We show that this result has implications beyond “parallelizing” the classic
two-choice process, as we can leverage it to obtain probabilistic bounds on the
skew of the MultiCounter. Using the framework of [3], which connected two-
choice load balancing with MultiQueue data structures in the sequential case,
we can obtain guarantees for this popular data structure pattern in concurrent
executions.

2 Related Work

Randomized Load Balancing. The classic two-choice balanced allocation
process was introduced in [6], where the authors show that, under two-choice
insertion, the most loaded among n bins is at most O(loglogn) above the av-
erage, both in expectation and with high probability. The literature studying
analyses and extensions of this process is extremely vast, hence we direct the
reader to [26, 23] for in-depth surveys of these techniques. Considerable effort
has been dedicated to understanding guarantees in the “heavily-loaded” case,
where the number of insertion steps is unbounded [9, 25], and in the “weighted”
case, in which ball weights come from a probability distribution [30, 10]. A
tour-de-force by Peres, Talwar, and Wieder [25] gave a potential argument char-
acterizing a general form of the heavily-loaded, weighted process on graphs. Our
analysis starts from their framework, and modifies it to analyze a concurrent,
adversarial process. One significant change from their analysis is that, due to
the adversary, changes in the potential are only partly stochastic: most steps
might be slightly biased away from the better of the two choices, while a subset
of choices might be almost deterministically biased towards the wrong choice.
Further, the adversary can decide the order in which these different steps, with
different biases, occur.

Lenzen and Wattenhofer [21] analyzed parallel balls-into-bins processes, in
which n balls need to be distributed among n bins, under a communication
model between the balls and the bins, showing that almost-perfect allocation
can be achieved in O(log™ n) rounds of communication. This setting is quite
different from the one we consider here. Similar delayed information models,
where outdated information is given to the insertion process were considered
by Mitzenmacher [22] and by Berenbrink, Czumaj, Englert, Fridetzky, and
Nagel [8]. The former reference proposes a bulletin board model with peri-
odic updates, in which information about the load of the model is updated only
periodically (every T seconds), and various allocation mechanisms. The author
provides an analysis of this process in the asymptotic case (as n — 00), sup-
ported by simulations. The latter reference [8] considers a similar model where
balls arrive in batches, and must perform allocations collectively based solely
on the information available at the beginning of the batch, without additional

communication. The authors prove that the greedy multiple-choice process pre-
serves its strong load balancing properties in this setting: in particular, the
gap between min and max remains O(logn). The key difference between these
models and the one we consider is that our model is completely asynchronous,
and in fact the interleavings are chosen adversarially. The technique we employ
is fundamentally different from those of [22, 8]. In particular, we believe our
techniques could be adapted to re-derive the main result of [8], albeit with worse
constants.

Recent work by a subset of the authors [3] analyzed the following producer-

consumer process: a set of balls labelled 1,2,...,b are inserted sequentially
at random into n bins; in parallel, balls are removed from the bins by always
picking the lower labelled (higher priority) of two uniform random choices.? This
process sequentially models a series of popular implementations of concurrent
priority queue data structures, e.g. [27, 16]. This process provides the following
guarantees: in each step t, the expected rank of the label removed among labels
still present in the system is O(n), and O(nlogn) with high probability in n.
That is, this sequential process provides a structured probabilistic relaxation of
a standard priority queue.
Relaxed Data Structures. The process considered in [3] is sequential, whereas
the data structures implemented are concurrent. Thus, there was a significant
gap between the theoretical guarantees and the practical implementation. Our
current work extends to concurrent data structures, closing this gap. Under the
oblivious adversary assumption and given our parametrization, we show for the
first time that practical data structures such as [27, 16, 3] provide guarantees
in real executions.

Designing efficient concurrent/parallel data structures with relaxed seman-
tics was initiated by Karp and Zhang [19], with other significant early work by
Deo and Prasad [11] and Sanders [28]. It has recently become an extremely
active research area, see e.g. [29, 7, 31, 4, 16, 24, 27, 3] for recent examples.
To the best of our knowledge, ours is the first analysis of randomized relaxed
concurrent data structures which works under arbitrary oblivious schedulers:
previous analyses such as [4, 27, 3] required strong assumptions on the set of
allowable interleavings. Dice et al. [12] considered randomized data structures
for scalable exact and approximate counting. They consider the efficient par-
allelization of sequential approximate counting methods, and therefore have a
significantly different focus than our work.

3 System Model

Asynchronous Shared Memory. We consider a standard asynchronous
shared-memory model, e.g. [5], in which n threads (or processes) Pi,..., Py,
communicate through shared memory, on which they perform atomic oper-
ations such as read, write, compare-and-swap and fetch-and-increment. The
fetch-and-increment operation takes no arguments, and returns the value of the
register before the increment was performed, incrementing its value by 1.

The Oblivious Adversarial Scheduler. Threads follow an algorithm, com-
posed of shared-memory steps and local computation, including random coin

2Balls in each bin are sorted in increasing order of label, i.e. each bin corresponds to a
sequential priority queue.

flips. The order of process steps is controlled by an adversarial entity we call
the scheduler. Time t is measured in terms of the number of shared-memory
steps scheduled by the adversary. The adversary may choose to crash a set of
at most n — 1 processes by not scheduling them for the rest of the execution. A
process that is not crashed at a certain step is correct, and if it never crashes
then it takes an infinite number of steps in the execution. In the following, we
assume a standard oblivious adversarial scheduler, which decides on the inter-
leaving of thread steps independently of the coin flips they produce during the
execution.

Shared Objects. The algorithms we consider are implementations of shared
objects. A shared object O is an abstraction providing a set of methods, each
given by a sequential specification. In particular, an implementation of a method
n for an object O is a set of n algorithms, one for each executing process. When
thread P; invokes method n of object O, it follows the corresponding algorithm
until it receives a response from the algorithm. Upon receiving the response, the
process is immediately assigned another method invocation. In the following,
we do not distinguish between a method n and its implementation. A method
invocation is pending at some point in the execution if has been initiated but has
not yet received a response. A pending method invocation is active if it is made
by a correct process (note that the process may still crash in the future). For
example, a concurrent counter could implement read and increment methods,
with the same semantics as those of the sequential data structure.
Linearizability. The standard correctness condition for concurrent implemen-
tations is linearizability [18]: roughly, a linearizable implementation ensures
that each concurrent operation can be seen as executing at a single instant in
time, called its linearization point. The mapping from method calls to lineariza-
tion points induces a global order on the method calls, which is guaranteed to
be consistent to a sequential execution in terms of the method outputs; more-
over, each linearization point must occur between the start and end time of the
corresponding method.

Recent work, e.g. [17], considers deterministic relaxed variants of linearizabil-
ity, in which operations are allowed to deviate from the sequential specification
by a relazation factor. Such relaxations appear to be necessary in the case of
data structures such as exact counters or priority queues in order to circumvent
strong linear lower bounds on their concurrent complexity [2]. While specifying
such data structures in the concurrent case is well-studied [17, 1, 15], less is
known about how to specify structured randomized relaxations.

With High Probability. We say that an event occurs with high probability in
a parameter, e.g. n, if it occurs with probability at least 1 — 1/m®"™, for some
constant ¢ > 1.

4 The MultiCounter Algorithm

Description. The algorithm implements an approximate counter by distribut-
ing updates among n distinct counters, each of which supports atomic read
and increment operations. Please see Algorithm 1 for pseudocode. To read the
counter value, a thread simply picks one of the n counters uniformly at ran-
dom, and returns its value multiplied by n. To increment the counter value, the
thread picks two counter indices 7 and j uniformly at random, and reads their

current values sequentially. It then proceeds to update (increment) the value of
the counter which appeared to have a lower value given its two reads. (In case
of a tie, or when the two choices are identical, the tie is broken arbitrarily.)

Algorithm 1 Pseudocode for the MultiCounter Algorithm.
Shared: Counters[m] // Array of integers representing set of n distinct coun-
ters
function Read()
i < random(1,n)
return n - Counters[i].read()

function Increment()

i < random(1,n)

Jj < random(1,n)

x; + Countersli].read()

zj < Counters|j].read()
Counters[arg min(x;, z;)].increment()

Relation to Load Balancing. A sequential version of the above process, in
which the counter is read or incremented atomically, is identical to the classic
two-choice balanced allocation process [6], where each counter corresponds to a
bin, and each increment corresponds to a new ball being inserted into the less
loaded of two randomly chosen bins.

In a concurrent setting, the critical departure from the sequential model is
that the values read can be inconsistent with respect to a sequential execution:
there may be no single point in time when the two counters had the values x;
and z; observed by the thread; moreover, these values may change between the
point where they are read, and the point where the update is performed.

More technically, the sequential variant of the two-choice process has the
crucial property that, at each increment step, it is “biased” towards increment-
ing the counter of lower value. This does not necessarily hold for the concurrent
approximate counter: for an operation where a large number of updates occur
between the read and the update points, the read information is stale, and there-
fore the thread’s increment choice may be no better than a perfectly random
one; in fact, as we shall see in the analysis, it is actually possible for an adversary
to engineer cases where the algorithm’s choice is biased towards incrementing
the counter of higher value.

5 Distributional Linearizability

We generalize the classic linearizability correctness condition to cover random-
ized relaxed concurrent data structures, such as the MultiCounter. Intuitively,
we will say that a concurrent data structure D is distributionally linearizable
to a corresponding relazed sequential process R, defined in terms of a sequential
specification S, a cost function cost measuring the deviation from the sequen-
tial specification, and a distribution P on the cost function values, such that
every execution of D can be mapped onto an execution of the relaxed sequential
process R, respecting the outputs and the incurred costs, as well as the order

of non-overlapping operations. To formalize this definition, we introduce the
following machinery, part of which is adopted from [17].
Data Structures and Labeled Transition Systems. Let X be a set of
methods including input and output values. A sequential history s is a sequence
over ¥, i.e. an element in X*. A (sequential) data structure is a sequential
specification S which is a prefix-closed set of sequential histories. For example,
the sequential specification of a stack consists of all valid sequences for a stack,
i.e. in which every push places elements on top of the stack, and every pop
removes elements from the top of the stack.

Given a sequential specification S, two sequential histories s,t € S are equiv-
alent, written s ~ t, if they correspond to the same “state:” formally, for any
sequence u € X*, su € S iff tu € S. Let [s]s be the equivalence class of s € S.

Definition 5.1 Let S be a sequential specification. Its corresponding labeled
transition sequence (LTS) is an object LTS(S) = (Q, X, —, qo), with states Q =
{[sls|s € S}, set of labels X, transition relation —-C Q X X X Q given by [s]g =™
[sm]s iff sm € S, and initial state qo = [€]s.

Notice that the sequential specification S can be alternatively defined as the

set of all traces of the initial state of LT'S(S): formally, for any u € ¥*, we have
u € S iff gg —".
Randomized Quantitative Relaxations. Let S € ¥* be a data structure
with LTS(S) = (@Q,%, —,qo). To obtain a randomized quantitative relaxation
of S, we apply the following four steps. The first three steps are identical
to deterministic quantitative relaxations [17], whereas the fourth defines the
probability distribution on costs:

1. Completion: We start from LT'S(S), and construct a completed labeled
transition system, with transitions from any state to any other state by
any method:

LTSC(S) = (Qa EvQ X ¥ X QaQO)'

2. Cost function: We add a cost function cost : @ x ¥ x @ — R to the
LTS. The transition cost will satisfy
cost(q,m,q’) = 0 if and only if ¢ =™ ¢’ in LTS(S).
A quantitative path is a sequence

my,k1 ma, k2

ok g
We call the sequence 7 = (mq, k1), ..., (Mmn, k,) of transitions and costs
the quantitative trace of k, denoted by gtr(k).

K=q — q2 —

3. Path cost function: Given a quantitative path &, its path cost is defined
as pcost : gtr(S) — C. Path costs are monotone with respect to prefix
order: if 7 is a prefix of 7/, then pcost(7) < pcost(T’).

4. Probability distribution: Given an arbitrary state [s] in LT'S(S), we
define a probability space (€2, F,P) on the set of possible transitions and
their corresponding costs from this state, where the sample space {2 is
the set of all transitions in @ X ¥ x @, the o-algebra F is defined in the
straightforward way based on the set of elementary events 2, and P is a
probability measure P : F — [0, 1].

Importantly, this allows us to define, for any path, the notion of probability
for costs incurred at each step. This probability space is readily extended
for arbitrary finite paths, where we assume that the cost probabilities at
each step are independent of previous steps, i.e., historyless. This process
induces a Markov chain, whose state at each step is given by the state [s]
of the corresponding LTS, and whose transitions are LTS transitions, with
costs and probabilities as above.

Distributional Linearizability. With this in place, we now define distribu-
tionally linearizable data structures:

Definition 5.2 Let D be a randomized concurrent data structure, and let R
be a randomized quantitative relaxation R of a sequential specification S with
respect to a cost function cost, and a probability distribution P on costs. We say
that D is distributionally linearizable to R iff for every concurrent schedule o,
there exists a mapping of completed operations in D under o to transitions in
the quantitative path of R, preserving outputs, and respecting the order of non-
overlapping operations. This mapping can be used to associate any schedule o
to a distribution of costs for D under the schedule o.

We now make a few important remarks on this definition.

1. The main difficulty when formally defining the “costs” incurred by D in a
concurrent execution is in dealing with the execution history, and with the
impact of pending operations on these costs. The above definition allows
us to define costs, given a schedule, only in terms of the sequential process
R, and bounds the incurred costs in terms of the probability distribution
defined in R. This definition ensures that the probability distribution
on costs incurred at each step only depends on the current state of the
sequential process.

2. The second key question is how to use this definition. One subtle as-
pect of this definition is that the mapping to the sequential randomized
quantitative relaxation is done per schedule: intuitively, this is because an
adversary might change the schedule, and cause the distribution of costs
of the data structure to change. Thus, it is often difficult to specify a
precise cost distribution, which covers all possible schedules. However, for
the data structures we analyze, we will be able to provide tail bounds on
the cost distributions induced by all possible schedules.

The natural next question, which we answer in the following section, is
whether non-trivial such data structures exist and can be analyzed.

6 Analysis of the MultiCounter

We will focus on proving the following result.

Theorem 6.1 Given an oblivious adversary, n distributed counters and n threads,
for any fized schedule, the MultiCounter algorithm is distributionally lineariz-
able to a randomized relaxed sequential counter process, which, at any step t,
returns a value that is at most O(n log? n) away from the number of increments
applied up to t, both in expectation and with high probability in n.

We emphasize that the relaxation guarantees are independent of the time ¢ at
which the guarantee is examined, and that they would thus hold in infinite
executions.

6.1 Modeling the Concurrent Process

In the following, we will focus on analyzing executions formed exclusively of
increment operations, whose lower-level steps may be interleaved. (Adding read
operations at any point during the execution will be immediate.) We model the
process as follows. First, we assume a schedule that is fixed by the adversary.
For each thread Pj;, and non-negative integers j, we consider a sequence of
increment operations (opgj)), each of which is defined by its starting time sgj),
corresponding to the time when its first read step was scheduled, and completion
time fi(j), corresponding to the time when its update time is scheduled, such

that sgi)l > fi(J) for all 4, Jj. (Recall that the scheduler defines a global order
on individual steps.) At most n operations may be active at a given time,
corresponding to the fact that we only have n parallel threads.

For each operation op,, we record its contention ¢; as the number of distinct
increment operations scheduled between its start and end time. (Alternatively,
we could define this quantity as the number of operations which complete in
the time interval (s;, f;).) Note that at most n — 1 distinct operations can be
concurrent with op, at any given time, but the contention for a specific operation
is potentially unbounded.

We can rephrase the original process as follows. For each operation op,, the
adversary sets the time when it performs the first and its second read of counter
values / bin weights, as well as its contention ¢;, by scheduling other operations
concurrently. The only constraint on the adversary is that not more than n
operations can be active at the same time.

Since the adversary is oblivious, we notice that the update process is equiv-
alent to the following: at the time when the update is scheduled, the thread
executing the operation generates two uniform random indices ¢ and j, and is
given values z; and z; for the two corresponding counters / bin weights, read
at previous (possibly different) points in time. We will stick to the bin weight
formulation from now on, with the understanding that the two are equivalent.

The thread will then increment the weight of the bin with the smaller value
read (among z; and z;) by 1. This formulation has the slight advantage that it
makes the update process sequential, by moving the random choices to the time
when the update is made, using the principle of deferred decisions. Critically,
the bin weights on which the update decision is based are potentially stale. We
will focus on this simplified variant of the process in the following.
Discussion. The key difference between the above process and the classic
power-of-two-choices process is the fact that the choice of bin / counter which
the thread updates is based on stale, potentially invalid information. Recall
that key to the strong balancing properties of the classic process is the fact that
it is biased towards inserting in less loaded bins; the process which inserts into
randomly chosen bins is known to diverge [25]. In particular, notice it is possible
that, by the time when the thread performs the update, the order of the bins’
load may have changed, i.e. the thread in fact inserts into the more loaded bin
among its two choices at the time of the update.

10

Since the oblivious adversary decides its schedule independently of the threads’
random choices, it cannot deterministically cause a specific update to insert into
the more loaded bin. However, it can significantly bias an update towards in-
serting into the more loaded bin:

Assume for example an execution suffix where all n threads read concurrently
at some time tz> and then proceed to perform updates, one after another. Pick
an operation op for which the gap between the two values read x; and x; (at
the time of the read) is 1, say #; = z;+1. So op will increment x;. At the same
time, notice that all the other operations which read concurrently with op are
biased towards inserting in x; rather than x;, since its rank (in increasing order
of weight) is lower than that of bin 7. Hence, as the adversary schedules more
and more operations between tr at op’s update time, it is increasingly likely to
invert the relation between ¢ and j by the time of op’s update, causing it to
insert into the “wrong” bin.

The previous example suggests that the adversary is able to bias some subset
of the operations towards picking the wrong bin at the time of the update.
Another issue is that operations which experience high contention, for which
there are many updates between the read point and the update point, the read
values z; and z; become meaningless: for example, if the weights of bin ¢ and
j become equal at some time ¢y between tr and op’s update, then from this
point in time these two bins appear completely symmetrical to the algorithm,
and op’s choice given the information that x; > z; at tg may be no better than
uniform random.

One issue which further complicates this last example is that, at tg, there
may be a non-zero number of other operations which already made their reads
(for instance, at tg), but have not updated yet. Since these operations read
at a point where x; > x;, they are in fact biased towards inserting in x;. So,
looking at the event that op updates the less loaded of its two random choices
at update time, we notice that its probability in this example is strictly worse
than uniform random choice.

We summarize this somewhat lengthy discussion with two points, which will
be useful in our analysis:

1. As they experience concurrent updates, operations may accrue bias to-
wards inserting into the more loaded of their two random choices.

2. Long-running operations may in fact have a higher probability of inserting
into the more loaded bin than into the less loaded one, i.e. may become
biased towards making the “wrong” choice at the time of the update.

6.2 Notation and Background

For any bin ¢ and time ¢, let x;(t) be the weight of bin ¢ at time ¢ and let
z(t) = (@1(t), x2(t), ..., xn(t)) be a vector of weights. Let u(t) = Y ;% ai(t)/n
be the average weight at time t over the bins. Let o < 1 be a parameter to be
fixed later. At each step t+1, instead of increment by 1 we allow increment w(t)
to be a random variable. Even though we initially concentrate on the case with

3Technically, since we count time in terms of shared-memory operations, these reads occur
at consecutive times after tg. However, all their read values are identical to the read value at
tr, and hence we choose to simplify notation in this way.

11

counters (w(t) = 1), it is useful to prove several general Lemmas with random
weights in mind, since we will need to use them later.
Define

n n
d*°I(t) = Zea(mi(t)—u(t))’ and U5¢9(t) = Ze‘“(”’*(t)_“(”).
i=1 i=1
Finally, define the potential function

[oe(t) = ®%°9(t) + W°9(¢).

We use superscript seq to denote potential functions given by sequential
process, which always increments the counter with the smaller load (In our
concurrent process this is not true). In order to bound I'seq, w(t) should have
the following properties :

E[w(t)] =1 (1)
and there exist constants S > 1 and A > 0, such that for any |z| < A/2:
E[(e”™))"] = E[M"(z)] < 2S. (2)

In the case of counters (w(t) = 1), we can use A = 1 and S = 1 since ez < 2.
The main technical result of [25] can be phrased as:

Theorem 6.2 Let ¢ = % and let o < min(‘)‘2 be a parameter as given

657 2
above. Then there exists a constant C(e) = poly(=) such that, for any time

t >0, we have E[['*¢9(t)] < %-

€

We would like to point out that the upper bound on « and the value of €
are chosen according to the conditions required in [25] and we will assume that
they hold throughout this paper (Later on, we will assume even smaller upper
bound on «):

aﬁ%andagg. (3)
Our goal will be to prove similar theorem in the concurrent case.
Note that this implies that the maximum gap between the most loaded and

logn
(o7

1
the least loaded bin at a step is 2 +0 (M%) in expectation and with high
probability in n (As shown in [25]).
The proof of the above theorem uses the following Lemma, which we also
are going to rely on:

Lemma 6.3 Let « and € and C(€) be the parameters defined in Theorem 6.2.
Then for any step t:

E[I*¢2(t + 1)|z(t)] < <1 — %)Fseq(t) + C(e).

6.3 Naive Upper and Lower Bounds

Let T (t), ®°"(¢) and ¥ (¢) be the potential functions in the concurrent
case. We start with proving the following result:

In this section we derive upper and lower bounds on I'°" per step. These
bounds just use the fact that for any bin 4 the probability of incrementing it is
at most %, and this is true both for sequential and concurrent processes.

We assume that at step t+1, increment w(t) satisfies conditions from Section
6.2. We start with the upper bound:

12

Lemma 6.4 For any operation op;
da
E[L*" (¢ 4 1) (1)) < (1 " n)Fw"(t). (4)

Proof. First we consider what is expected change in ®°". Let y; = x;(t) —
wu(t) and let 5" (t) = e¥i. Also, let AP = P (¢ + 1) — P"(¢) and
AP = geon (4 1) — W (¢) We have two cases to consider. If bin 7 is chosen,
then the change is:

E[AD7" |2(1)] = B[(t + 1)[(t)] — 27" (t)

exp <a<wi(t) — ult) + (w(t) - wfﬁ))) ‘x(t)] _ o
= eMVi <]E {exp (w(t)a(l - %))] - 1)
~eo (e [ar(orr -)] 1)

© o (IE [M(O) + M (0)a(l — 1)+ M7 (€)a?(1 %)2/2} - 1>

n

=E

= o (n«: 1+ w(t)a(1 - %) + M7 (€)a2(1 — %)2/2} - 1)

(1),(2) 1 1
< ay; 1 _ 2 1 _ 2
< e (a(n) + Sa*(n))

Where in (%) we used the tailor expansion of M (z) around 0 and in the last
step we used that 0 < ¢ < a(l — %) < %
Using similar arguments we can prove that, when some other bin ¢ is not
chosen:
. a a?
AP < e | ——+S— | <0.
n n
Let p; < 2/n be the probability of bin ¢ being chosen for increment. We get
that:

n

E [A0¢x(t)] < pie (a(l ~2) 4 Sa?(1 - 1)2>

4
< pi(a+ Sa?) < %eayi.
Hence:
on - con 4a con
EIA® r(t)] = D BIABE (1)] < 0 (1) (5)

i=1
In a similar way, we can prove that:

con . @ 50[2 —Qy;
E[AT"|z(t)] < Z(l —pi)(g + ?)6 v
=1

Sa? 4o

n o o .
S e D = SO

13

Combining this with inequality (5), and using the definitions of A®™ and
AW gives us proof of the Lemma. O
We proceed by showing the lower bound:

Lemma 6.5 For any operation op;

E[T°" (¢ + 1)[2(8)] > (1 - 2“) reon(¢). (6)

n

Proof. First we consider what is expected change in ®°". Let y; = x;(t) —
wu(t) and let 5™ (t) = e*¥i. We have two cases here. If bin 4 is chosen, then as
in the previous lemma the change is:

E[A®F" ()] = E[©7*" (¢t + 1)|x(t)] — ®F7"(¢)
— o (E [1 +w(t)a(l — %) + M"(€)a2(1 — %)2/2} - 1)

1 o
> i 1_7>7‘1yi>0.
> eMig(n)*26 >

Where in the last step we used that n > 2 and the fact that exponential function
is non-negative.

Using similar arguments we can prove that, when some other bin 7 is not
chosen:

AP > —geo‘yi.
on
Let p; < 2/n be the probability of bin ¢ being chosen for increment We get

that:

a . a

E (A0 fo(t)] = —(1 - p) Seor > - Leon,

n n

Hence:

EAGx(t)] = > E[ABa(t)] = — 20 (1) (7)

i=1
In a similar way, we can prove that:

on - 1 2a con
BIAT|a(1)] > = D pal =) > =t wen()
i=1

Combining this with inequality (7), and using the definitions of A®$°™ and
AWS™ gives us proof of the Lemma. O

6.4 Main Argument

Now we consider Cn (C'is a constant which we will fix later) consecutive oper-
ations and prove that at most n of them can be bad:

Lemma 6.6 For any t, we have that |t' : t <t' <t+Cn — 1,0y > Cn| <n.

Proof. We argue by contradiction. Let us assume that the number of bad
operations is at least n. By the pigeonhole principle, there exist bad operations
op; and opj, t <i < j <t+ Cn — 1, which are performed by the same thread.
This means that since these operations are not concurrent, we have that s; >
fi = 4. Thus, we get a contradiction: Cn < {; =t/ :s; <t/ < f;=j|<j—i<
Cn. |

14

We call operation op; good if ¢, < Cn, otherwise we call it bad. For
each bin 4, and step t > Cn, let H,;(t) be the number of times ¢ was chosen
by operations op;—cn+1, ODt—Cn+1, .- Op¢. In this case, if some operations
chooses 7 and j, we count both as chosen and we also say that ¢ was chosen
twice if ¢ = j. Observe that if op;y1 is good, then H;(t) is the upper bound
on the number of increments bin i receives during the entire run of operation
opi+1 (excluding the increment which might be performed by opi11). Also,
let Hppos(t) = maz{H(t), H2(t), ..., H,(t)}. Now we are ready to bound the
potential.

Upper Bound on a Potential for Counters

We concentrate on the case when w(t) = 1, for any ¢ (The case with coun-

ters).

Lemma 6.7 For any good operation opiy1, such thatt > Cn:
Qe
E[T" (¢ + Dla(t), Hoaa ()] < (1= T)T () + C(¢)

4 I“COYL t
4+ 2@ . ()(eaHmw(t) —1).

Proof. Since we condition on z(t), we can assume that potentials at step ¢
are the same both for sequential and concurrent processes (This is not true for
the next step since since processes can increment different bins). We have that:

R (+ 1)]a(t), Hmaz (1)]
=E[*(t+ D|z(t), Hnae ()] F E[LC" (¢ + 1) — Tt + 1)|2(t), Hnaz ()]
Lemrza 6.3 (1 _ %)Fseq(t) n C(e)
- 4an
+E[*(t + 1) =T (¢t + 1)|(t), Hmaz (t)]-

Hence our goal is to upper bound E[['*¢9(¢t41)—T°"(t+1)|z(t), Hyae (t)]. w.lo.g
we assume that z1(t) < za(t)... < z,(t). We couple sequential and concurrent
processes so that the bin choices ¢ and j are the same in both cases. Let i < j,
then sequential process always increments bin 4, but for the concurrent process
it depends on when its reads occurred, for example it can be that during reads
the load of bin j was smaller than load of bin ¢ but then the increments done by
concurrent processes reversed the order. The crucial thing is that in this case
zj(t) — zi(t) < Hpmao(t). Hence, assuming the worst case (concurrent process
increments bin j) we have that

P (t 4 1) — D%U(t + 1) = @ (O=n(OF1=3) 4 palws(t)=n()=3)
_ealmi®)—pt)+1-3) _ polz; () —p(t)—3)
- ea(ﬂﬂi(t)*u(t))e*%(ea _ 1)(ea($1(t)*wi(t)) -1)
< 2a€a(zi(t)_l"(t))(eo‘H'maac(t) —1).
Where in the last step we used that e* < 1+ 2q, since a < % Also,
WO (t 4 1) — U9t + 1) = e~ (@) —n®+1-3) 4 —alzi®)—nt)-3
_ e lmi®)—pM+1-3) _ g—alz; () —p(t)—5)
- e—a(wi(t)—u(t))e%(e—a _ 1)(e—a(wj(t)—wi(t)) -1)
— e—al@i(t)—p(t) o7 (1—e (1 - e*a(mj(t)*ri(t)))
< 2ae—a(zz(t)—u(t))(1 — e—aHmaz(t)).

15

Where in the last step we used that en < 2, since a < % The above bounds
no longer depend on j and for any bin ¢ the probability of being one out of two
random choices of op; is at most %, hence:

BI*e9(t + 1) = D" (¢ + 1)]a(1)]

4a OZZ 4CV 70(X — I, 2
< Z (@4 (t)—p())(Hiaz(t) _ 1)+ Z (@i (t)— (t))(l —e m”(t))
=1
_ 4a<1>00n()(e"‘Hmw(t) . 1) + 4a\pcon(t)
n n
_ daTe()

(1 _ e_aHrnaw (t))

- (eaHmaI(t) . 1)

Where in the last step we used that e®Hmaz(t) 4 e=Hmaz(t) > 9 O
Let N = sza%ciﬁgﬂ and for 0 < K < N, let Ag(t) be the event that

2e3CKlogn < Hpax(t) < 2e3C(K + 1)logn. We proceed by proving the
following lemma:

Lemma 6.8 For any good operation opiy1, such that t > Cn:
B (t+1)] < (1- @> E[T°"(t)] + C(e)

n i 4o E[Fcon(t)|A";((t)]Pr[AK(t)] (62a63C(K+1) logn _ 1)
K=0

Proof. First we remove conditioning on z(t):
E[Fcon(t + 1)|Hma:c()} = Eai(t)‘anaz(t) []E[Fam(t + 1)|x() maﬂc(t)”
< (1=) BT (1) Hmas (8)] + C ()

I 4oy E[Fcon(t)|Hmam(t)] (eaHmw(t) o 1)
n
Next, we remove conditioning on H,,q.(t) from the left side of the above in-
equality. Using Lemma 6.7 we get that:

E[r(t +1)] = Z_ E[T (¢ + 1) A (D) PrlAx (1)
<3 ((1 — LB (0)| A (0] Pr{Ax (1) + C() PriA(t)]

n 4o E[Fcon(tﬂAK(t)]PT[AK(t)] (eZaeSC(K+1)logn _ 1))

n

(1 - R) E[T™(£)] + C(e)

N i 4o E[I"(t)| A ()| Pr[Ax (t)] (ezae3c(K+1)logn —1).

n
=0

|
Our next goal is to upper bound Pr[Ak(¢)] and E[T'®°"(t)| Ak (t)] For this
start with deriving the concentration bounds for H,, 4. (t).

Lemma 6.9 For anyt > Cn and constant K > 1:

1
3
PriAg(t)] < Pr{Hpmqa(t) > 2Ke’Clogn] < (K Togn)TRCo oz n

16

Proof. Note that H,,q.(t) is a maximum number of balls some bin receives
if we throw 2Cn balls into n initially empty bins (Recall that all the random
choices which operations make are independent). For a fixed bin i, let H;(t)
be the number of balls it receives. We know that E[H;(¢)] = 2C. Hence, using

Chernoft’s inequality we get that
eK53 logn—1 2
(K63 log n)KSS logn

1 1
- ﬁ (€K log n)QKCe3 logn*
By union bounding over n bins we get the proof of the lemma. O
We proceed by upper bounding E[['°*"(¢)| Ak (t)].

Pr[H;(t) > 2Ke*Clogn]

IN

Lemma 6.10 For anyt > Cn:
E[Fcon(t”AK(t)] < E[Fcon(t)]eSaeSC(K-‘rl)log n

Proof.
E[®°"(t)| Ak (t),z(t — Cn)] — 2" (t — Cn)

_ zn:ea(wi(t—Cn)—u(t—Cn)) (ea (xf(t)—u(t)—xqz(t—cn)Jru(t—Cn)) - 1>.
i=1

Since we condition on A (t), for every i we have that

zi(t) — 2;(t — Cn) < Hppas(t) < 2e3C(K + 1) logn.
Also, p(t) > p(t — Cn). Thus

E[®°" ()| Ak (t),z(t — Cn)] — @™ (t — Cn)

< Zea(xi(tfcn)fu(th‘n)) <e2ae3C(K+1)logn - 1>

i=1
_ (I)con(t _ CTL) <e2aeSC(K+l) logn __ 1))

Similarly
E[U" ()| Ak (t),z(t — Cn)] — ¥ (¢t — Cn)

- Zn: (@i (t=Cn)—pu(t—Cn)) (ea (“(t)*“(t)*“(FC"H“(FC")) - 1),
i=1

We have that x;(t) > z;(t — Cn) and
(u(t) = p(t — Cn) < Hpaa(t) < 2¢*C(K + 1) logn
Thus
E[®" (t)| Ak (t), z(t — Cn)] — @™ (t — Cn)

Z e—a(zi(t—Cn)—u(t—Cn)) (eQQeSC(K+1) logn 1)
=1

IN

_ \I,con(t - Cn) (62a63C(K+1) logn 1>)

17

Hence

B[()| Ak (), x(t — Cn)] = T (t — Cn)]
< Fcon(t o C’I’L) (62ae3C(K+1) logn 1)

Notice that Ax(¢) is independent of 2:(t — Cn), since in the definition of Hypqx(t)
we just consider random choices made by opi—cn+41, ..., 0p:. This allows us to
remove conditioning on z(t — Cn) and after regrouping the terms in the above
inequality we get

E[Fcon(t)‘AK(t)} < E[Fcon(t _ Cn)]eQaeSC(K+1) logn (8)
By applying Lemma 6.5 C'n times we get that

Cn
E[[° (#)[a(t — Cn)] > D" (¢ — Cn) <1 - 2;‘) > Teon (¢ — Cp)e—iCe,

After removing conditioning we get that
E[T°"(t)] > E[T°"(t — Cn)le~*“.
By combining the above inequality with (8) we get that:
E[T" (¢)| A (t)] < E[L%"(¢)]e 20e3C(K+1) log ngdaC
t)]e 3aeSC(K+1)logn.

d
Finally

Lemma 6.11 For any good operation ops41, such that t > Cn, we have that if

1
C>2and a < 10960 Tog then

E[C" (¢ +1)] < (1- 50 EL*" ()] + C(e).

Proof. Since o < and C > 2:

1
4096Ce3 logn

N
> (1) Ax ()] Pr{A (B))(e2" OO ogn 1)
K=1

Lemmas 6.9 and 6.10 i\': E[I‘wn (t)]e5aESC(K+1) log n

(GK IOg n)QKC'e3 logn

K=1
N E]_'\con eSC'K logn]_'\con >]_'\con
Z eQKCe3 logn — Z 62K63 logn Z n16K
=1 K=1
2E[T"(1)] _ BT (1)
< < . 9
- nl6 2048 9)

Also, for K =0 ‘
[T (6] Ao (0] PrAo (0] (€217 1)

Lemm<a 6.10]E[Fcon (t)]63a63C logn (62a33C logn _ 1)

< E[L*"(¢)]em (emm — 1)
10

< 2E[(®)] 1024 512

18

Hence, we get that
N
> B0 () Ag (£)] Pr{A (1)) (2 OO D Iogm)
K=0
_ Brn@) | BT (o] _ 5 ()
2048 512 2048
By plugging the above inequality in Lemma 6.8 we get that

E[L°" (t + 1)] < (1 - %) E[Ten (£)] + C(e) 4 0B (1)] Ei:n(t)].

Recall that e = %, thus % < é and this finishes the proof of the lemma. [

Endgame. With all this machinery in place, we proceed to prove the following.

Lemma 6.12 If o < and C > 433, then at any time step t

< 146C(e)n.

Qe
Proof. We will proceed by induction on t. We will first prove that, if E[T'“°"(¢)] <
MO for ¢ > Cn, then E[L™"(t + Cn)|Teon(t)] < 1469,

We have two cases. The first is if there exists a time 7 € [t, ¢+ Cn] such that
E[To™(7)] < % Let us now focus on bounding the maximum expected
value of T'°°"(¢t + Cn) in this case. First notice that the maximum expected
increase of I'°™ because of a good step is an additive C'(¢) factor. By Lemma
6.4 The expected value of I'°°™ after a bad operation is upper bounded a mul-
tiplicative (1 4+ %a) factor. Hence, by Lemma 6.6 and expected maximum value

of '™ at t + C'n is at most
72C(e)n 4a\" 72C(e)n C(e)n Ao
(+C(9© 1)n> (1 * n > (Qe * 4096ce3 logn c

(073
_ 1460(¢)

1
4096Ce3 logn

E[T"(2)]

IN

e

The second case is if there exists no such time in [t,¢ + Cn], meaning that
E[T™(T)] > %,VT € [t,t 4+ Cn]. Then, by Lemma 6.11, we have that, at
each good step,

ae

E[T"(t + 1)] < E[T"(¢)] (1 - 97). (10)
n
Hence, we can expand the recursion to upper bound the change in I'°°" between
tand t+ Cn as

E[T"(t + Cn)] < E[L"(t)] (1 - %)(C_l)" (1 + ‘i‘:)n

< E[L"(H)]e T e <D (1),
Where in the last step we used that C' > 1+ 36/e = 433.
To establish the base of induction note that by Lemma 6.4, for each 0 < ¢ <
2Cn:

4 4
Fcon(t) S Fcon(o)(l + %)ZCn — 2n(1 + §)2Cn

146C(e)n

Qe
This concludes the proof of the Lemma. O

The following claim completes the proof of Theorem 6.1.

< 2medC < 4p <

19

Lemma 6.13 Given an oblivious adversary, n distributed counters andn threads,
for any time t in the execution of the approzimate counter algorithm the counter
returns a value that is at most O(n log? n) away from the number of increment
operations which completed up to time t, in expectation. Moreover, for any t
and all R sufficiently large, we have

Pr[3i: [n-ai(t) —n-pi(t) > Rnlog?n] < n~®)

Proof. The proof is similar to [25] (the main difficulty was to reach asymptoti-
cally the same potential upper bound). We aim to bound Gap(t), the maximum
gap between the weight of two bins at a step.

By choosing C' = 433 and o = m = @(loén) and applying Lemma
6.12 we get that E[®°"(¢)] = O(nlogn) and E[¥"(t)] = O(nlogn) for all ¢.
Let Zp44(t) denote the maximum weight of any bin at time ¢, and let @, (t)
be the minimum weight of any bin. Then, we have

A E[Zmaz(t) — p(t)] = log exp (BT max (t) — p(t))])

(%) log Elexp(a(Zmaz (t) — p(t)))]

b

(g) log E[®°"(t)] < O(logn + loglogn) = O(logn) ,
where (a) follows from Jensen’s inequality, and (b) follows from the definition
of ®°". Similarly, we have E[u(t) — Zmin(t)] < O(log®n). Since the true value
of the counter at time ¢ is n - u(t), these two statements imply that for all 4, we
have E[|n - 2;(t) — n - u(t)|] < O(nlog®n), as desired.

We now prove the high probability bound. Observe that if max(t) — p(t) >
Rlog? n, then we have [0 (t) > & (t) > eRlog’n Hence, for large enough
R:

Pr[max(t) — pu(t) > Rlog®n] < Pr[®n(t) > e*Flos’ n]
Maékov O(nlogn)
eaRlog®n
< niO(R) .
Similarly, Pr[u(t) — min(t) > nlogn] < n= %),

Combining these two guarantees with a union bound immediately yields the

desired guarantee. O

7 Distributional Linearizability for Concurrent
Relaxed Queues

We now extend the analysis in the previous section to imply distributional lin-
earizability guarantees in concurrent executions for a variant of the MultiQueue
process analyzed by [3]. This process is presented in Algorithm 2. We note
that this process applies specifically to implement general concurrent queues,
and will also apply to priority queues assuming that a sufficiently large buffer of
elements always exists in the queues such that no insertion is ever performed on
an element of higher priority than an element which has already been removed.

20

7.1 Application to Concurrent Relaxed Queues

Description. We wish to implement a concurrent data structure with queue
like semantics, so that we have guarantees on the rank of dequeued elements.
We assume we are given a set of n linearizable priority queues such that each
supports Add(e, p), DeleteMin, ReadMin, where p is the priority of the element,
and ReadMin returns the element with smallest priority in the priority queue,
but does not remove it. We also assume that each processor ¢ has access to a
clock Clock; which gives an absolute time, and which are consistent amongst
all the processors, that is, if processor i reads Clock; in the linearization before
processor j reads Clock;, then processor ¢’s value is smaller. Such an assumption
is realistic; recent Intel processors support the RDTSC hardware operation,
which provides this functionality for cores on the same socket.

The procedure, given formally in Algorithm 2, is similar to our approximate
counter. To enqueue, a thread reads the wall clock, chooses a random priority
queue, and adds the element to that priority queue with priority given by the
time. To dequeue, we choose two random priority queues, find the one having a
higher priority element on top, and delete from that priority queue. In case two
processes enqueue to the same priority queue concurrently, their clock values
will ensure a consistent ordering, handled by the internal implementation of the
priority queues.

Algorithm 2 Pseudocode for Relaxed Queue Algorithm.
Shared: PQs[n] // Set of n distinct priority queues
individual: Clock; // A wall clock for processor i, for each i
function Enqueue(e)

p < Clock;.Read()
i < random(1,n)
PQs[i].Add(e, p)

function Dequeue()

i < random(1,n)

j « random(1,n)

(ei,pi) < PQs[i].ReadMin()
(ej,pj) + PQs[j].ReadMin()
if (pi>pj)i=]

return PQsli].DeleteMin()

Analysis. The Analysis mostly follows the steps in [3]. We define the rank of
element with timestamp p as the number of elements which are currently in the
system and have timestamp with value at most p (Including itself, and assuming
that no two operations have the same timestamp).

First we assume that Dequeues operations never see an empty queue. Given
this assumption we can also assume:

e Enqueue operations happen sequentially, sorted by linearization order
e Dequeue operations are invoked after all Enqueue operations are finished

Since the timestamps are increasing in linearization order, the two assumptions

21

above do not change the outcome (the rank of returned element) of Dequeue
operations and are needed solely for the purpose of analysis.

We proceed by defining the auxiliary exponential label process. We are given
n, initially empty queues in which we insert infinitely many labels as follows:
for each queue i, if the last inserted label in i is v; (0 if the queue is empty),
then we insert label v; + E:vp(%) in it. We define the rank of label v as the
number of labels which are currently in the queues and have value at most v
(Since exponential distribution is continuous we assume that no labels have the
same value). We will call these queues label queues to distinguish them from
queues we use in Algorithm 2,

Theorem 2 in [3] says that for any rank r and queue i, probability of label
with rank r being in queue ¢ is % The proof uses the memorylessness of ex-
ponential distribution. Since for each queue the probability of element e with
initial (before Dequeue() operations occur) rank r being enqueued in it is +
via coupling we can assume that e is enqueued in the queue 1, if the label queue
1 contains the label with rank r. Then, we remove all the extra labels from
label queues, that is if the element with rank r does not exist in the queues,
then we remove the label with rank r from the label queues as well. Next, for
each Dequeue() operation which chooses queues ¢ and j uniformly at random
and proceeds to dequeue from the queue which has the element with the smaller
rank (timestamp) on top, we also check the labels on top of label queues i and
4 and remove the smaller one. Notice that this way, at any point in time, if the
element with current rank r is in queue i, then the the label with current rank
r is in label queue i as well, and vice versa. This can be formally proved by
induction on Dequeue() operations. Here, we switch gears and concentrate on
proving rank bounds on the process with labels. The process can be formulated
as follows. Let vy (t), va(t), ..., v, (t) be the labels on top of the label queues after
t dequeues have occurred. Initially, we have that v;(t) = 0, for each 1 < i < n.
Then at each step t + 1, we pick two queues i and j uniformly at random and if
w.l.o.g queues i has the smaller label on top, then v;(t + 1) = v;(¢) + Exp(1/n)

(for every k # i, we have that vg(t + 1) = vg(¢). Notice the similarity between
— w)

)

this process and Algorithm 1. Let z;(t)
bound T'°°"(¢) in this case.

Our initial aim is to upper

Lemma 7.1 Given that w(t) = EIPT(%)

C > 433, then at any time step t
E[r"(t)]

at every step t, if a < and

1
4096Ce3 logn
< 146C(e)n.

E

Proof. Our goal is to apply Lemma 6.12 when w(t) = Bap(y) o every step
t. For this we will just need to show that Lemma 6.11 still holds. The key steps
towards accomplishing this are generalizing Lemma 6.9 for exponential weights
of mean 1, as opposed to weights of value 1, since we are no longer able to apply
Chernoff’s inequality and making sure that (9) still holds.

First we establish the bounds in (1) and (2), in order to be able to ap-

ply lemmas 6.5 and 6.4. We know that for each ¢, w(t) = W. Clearly
Elw(t)] = w = 1. In this case the moment generating function is

M(z) = E[e®®)] = E[en Bp(3)] = o = L, for z < 1. This gives us that
M"(x) = ﬁ Hence if A =1 and S = 8, we have that for every so that for

22

every r < A/2 we have M"(x) < 25. This means that to apply Lemma 6.3 we
will need a < % (which is feasible since we need an upper bound on a to be
even smaller in order to prove Lemma 6.12.

Recall that previously we had that H,,e.(t) = max{H;(t), Ha(t), ..., H;(t)},
where H;(t) was the number of times bin ¢ was a random choice made by op-
erations op;_cn+1,0Pt—Cnt2, -+, 0pr and then we knew that if opy; 1 was a good
operation, total increment received by bin ¢ by the operations which were con-
current with ops11 was at most H;(¢). In this to have the same property we
redefine H;(t) as follows.

For 0 < u < Cn, let z(u) = (z1(u), 22(u), ..., 2, (u)) be the n dimensional
vector. We assume that z;(0) = 0 for each 1 < i < n. For 0 < u < n, consider
operation op;—cpyu+1- Let ¢ and j be the random bins it chooses, we know
that it increments the bin which has the smaller load at the time of performed
reads by w(t — Cn 4+ u + 1). We set z;(u+1) = z;(u) + w(t — Cn + u + 1),
zji(u+1) = zj(u) + w(t — Cn+u—+1) (even if ¢ = j) and for k # i,j we set

Notice that z;(Cn) is the upper bound on the total increment received by
bin ¢ from operations op;_cn+1, 0pt—cn+2, ---, 0pt. And thus we can set H;(t) =
z;(Cn). Hence, our goal is to upper bound max{z;(Cn), z2(Cn), ..., Z,(Cn)}

We use argument similar to Lemma 6.4. Let Y;(u) = e™% and T(u) =
Yo Ti(uw) (Thus, Y(0) = n) If i and j are chosen by operation opi—cntu+1,
then

E[T(u+ 1)[z(#)] = T (u)
= E[Yi(u+ 1)]z(8)] = Ti(w)] + E[T;(u + 1)]2(8)] = Tj(w)]

(e (E VOB 1>

M'(0) M“(g)} - 1)

8 * 2.82

|
~/~
)
&
o[~
£
|
9]
N
. !
00| —~
£
—— N— — =
VN
=
=
(=)
S~—
+

o owit—Cn+u+1) M'(¢)
(E_H - +2.82}1>

<1<%+ %J)
—le e
— 4

Where in the the last step we used 0 < ¢ < %, and as we established above
M"(z) < 28 = 16 for each z <

Also, recall that the weight is one in
expectation at every step. Hence,

o=

BT+ D] - T < o 3 g(e¥ +e¥)

1<i<n,1<j<n

2«1 = YT(u)
== Z Ze® = .
n 4 2n
After removing conditioning we get that

EY(u+1)] < (1+ %)E[T(u +1)].

A

23

After applying the above inequality Cn times we also get that
1
E[Y(Cn)] < n(1 + Q—)C" < ne“/?,
n
Finally we proceed as in the proof of Lemma 6.13

Pr[Hpaz(t) > 2KCe®logn] < Pr[3i: z;(Cn) > 2KCe®logn]

53 ogn
< Pr[Y(Cn)>e 1]
neC/Q

- KCe3 logn :
e 4

The last step is to verify that (9) is still true. Notice that even though the (9)
uses a < m and C' > 2, the Lemma 6.12 requires that C' > 433, and
we will take advantage of this upper bound:

Z E Fcon |AK()]PT[AK(t)Ke2aeSC(K+1)logn _ 1)
K=1

Lemma 6.10 =2 E[Fcon(t)]e5aeSC(K+l) log n+log n+$

< >
— KCe3logn
e 1

K=1
> Fcon] K+logn+%

Z e2KClogn

We have that K > 1 logn > 1 (Assuming n > 2), and C > 433, thus we have
that g < KClogn, K < Kciog" and logn < %. Hence

E[0°" ()| A ()] Pr{Ag ()] (2> €D osn _ 1) < i E[E%(?]
K=1 ¢ °?
e Fcon] E [Fcon (tﬂ
Z ekKnt® = 2048

1

With this in place we know that 6.11 holds if even if w(t) = EQCPT(") at every

step t and then we can just use Lemma 6.12 to finish the proof. g
Now we are ready to upper bound the ranks of dequeued elements.

Theorem 7.2 Assuming an oblivious adversary, the MultiQueue algorithm with
parameter n (Algorithm 2) is distributionally linearizable to a sequential ran-
domized relaxed queue Qgr, which ensures that at each step t, the mazimum
expected rank of dequeued element is O(n log2 n), and average expected rank is
O(nlognloglogn).

Proof. First we bound the expected maximum rank of the elements on top.
Recall that @0.(t) and x,,(t) are the largest and smallest weights of bins
after ¢ steps and let vpa. () = NTmaz (t) and vViaz (t) = NTmas(t) be the largest
and smallest labels on top of queues after ¢t dequeue operations. We start by
showing that for any 1 <1 < n,

E[loi(t) = v 1)

n

Efrank(vi(t)] < Y (1+

1<j<n,j#i

= Y (+E [m(t) *xj(t”])' (11)

1<j<n,j#i

24

The proof is similar to the proof of Lemma 11 in [3]. We fix (condition on)
v1(t),v2(t), ..., vn(t). For each v;(t) > v;(t) we know that the label queue j does
not contain labels which are smaller than v;(t), hence the labels in j do not
influence the rank of v;(¢). In the case when v;(t) < v;(t), we know that the
number of labels in j which are smaller than v;(t) is one plus the number of la-
bels in j which belong to the interval (v;(t),v;(t)). We know that the difference
between consecutive labels in each label queue is Exp(n) hence the expected
number of labels in j which belong to interval (v;(t),v;(t)) is upper bounded
by E[Poz(v‘(t) vy = 2=v® (This simply follows from the properties
of Exponentlal and Poisson dlstrlbutlons) Thus, obviously E[rank(v;(t))] <

Di<jen il + M) and (11) follows after removing conditioning on
v1(£),v2(t), ..., v, (t). With this in place we have that for any 1 <i<n

Efrank(ui(®)] < . (1+E[[|us(t) ;1))
1<j<n,j#i
< (n—=1)+ (n—1)E[zmnaes(t) — Tmin(t)])
= O(nlog®n).

Where the last step follows from the proof of Lemma 6.13 where it is shown

that both E[,az(t) — u(t)] and E[u(t) — Zmin(t)] are O(log? n).
Next we aim to upper bound > ", w This is exactly average
expected rank of removed label since during removal we choose both label queues

uniformly at random. We have that

5o Elrankl)] < Ly~ 5~ (14 B[l - 0]

i=1 i=11<j<n,j#i
<n+ ZZE[m) (1)
<ntl ZZE[I% u(t)| + |58 = ()]

:n+QZE[[|xi(t) —u(t)@. (12)
i=1
Using Jensen’s inequality we get that

Y afni) = p®l _ (z)

n
n o oalzi(t)—p(t)| T
< log (Zz:l €) < log <00"(t)> .
n n
Hence

g [Zim o0 = 10l) [(rw;m)} Jengen (E[rcznu)])

n

(673

Lemma 7.1 14
< log <60(€)> = O(loglogn).

Where in the last step we used o = ©(and for the same reason we get

1
Iogn)

25

160 000

" --Single g
2 120 Relaxed C=1 2 400
3 Relaxed C=2 i 00
€ 2000
E 80 Relaxed C=4 3 00
b+ O\ % 1000 2000 3000 4000 5000
2 7
§ 40 'A’W g6
H 35
0 £
0 4 8 12 16 20 24 i
number of threads ! 1000 2000 3000 3000 5000

Step index

(a) Scalability of the concurrent counter (b) Quality results for the concurrent

for different values of the ratio C' be- counter in a single-threaded execution.
tween counters and # threads. The x axis is # increments.
50 N 40 20
" ~o-Original =] " ~o-Original ul - ~0-Original
54 o 530 s 15
g +I-Relaxed O 8 +1-Relaxed t 8 +1-Relaxed =
= 30 ’ - o - o
5 o 5 20 5 10 o
€20 B o g
g o g . o— 3
510 e oo B0 o7 55 / o—=0
1 Fag] o B _g—o—0
o & o—5
0 o o o O
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
number of threads number of threads number of threads

(¢) TL2 benchmark, 1M ob- (d) TL2 benchmark, 100K ob- (e¢) TL2 benchmark, 10K ob-
jects. jects. jects.

Figure 1: Experimental Results for the Concurrent Counter

that 7", |zi(t) — p(t)| = O(nlognloglogn). Finally, (12) gives us that
i Elrank(v;(t))]

< n+20(nlognloglogn) = O(nlognloglogn).
n

i=1

8 Experimental Results

Setup. Our experiments were run on an Intel E7-4830 v3 with 12 cores per
socket and 2 hyperthreads (HTs) per core, for a total of 24 threads, and 128GB
of RAM. In all of our experiments, we pinned threads to avoid unnecessary
context switches. Hyperthreading is only used with more than 12 threads. The
machine runs Ubuntu 14.04 LTS. All code was compiled with the GNU C++
compiler (G4++) 6.3.0 with compilation options -std=c++11 -mcx16 -03.
Synthetic Benchmarks. We implemented and benchmarked the MultiCounter
algorithm on a multicore machine. To test the behavior under contention,
threads continually increment the counter value using the two-choice process.
We use no synchronization other than the atomic fetch and increment instruc-
tion for the update. Figure 1(a) shows the scalability results, while Figure 1(b)
shows the “quality” guarantees of the implementation in terms of values re-
turned by the counter over time, as well as maximum gap between bins over time.
Quality is measured in a single-threaded execution, for 64 counters. (Recording
quality accurately in a concurrent execution appears complicated, as it is not
clear how to order the concurrent read steps.)

26

TL2 Benchmark. Transactional Locking IT (TL2) is a software implementa-
tion of transactional memory introduced by [13]. TL2 guarantees opacity by
using fine-grained locking and a global clock G. TL2 associates a version lock
with each memory location. A version lock behaves like a traditional lock, ex-
cept it additionally stores a version number that represents the value of G when
the memory location protected by the lock was last modified. At a high level, a
transaction starts by reading G, and uses the clock value it reads to determine
whether it ever observes the effects of an uncommitted transaction. If so, the
transaction will abort. Otherwise, after performing all of its reads, it locks the
addresses in its write set (validating these locations to ensure that they have
not been written recently), rereads G to obtain a new version v’, performs its
writes, then releases its locks, updating their versions to v’.

TL2 with Relaxed Global Clocks. In the standard implementation of TL2,
G is incremented using fetch-and-add (FAA). This quickly becomes a concur-
rency bottleneck as the number of threads increases, so the the authors devel-
oped several improved implementations of G. However, they too experience
scaling problems at large thread counts. We replace this global clock counter G
with a MultiCounter implementation, and compare against a highly-optimized
baseline implementation.

Due to the fact that the counter is relaxed, reasoning about the correctness
of the resulting algorithm is no longer straightforward. In particular, a key
property we need to enforce is that the timestamp which a thread writes to a
set of objects as part of its transaction (generated when the thread is holding
locks to commit and written to all objects in its write set) cannot be held
by any other threads at the same time, since such threads might read those
concurrent updates concurrently, and believe that they occurred in the past.
For this reason, we modify the TL2 algorithm so that threads write “in the
future,” by adding a quantity A, which exceeds the maximum clock skew we
expect to encounter in the MultiCounter over an execution, to the maximum
timestamp tyax they have encountered during their execution so far. Thus, each
new write always increments an object’s timestamp by > A. We stress that that
the (approximate) global clock is implemented by the MultiCounter algorithm,
and that it is disjoint from the object timestamps.

This protocol induces the following trade-offs. First, the resulting transac-
tional algorithm only ensures safety with high probability, since the A bound
might be broken at some point during the execution, and lead to a non-serializable
transaction, with extremely low probability. Second, we note that, once an ob-
ject is written with a timestamp that occurs in the future, transactions which
immediately read this object may abort, since they see a timestamp that is larger
than theirs. Hence, once an object is written, at least A operations should oc-
cur without accessing this object, so that the system clock is incremented past
the read point without causing readers to abort. Intuitively, this upper bounds
the frequency at which objects should be written to for this approximate times-
tamping mechanism to be efficient. On the positive side, this mechanism allows
us to break the scalability bottleneck caused by the global clock.

We verify this intuition through implementation. See Figures 1(c)—1(e).
We are given an array of n transactional objects, with n between 10K and 1M.
Transactions pick 2 array locations uniformly at random, then start a transac-
tion, increment both locations, and then commit the transaction. We record the
average throughput out of ten one-second experiments. We verify correctness

27

by checking that the array contents are consistent with the number of executed
operations at the end of the run; none of these experiments have resulted in
erroneous outputs. We record the rate at which transactions commit, as a func-
tion of the number of threads. We note that, for 1IM and 100K objects, the
average frequency at which each location is written is below the heavy abort
threshold, and we obtain almost linear scaling with MultiCounters. At 10K
objects we surpass this threshold, and see a considerable drop in performance,
because of a large number of aborts.

9 Conclusions and Future Work

We have presented the first concurrent analysis of the two-choice load-balancing
process, showing that this classic randomized algorithm is in fact robust to
asynchrony under an oblivious adversary. Our analysis extends existing tools,
namely [25], in non-trivial ways, in particular by showing that the potential anal-
ysis can withstand adversarially corrupted updates. Our results have non-trivial
practical applications, as they show that a popular set of randomized concur-
rent data structures in fact provide strong probabilistic guarantees in arbitrary
executions, which we express via a new correctness condition called distribu-
tional linearizability. This inspires a scalable approximate counting mechanism,
trading off contention and exactness guarantees, which can be used to scale a
transactional application.

References

[1] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. In International Conference
on Principles of Distributed Systems, pages 395-410. Springer, 2010. 2, 6

[2] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid
Guerraoui. Tight bounds for asynchronous renaming. J. ACM, 61(3):18:1—
18:51, June 2014. 6

[3] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power
of choice in priority scheduling. In Elad Michael Schiller and Alexander A.
Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, pages 283-292. ACM, 2017. 1, 2, 4, 5, 20, 21, 22, 25

[4] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist:
A scalable relaxed priority queue. In 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, 2015. ACM. 5

[5] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals,
simulations, and advanced topics, volume 19. John Wiley & Sons, 2004. 5

[6] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced
allocations. SIAM journal on computing, 29(1):180-200, 1999. 2, 4, 7

28

[7]

[17]

[18]

Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman.
CafE: Scalable task pools with adjustable fairness and contention. In Pro-
ceedings of the 25th International Conference on Distributed Computing,
DISC’11, pages 475-488, Berlin, Heidelberg, 2011. Springer-Verlag. 2, 5

Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and
Lars Nagel. Multiple-choice balanced allocation in (almost) parallel. In
APPROX-RANDOM, pages 411-422. Springer, 2012. 4, 5

Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold V6cking.
Balanced allocations: The heavily loaded case. In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC 00, pages
745-754, New York, NY, USA, 2000. ACM. 2, 4

Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin. On
weighted balls-into-bins games. Theor. Comput. Sci., 409(3):511-520, De-
cember 2008. 4

N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue.
The Journal of Supercomputing, 6(1):87-98, March 1992. 5

Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In 25th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
13, Montreal, QC, Canada, pages 43-52, 2013. 5

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Inter-
national Symposium on Distributed Computing, pages 194-208. Springer,
2006. 3, 27

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In Chandu Thekkath and Amin Vahdat, editors, 10th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012, pages 17-30. USENIX Associa-
tion, 2012. 1

Andreas Haas, Thomas A Henzinger, Andreas Holzer, Christoph M Kirsch,
Michael Lippautz, Hannes Payer, Ali Sezgin, Ana Sokolova, and Helmut
Veith. Local linearizability. arXiv preprint arXiv:1502.07118, 2015. 2, 6

Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer,
Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. Distributed queues
in shared memory: multicore performance and scalability through quan-
titative relaxation. In Hubertus Franke, Alexander Heinecke, Krishna V.
Palem, and Eli Upfal, editors, Computing Frontiers Conference, CF’13,
Ischia, Italy, May 14 - 16, 2013, pages 17:1-17:9. ACM, 2013. 5

Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin,
and Ana Sokolova. Quantitative relaxation of concurrent data structures.
SIGPLAN Not., 48(1):317-328, January 2013. 2, 6, 8

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463-492, July 1990. 6

29

[19]

[20]

[21]

[22]

[25]

[26]

[31]

R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and
branch-and-bound. Journal of the ACM, 40(3):765-789, 1993. 5

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues
are not good concurrent priority schedulers. In Furopean Conference on
Parallel Processing, pages 209-221. Springer, 2015. 2

Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel ran-
domized load balancing. Distrib. Comput., 29(2):127-142, April 2016. 4

Michael Mitzenmacher. How useful is old information? IEEE Transactions
on Parallel and Distributed Systems, 11(1):6-20, 2000. 4, 5

Michael David Mitzenmacher. The Power of Two Random Choices in Ran-
domized Load Balancing. PhD thesis, PhD thesis, Graduate Division of the
University of California at Berkley, 1996. 2, 4

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 456—
471, New York, NY, USA, 2013. ACM. 1, 2, 5

Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allo-
cations and the 1 + beta-choice process. Random Struct. Algorithms,
47(4):760-775, December 2015. 2, 3, 4, 10, 12, 20, 28

Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mization, 9:255-304, 2001. 2, 4

Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announce-
ment: Multiqueues: Simple relaxed concurrent priority queues. In Pro-
ceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 15, pages 80-82, New York, NY, USA, 2015. ACM.
1,2,3,5

P. Sanders. Randomized priority queues for fast parallel access. Jour-
nal Parallel and Distributed Computing, Special Issue on Parallel and Dis-
tributed Data Structures, 49:86-97, 1998. 5

Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In
Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Pro-
ceedings. 14th International, pages 263-268. IEEE, 2000. 5

Kunal Talwar and Udi Wieder. Balanced allocations: The weighted case.
In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’07, pages 256—265, New York, NY, USA, 2007. ACM.
4

Martin Wimmer, Jakob Gruber, Jesper Larsson Traff, and Philippas T'si-
gas. The lock-free k-lsm relaxed priority queue. CoRR, abs/1503.05698,
2015. 2, 5

30

References

[1]

[10]

[11]

[12]

Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. In International Conference
on Principles of Distributed Systems, pages 395-410. Springer, 2010. 2, 6

Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid
Guerraoui. Tight bounds for asynchronous renaming. J. ACM, 61(3):18:1—
18:51, June 2014. 6

Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power
of choice in priority scheduling. In Elad Michael Schiller and Alexander A.
Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,
2017, pages 283-292. ACM, 2017. 1, 2, 4, 5, 20, 21, 22, 25

Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist:
A scalable relaxed priority queue. In 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, 2015. ACM. 5

Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals,
simulations, and advanced topics, volume 19. John Wiley & Sons, 2004. 5

Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced
allocations. SIAM journal on computing, 29(1):180-200, 1999. 2, 4, 7

Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman.
CafE: Scalable task pools with adjustable fairness and contention. In Pro-
ceedings of the 25th International Conference on Distributed Computing,
DISC’11, pages 475-488, Berlin, Heidelberg, 2011. Springer-Verlag. 2, 5

Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and
Lars Nagel. Multiple-choice balanced allocation in (almost) parallel. In
APPROX-RANDOM, pages 411-422. Springer, 2012. 4, 5

Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vocking.
Balanced allocations: The heavily loaded case. In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC *00, pages
745-754, New York, NY, USA, 2000. ACM. 2, 4

Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin. On
weighted balls-into-bins games. Theor. Comput. Sci., 409(3):511-520, De-
cember 2008. 4

N. Deo and S. Prasad. Parallel heap: An optimal parallel priority queue.
The Journal of Supercomputing, 6(1):87-98, March 1992. 5

Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In 25th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
18, Montreal, QC, Canada, pages 43-52, 2013. 5

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Inter-
national Symposium on Distributed Computing, pages 194-208. Springer,
2006. 3, 27

31

[14]

[17]

[18]

[19]

[20]

[25]

[26]

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In Chandu Thekkath and Amin Vahdat, editors, 10th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012, pages 17-30. USENIX Associa-
tion, 2012. 1

Andreas Haas, Thomas A Henzinger, Andreas Holzer, Christoph M Kirsch,
Michael Lippautz, Hannes Payer, Ali Sezgin, Ana Sokolova, and Helmut
Veith. Local linearizability. arXiv preprint arXiv:1502.07118, 2015. 2, 6

Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer,
Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. Distributed queues
in shared memory: multicore performance and scalability through quan-
titative relaxation. In Hubertus Franke, Alexander Heinecke, Krishna V.
Palem, and Eli Upfal, editors, Computing Frontiers Conference, CF’13,
Ischia, Italy, May 14 - 16, 2013, pages 17:1-17:9. ACM, 2013. 5

Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin,
and Ana Sokolova. Quantitative relaxation of concurrent data structures.
SIGPLAN Not., 48(1):317-328, January 2013. 2, 6, 8

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463-492, July 1990. 6

R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and
branch-and-bound. Journal of the ACM, 40(3):765-789, 1993. 5

Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues
are not good concurrent priority schedulers. In Furopean Conference on
Parallel Processing, pages 209-221. Springer, 2015. 2

Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel ran-
domized load balancing. Distrib. Comput., 29(2):127-142, April 2016. 4

Michael Mitzenmacher. How useful is old information? IEEE Transactions
on Parallel and Distributed Systems, 11(1):6-20, 2000. 4, 5

Michael David Mitzenmacher. The Power of Two Random Choices in Ran-
domized Load Balancing. PhD thesis, PhD thesis, Graduate Division of the
University of California at Berkley, 1996. 2, 4

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 456—
471, New York, NY, USA, 2013. ACM. 1, 2, 5

Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allo-
cations and the 1 + beta-choice process. Random Struct. Algorithms,
47(4):760-775, December 2015. 2, 3, 4, 10, 12, 20, 28

Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mazation, 9:255-304, 2001. 2, 4

32

[27]

28]

[29]

[31]

Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announce-
ment: Multiqueues: Simple relaxed concurrent priority queues. In Pro-
ceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 15, pages 80-82, New York, NY, USA, 2015. ACM.
1,2,3,5

P. Sanders. Randomized priority queues for fast parallel access. Jour-
nal Parallel and Distributed Computing, Special Issue on Parallel and Dis-
tributed Data Structures, 49:86-97, 1998. 5

Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In
Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Pro-
ceedings. 14th International, pages 263-268. IEEE, 2000. 5

Kunal Talwar and Udi Wieder. Balanced allocations: The weighted case.
In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, STOC 07, pages 256-265, New York, NY, USA, 2007. ACM.
4

Martin Wimmer, Jakob Gruber, Jesper Larsson Traff, and Philippas T'si-
gas. The lock-free k-lsm relaxed priority queue. CoRR, abs/1503.05698,
2015. 2, 5

33

	1 Introduction
	2 Related Work
	3 System Model
	4 The MultiCounter Algorithm
	5 Distributional Linearizability
	6 Analysis of the MultiCounter
	6.1 Modeling the Concurrent Process
	6.2 Notation and Background
	6.3 Naive Upper and Lower Bounds
	6.4 Main Argument

	7 Distributional Linearizability for Concurrent Relaxed Queues
	7.1 Application to Concurrent Relaxed Queues

	8 Experimental Results
	9 Conclusions and Future Work

