
Dynamic Adaptive Point Cloud Streaming
Mohammad Hosseini

University of Illinois at Urbana-Champaign
(UIUC)

shossen2@illinois.edu

Christian Timmerer
Alpen-Adria-Universität Klagenfurt, Bitmovin Inc.

christian.timmerer@itec.uni-klu.ac.at

ABSTRACT
High-quality point clouds have recently gained interest as an
emerging form of representing immersive 3D graphics. Unfor-
tunately, these 3D media are bulky and severely bandwidth
intensive, which makes it difficult for streaming to resource-
limited and mobile devices. This has called researchers to
propose efficient and adaptive approaches for streaming of
high-quality point clouds.

In this paper, we run a pilot study towards dynamic adap-
tive point cloud streaming, and extend the concept of dynamic
adaptive streaming over HTTP (DASH) towards DASH-PC,
a dynamic adaptive bandwidth-efficient and view-aware point
cloud streaming system. DASH-PC can tackle the huge band-
width demands of dense point cloud streaming while at the
same time can semantically link to human visual acuity to
maintain high visual quality when needed. In order to de-
scribe the various quality representations, we propose multi-
ple thinning approaches to spatially sub-sample point clouds
in the 3D space, and design a DASH Media Presentation
Description manifest specific for point cloud streaming. Our
initial evaluations show that we can achieve significant band-
width and performance improvement on dense point cloud
streaming with minor negative quality impacts compared to
the baseline scenario when no adaptations is applied.

CCS CONCEPTS
•Information systems →Multimedia streaming;
ACM Reference format:
Mohammad Hosseini and Christian Timmerer. 2018. Dynamic
Adaptive Point Cloud Streaming. In Proceedings of 23rd Packet
Video Workshop, Amsterdam, Netherlands, June 12–15, 2018
(Packet Video’18), 7 pages.
DOI: 10.1145/3210424.3210429

1 INTRODUCTION
While traditional multimedia applications such as videos are
still popular, there has been a substantial interest towards
new media, such as VR and immersive 3D graphics. High-
quality 3D point clouds have recently emerged as an advanced
representation of immersive media, enabling new forms of
interaction and communication with virtual worlds.
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Packet Video’18, Amsterdam, Netherlands
© 2018 ACM. 978-1-4503-5773-9/18/06. . . $15.00
DOI: 10.1145/3210424.3210429

3D point clouds are a set of points represented in the
3D space, each associated with multiple attributes such as
coordinate and color. They can be used to reconstruct a 3D
object or a scene composing of various points. point clouds
can be captured using camera arrays and depth sensors in
various setups, and may be made up to billions of points
in order to represent reconstructed objects in a high-quality
manner.

Despite the promising nature of point clouds, these 3D
media are highly resource intensive, and therefore are difficult
to stream and render at acceptable quality levels. Therefore,
a major challenge is how to efficiently transmit the bulky
high-quality point clouds especially to bandwidth-constrained
mobile devices. For raw dynamic point cloud frames, the
data transmission rate for an application with 30 fps can be
as high as 6 Gbps [3]. Therefore, there must be a balance
between the requirements of streaming and the available
resources. One of the challenges for achieving this balance is
to meet this requirement without much negative impact on
the user’s viewing experience in an immersive environment.

While our work is motivated by the concepts presented
by Dynamic Adaptive Streaming over HTTP (DASH) for
adaptive video streaming, a semantic link between adap-
tive streaming of point clouds with user’s view and limited
bandwidth has not been fully developed yet for the pur-
pose of bandwidth management and high-quality point cloud
streaming. In this paper, we aim to utilize this semantic rela-
tion to study and extend the concept of adaptive streaming
towards point cloud streaming. We propose DASH-PC, a
dynamic adaptive view-aware and bandwidth-efficient point
cloud streaming approach to tackle the high bandwidth re-
quirements of dynamic point cloud models. To enable various
quality representations, we sub-sample the dense point cloud
frames spatially in the 3D space, and construct a point cloud-
specific DASH-like manifest. Our preliminary study shows
that we can achieve substantial improvement in streaming
and rendering of dense point cloud data without noticeable
quality impacts compared to the baseline scenario when no
adaptations is applied.

The paper is organized as follows: in Section 2, we briefly
cover some background and related work. In Section 3,
we explain our methodology including the framework, sub-
sampling, and visual acuity. Our experiments and evaluation
results are presented in Section 4, while in Section 5 we
conclude the paper and briefly discuss possible avenues for
future work.

ar
X

iv
:1

80
4.

10
87

8v
2

 [
cs

.M
M

]
 8

 A
pr

 2
01

9

Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands Mohammad Hosseini and Christian Timmerer

2 BACKGROUND AND RELATED WORK
2.1 Dynamic Adaptive Streaming
One of the main approaches for bandwidth saving on bandwidth-
intensive multimedia applications is adaptive streaming. Adap-
tive streaming is a process where the quality of a multimedia
stream is altered in real-time while it is being sent from
a server to a client. The adaptation may be the result of
adjusting various network or device metrics. For example,
with a decrease in network throughput, adaptation to a lower
video bitrate may reduce re-buffering events and improve the
user’s experience.

Dynamic Adaptive Streaming over HTTP (DASH) specifi-
cally, also known as MPEG-DASH [1], is an ISO standard
that enables client-driven adaptive video streaming whereby
a client chooses a video segment with the appropriate quality
(bit rate, resolution, etc.) based on its constrained resources
such as bandwidth. The video content is stored on an HTTP
server, and is accompanied by a Media Presentation Descrip-
tion (MPD) as a manifest of the available segments, bitrates,
and other characteristics.

In this study, we extend the semantics of MPEG-DASH
towards a dynamic point cloud streaming system that en-
ables view-aware and bandwidth-aware adaptation through
transmitting varied quality of point cloud data relative to
the user’s view, bandwidth, or other resources.

2.2 View-Aware Media Streaming
View-aware media adaptation has become a de facto in adap-
tive multimedia streaming and media content prioritization,
especially in the context of emerging media such as 360
videos, VR, and 3D media. In the context of 360 VR videos
for example, various studies have been conducted to leverage
view-aware adaptations to efficiently transmit, render, and
display 360 videos to resource-limited VR headsets [2, 6, 8, 9].
Similarly, the authors in [11] and [10] studied view-aware
streaming in the context of 3D tele-immersive systems. Their
approach assigns higher quality to parts within users’ view-
port given the features of the human visual system.

In this paper, we follow similar concepts to propose view-
aware adaptation techniques to reduce the bandwidth re-
quirements of high-quality point cloud streaming.

2.3 Point Cloud Compression
While currently there is no work addressing dynamic and
adaptive point cloud streaming, existing works are mostly
centered around point cloud compression using geometry-
based approaches.

Google’s Draco [5] project uses kd-tree data structure for
quantifying and organizing points in the 3D space. Sim-
ilarly, Schnabel and Klein in their work [16] proposed a
solution based on an octree decomposition of space, where
a point cloud is encoded in terms of octree cells. Overall,
the two main important methods that recursively subdivide
the bounding box are the kd-tree approach of Devillers and
Gandoin [4] and the octree-based approach by Huang et. al.
[12]. In the same domain, some methods have been proposed

Figure 1: DASH-PC architecture overview.

Figure 2: An example DASH-PC manifest.
for the purpose of differential coding. In [7], the authors pro-
pose a predictive approach to compress points in a spatially
sequential order. Points are predicted in such a way that
only corrective vectors are encoded. Similarly, in [13], a mod-
ified octree data structure is used for differential encoding
of spatial changes. On the MPEG side, a new ad-hoc group
has been initiated for Point Cloud Compression, or in short,
MPEG PCC [14], aimed to cover topics in lossy and lossless
point cloud compression.

3 METHODOLOGY
One of the major challenges in streaming dense point clouds
is their high volume and therefore, high streaming band-
width demands. To decrease the bandwidth requirements,
one approach is to decrease the density of points in the 3D
space. This not only leads to a smaller volume of points, but
also decreases the GPU-assisted graphics rendering and the
processing overhead. Decreasing the point cloud density how-
ever, might also cause reduction of visual quality depending
on how the Level of Density (LoD) is crucial in the context

Dynamic Adaptive Point Cloud Streaming Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands

of the application. The aim of DASH-PC is to incorporate
these features and allow the client to select the best LoD
representation depending on its available resources, viewing
preference, or any other application preferences. Density-
based adaptation is particularly useful for the purpose of
visual-compliant adaptations.

Our proposed framework can be used to efficiently transmit
point clouds by allowing the client devices (or the server
communicating with the client devices) to select point cloud
frames with a specific specification, using standard DASH.
A client can receive point cloud frames by receiving the
segments through HTTP request/response communications,
which allows to dynamically switch between different density
representations. DASH-PC can provide a better quality
through adaptation to varying network link conditions such
as available bandwidth, or various device capabilities such
as display resolution or processing power, as well as any
user preferences such as the point cloud scale or user’s view
distance from the camera. Figure 1 illustrates an overview
of the DASH-PC architecture.

Similar to DASH, the adaptation feature of DASH-PC is
described by an XML-formatted manifest, which contains
metadata required for the client to establish HTTP requests
to the media server to retrieve point cloud models. Our
designed DASH-PC manifest includes characteristics of the
different point cloud representations stored on a standard
HTTP server. The manifest is divided into separate frames,
with each frame including a variety of adaptation sets, each
providing information about multiple quality alternatives,
also carrying information on the index of each frame, the
frame’s HTTP location, and LoD representations.

Figure 2 illustrates an example DASH-PC manifest as used
by our architecture. In the following, we briefly summarize
the basic descriptors and attributes defined within the DASH-
PC MPD.

3.1 DASH-PC MPD Semantics
For a better compliance with the semantics of MPEG-DASH,
we re-use some of the DASH mime types in the DASH-PC
manifest when possible. However, here we re-define them
with the new point cloud concepts.

@format. specifies the point cloud container format (e.g.,
ply).

@encoding. specifies the point cloud encoding (ASCII or
binary).

@frames. specifies the number of point cloud frames fol-
lowed.

@type. shows if the manifest may be updated during a
session (’static’ (default) or ’dynamic’).

@BaseURL. specifies the base HTTP URL of the point
cloud.

Frame. A frame typically represents a single point cloud
model. For each frame, a consistent set of multiple adaptation

sets of that point cloud model are available. The basic
elements and attributes of a Frame element are as follows:

• id: a unique identifier of the frame.
• BaseURL: specifies the base HTTP URL of the

frame.
• AdaptationSet: specifies the sub-clause adaptation

sets.

AdaptationSet. Within a frame, a model is arranged into
adaptation sets. An adaptation set consists of multiple in-
terchangeable quality versions of a point cloud frame. For
instance, adaptation sets can carry additional attributes to
represent density sub-sampling methods, so that there may
be one adaptation set for each density sub-sampling approach,
data structure used, or compression techniques used to rep-
resent point clouds. Similarly, an adaptation set can carry
additional attributes to account for a specified viewport, with
each viewport having a separate adaptation set. The basic
elements and attributes of an AdaptationSet element are as
follows:

• id: a unique identifier of the adaptation set.
• BaseURL: specifies the base HTTP URL of the adap-

tation set.
• Representation: specifies the sub-clause representa-

tions.

Representation. An adaptation set contains a set of repre-
sentations, each describing a deliverable version of a point
cloud frame model. A single point cloud representation is
sufficient for rendering and visualization of a model. Typi-
cally, a client can switch from one representation to another
at any time in order to adapt to its varying resources and
parameters such as network bandwidth, energy budget, vi-
sual preferences, etc. A client can ignore representations
with unsupported rendering or encoding specifications. For
instance, if a client only renders binary point clouds, it can
ignore ASCII-encoded representations. The basic elements
and attributes of a Representation element are as follows:

• id: unique identifier of the representation.
• BaseURL: specifies the base HTTP URL of the rep-

resentation.
• density: specifies the density of the point cloud model

in terms of the number of points.
• size: specifies the size of the point cloud model in

terms of the storage volume.
• Segment: specifies the sub-clause segments.

Segment. Each representation may contain one or more
segments. Segments describe sub-models based on spatial
segmentation which can be used to retrieve partial point cloud
models. We use the notion of segments to better comply
with the features of viewport adaptations. For instance,
a set of specific segments might be visible for a specific
viewport while they are not visible from another viewport.
Therefore, additional attributes such as viewpoint position
and orientation information might be accompanied. The
basic elements and attributes of a Segment element are as
follows:

Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands Mohammad Hosseini and Christian Timmerer

Algorithm 1: The first density sub-sampling process.
R: the sub-sampling ratio
{P}: set of points in the original model
|P |: current number of points
{P ′}: set of points in the sub-sampled model
|P ′| ← |P |R: calculate the total number of points in the
sub-sampled point cloud
∀pi ∈ {P} : 0 ≤ i < |P |:

P ← Sort{P}, X
P ← Sort{P}, Y
P ← Sort{P}, Z

∀j : 0 ≤ j < |P ′|:
P ′ ← pi×R

store the sub-sampled points in a new .ply container

1M 150K 30K
Figure 3: Example visual view of a point cloud model with
various densities.

• id: unique identifier of the adaptation set.
• BaseURL: specifies the HTTP URL of the segment.
• density: specifies the density of the point cloud model

in terms of the number of points.
• size: specifies the size of the point cloud model in

terms of the storage volume.

3.2 Point Cloud Sub-sampling
In order to decrease the density of point clouds, we propose
three different approaches for spatial sub-sampling of dynamic
point clouds. Our sub-sampling methods are based upon the
concept of spatial clustering of neighbor points in the 3D
space and sampling points in each cluster.

3.2.1 Algorithm 1. Algorithm 1 describes the process of
our first sub-sampling approach. Each cluster consists of a
set of R neighbor points in the spatial domain with R being
the sub-sampling ratio. Clusters are simply constructed
through points geometrically being sorted in the 3D space,
firstly based on X component, then Y component, and finally
based on Z component, therefore allowing each cluster with
near-minimum spatial euclidean distance of consisting points.
The process then simply selects a representative point from
each cluster. Figure 3 demonstrates a visual view of how
our sub-sampling approach works in practice. Figure 3 (left)
shows a point cloud model consisting of 1.06 million points
(the original model), while Figure 3 (middle) and Figure 3
(right) show sub-sampled models consisting of almost 150K

Figure 4: Example illustration of sub-sampling within a den-
sity tree.

and 30K points, corresponding to sub-sampling ratios of 7
and 35, respectively. While quality degradation on Figure 3
(right) can be noticed, there is likely not a noticeable visual
difference between Figure 3 (left) and Figure 3 (middle) on
this scale.

3.2.2 Algorithm 2. In our second sub-sampling method-
ology, we use the notion of histogram, and extend it to the
context of point clouds to design a low-resolution density
tree to enhance the spatial clustering process. Our approach
first computes the bounding box of all points in the point
cloud model through determining the minimum and maxi-
mum point coordinates. We then divide the used space of
the bounding box into a 3D voxel grid with a specific resolu-
tion, and create a density histogram. We process all points
to determine their cell position and increment the number
of points in the cell. With this, we create a low resolution
density histogram, with higher number of points in a cell
representing a denser cluster. We continue the process and
recursively split each cell until its point count is lesser than
a given threshold m. The choice of m depends on the usage
and the distribution of points in the point cloud model. Our
clustering data structure is similar to an octree design given
its recursive spatial division nature, except that it’s a low-
resolution octree built only for the purpose of clustering, in
which each node contains a bounded number of points. If
m = 1, then the process would generate a complete octree.

After the construction of the low-resolution density his-
togram, we perform a depth-first cluster sub-sampling process
starting from the deepest layer of the tree. Starting from
the left-most leaf, our process is to pick k = dmRe number
of points in the cluster, given R as the sub-sampling ratio.
To select the points, we perform the sub-sampling process in
Algorithm 1, sort the points in the 3D space, and uniformly
pick representative points in the sorted list and removes the
rest. The process then iterates through the next tree leaf,
and continues towards the last tree node in the same depth
level and then higher layers until exactly R−1×n

R points have
been removed. The constructed tree leaves store the points
of the point cloud model, with each leaf consisting of at most
m number of points. If m = 1, a complete octree is generated,
and our process removes the leaves from the deepest layers
until the removal budget is satisfied. Figure 4 describes a
visual illustration of our process.

Dynamic Adaptive Point Cloud Streaming Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands

Figure 5: Human visual acuity.

Figure 6: Visual view of scaled point cloud models. (left) 15K
sub-sampled, (middle) 15K scaled by a ratio of 2x, (right) 1M
scaled by a ratio of 2x.

3.2.3 Algorithm 3. For further improvement of our sub-
sampling approach, we enhance the clustering approach in
Algorithm 2 and propose a more complex octree-based sub-
sampling algorithm. To illustrate an example, in Figure 4,
while the two blue points are closest neighbors, they can be
ignored as a cluster when an octree or our low-resolution
density tree is used. To better enhance our clustering algo-
rithm, we follow the recursive steps proposed in Algorithm
2, and set m = 1 to construct a complete octree. Our octree
leaves store points of the point cloud model, with each point
stored in one and only one leaf, and each leaf storing at
most one point. Starting from the deepest left-most leaf,
our approach calculates a list of nearest neighbors for each
leaf, so that for a cluster of size m, we find and store m− 1
nearest neighbors for each leaf point pi. As a part of the
process of the nearest neighbor search, our approach finds a
closest leaf p′i corresponding to pi and marks it as processed.
Once a cluster is constructed, we follow the sub-sampling
process in Algorithm 1, and sort the points in the 3D space.
We then pick the middle point as a representative points in
the sorted list and remove the remainder. Similar to Figure
4, the process continues to the next octree leaf in the same
depth followed by higher layers until exactly R−1×n

R points
have been removed, given R as the sub-sampling ratio.

Our sub-sampling approaches are all deterministic, with
the output point cloud carrying exactly the determined per-
centage of the point volume. They are light-weight, and
are developed in native environment with user API which
are especially useful in large-scale dynamic point cloud sub-
sampling. It should be noted that our adaptations are gen-
eral, and are independent of the underlying sub-sampling
methodology. Therefore, any sub-sampling approach can be
employed.

3.3 Human Visual Acuity
A point cloud density characteristic can be especially useful in
the context of human visual acuity. Based on the features of
human visual system, the perceived visual density of a screen
and hense, the amount of anti-aliasing possibly required to
make any computer graphic objects visually look convincing
and smooth for users, depends on the pixel density of the
screen and the object’s distance from the user’s eyes. While
visual acuity varies individually and changes over time, the
normal visual acuity for adults is 1 arc-minute in size, or
60 pixels per degree [15]. Figure 5 illustrates the concept.
As such, given D as the distance of a user from the display
screen, we can calculate the minimum Pixel per Inch (PPI)
by:

P P I =
1

2×D × tan 1
2 ×

1
60 ×

Π
180

(1)

In the context of point clouds in a 3D space, a point cloud
object can scale up or down, or hold a distance from the
viewport camera. Given S as the scale factor of a point cloud
object and D′ as the distance of the camera position from
the centroid of the object’s bounding box, we extend Eq. 1
as the following:

P P I =
S

2×D +D′ × tan 1
2 ×

1
60 ×

Π
180

(2)

We use Eq. 2 to link visual acuity to a point cloud density
level, which can serve as the basis for our optimization and
density adaptations depending on the distance of the user
from the screen, distance of the object from the viewport
camera, as well as the scale of the model. Based on this
finding, the use of a point cloud model with an average PPI
of more than 60 is likely not visually noticeable for a user, and
therefore can exhaust valuable limited resources. Similarly,
if the total distance of the user from an object doubles and
the point cloud object scales by a factor of 2, the same visual
perception is maintained.

Figure 6 compares the visual view a point cloud sub-
sampled with a high ratio of 70 (15K points) in scaled and
non-scaled views, compared to a scaled version of the non-
scaled point cloud (1M points). While the quality degradation
in Figure 6 (left) is poor, Figure 6 (middle) and Figure 6
(right) are likely indistinguishable in such scale.

3.4 User API
For further convenience of generating various level-of-density
representations for dynamic sequences as well as static point
clouds, we have developed a stand-alone executable tool in
Java 1.8.0, and also designed a set of simple APIs for users
to construct desirable representations based on sub-sampling
and scaling, which includes the following APIs:

• subsample(int percentage, String inputpc, bool
isIterative): generates a sub-sampled point cloud
model with the percentage integer specifying the
density of the output point cloud model relative to

Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands Mohammad Hosseini and Christian Timmerer

Table 1: Our point cloud test sequences

Test Sequence Density Average Volume (KByte/frame)
Red& Black 700,531 14,731
Loot 778,467 16,515
Soldier 1,060,464 22,937
Longdress 794,641 17,456

2
6

.8

1
4

.3

4
.4 6
.1

7
8

.9

4
8

.7

1
5

.7 2
2

.2

1
1

4
.6

1
0

4
.7

5
3

.8

8
7

.3
R E D & B L A C K L O O T S O L D I E R L O N G D R E S S

FP
S

PERFORMANCE Full (1.0) Sub_2 (0.5) Sub_5 (0.2)

Figure 7: A comparison of point cloud rendering performance
in terms of FPS under 3 different sample representations.

the input point cloud. The isIterative flag speci-
fies if the process is iterated over multiple successive
frames.

• scale(int percentage, String inputpc, bool isIt-
erative): generates a scaled point cloud model
given the scaling ratio.

• optimize(int distance, int scale, int inputpc,
bool isIterative): automatically generates a sub-
sampled point cloud with optimum PPI density given
the distance (in inch) and/or the scale.

4 EVALUATION
For evaluation, we used point cloud Library (PCL 1.8.1) to
develop a dynamic point cloud visualization and streaming
prototype and run our benchmarks. For the benchmarks, we
used four different sequences provided by JPEG Pleno Data-
base containing 8i voxelized dynamic point cloud sequences
known as longdress, loot, redandblack, and soldier. In each
sequence, the full object is captured by 42 RGB cameras
configured at 30 fps, over a 10 second period. One spatial
resolution in a cube of 1024x1024x1024 XYZRGB-formatted
voxels is provided for each sequence. Table 1 provides de-
tailed information about our test sequences. We ran our
experiments on an Intel Xeon E5520 64-bit machine with
quad-core 2.27 GHz CPU, 12 GB RAM, and Gallium 0.4 on
AMD GPU running Ubuntu 16.04 LTS, and used our defined
manifest to describe various quality representations.

To focus on the amount of bandwidth savings, rendering
performance, and objective quality measurement for this pilot
study, we used our machine as the local HTTP streaming
server to filter the negative impacts of network latency and
bandwidth variations on the experimental results.

For the purpose of quantitative analysis, we used our
developed tool to apply four sub-sampling ratios to the test
sequences, and prepared 5 different representations in total
for each point cloud frame (REP1 to REP5 representing

1
4

.6
6

1
3

.6
4

1
4

.6
9

1
4

.6
6

2
5

.2
5

2
2

.6
4

2
4

.9
3

2
2

.2
8

3
4

.6
3

3
1

.8
8

3
4

.0
3

3
1

.5
0

4
1

.4
1

4
0

.7
9

4
0

.7
3

4
0

.7
3

R E D & B L A C K L O O T S O L D I E R L O N G D R E S S

P
SN

R

PSNR 1 2x 4x 8x

Figure 8: A comparison of geometry PSNR under different
scaling variances.

highest to lowest density, given sub-sampling ratios of 1
to 5). The main goal was to study how our adaptations
affect the total bandwidth and the rendering performance as
well as the perceived quality. We collected statistics for the
total bandwidth usage, rendering performance, and quality
measurements, and compared our results with the baseline
scenario where no adaptation is employed.

Each trial of our experiment was run for a total of 30
consecutive test sequences, and we repeated each experi-
ment 6 times to ensure that the standard deviations for
variable metrics are within acceptable limits. As obviously
the total bandwidth saving is directly correlated to the sub-
sampling ratio, a total bandwidth saving of approximately
%50 and %80 was achieved in raw point cloud frames given
sub-sampling ratios of 2 and 5, respectively. We measured
the client’s rendering performance in terms of the average
FPS continuously for 100 times during each session, and
recorded the data when adaptations are applied (lower rep-
resentations REP2 and REP5 with sub-sample ratios of 2
and 5) compared to the baseline case where no adaptation
is applied (REP1). Figure 7 demonstrates results for only a
subset of our experiments on all of our benchmarks under
Algorithm 1. The results show that depending on the scene,
our adaptations can significantly improve the processed FPS
up to more than 10x compared to the baseline case where no
adaptation is applied.

To verify our assumptions for visual acuity, we ran exten-
sive measurements on the objective quality using PSNR of
point-to-point distortions within our adaptations. We used
the official MPEG PCC Quality Metric Software [14], which
compares an original point cloud with an adapted model
and provides numerical values for point cloud PSNR. We
averaged the PSNR measurements over all dynamic point
cloud frames, and collected the experimental results. Figure
8 illustrates how the PSNR of our adaptations (an original
REP1 point cloud model against a REP2 sub-sampled model
carrying %50 of the original points) is affected under different
scaling variants, for 2x, 4x, and 8x scale-down ratios. The
results demonstrate interesting insights on the trade-offs of
a point cloud quality, scaling, and sub-sampling ratios, and
confirms our earlier assumptions in regards to the effects of
scaling point clouds on the human’s visual acuity.

Dynamic Adaptive Point Cloud Streaming Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands

Figure 9: Visual comparison of a specific frame within Red&
Black under 3 sample representations: (left) REP1, (middle)
REP2, (right) REP5.

Figure 9 demonstrates a sample screenshot of our experi-
ments on Red& Black illustrating 3 consecutive frames from
highest representation (REP1) (left) to the lowest represen-
tation (REP5) (right). As can be seen, depending on a
point cloud distance and scale, our adaptation can result in
negligible noticeable quality impacts, sometimes not even
perceptible, while it maintains possibly highest quality to
ensure a satisfactory user experience. Furthermore, given the
reduction in the rendering overhead, our adaptation makes it
possible to more efficiently stream and render multiple dense
point cloud objects within a single viewing scene, which previ-
ously was not possible due to the limited hardware resources
for streaming and processing unnecessary bulky point clouds.
Overall, considering the significant bandwidth saving, perfor-
mance improvement, and lower hardware exhaustion achieved
using our adaptations, it is reasonable to believe that many
would accept our adaptations to respect the valuable limited
resources in an immersive environment.

5 CONCLUSION AND FUTURE WORK
In this pilot study, we proposed dynamic point cloud stream-
ing adaptation techniques to tackle the high bandwidth and
processing requirements of transmission and rendering of
dense point clouds. Our novel adaptations exploits the se-
mantic link of adaptive streaming with a user’s visual acuity,
limited bandwidth, and other constrained resources to provide
dynamic adaptations in the context of point cloud streaming.
Our initial experimental results show that our adaptations
can significantly save point cloud streaming bandwidth and
improve rendering performance with negligible noticeable
quality impacts.

We are currently working on different rate adaptation
algorithms and study their various quality trade-offs.

ACKNOWLEDGMENTS
This work was supported in part by the Austrian Research
Promotion Agency (FFG) under the Next Generation Video
Streaming project "PROMETHEUS".

REFERENCES
[1] 2014. MPEG DASH, Information technology – Dynamic adaptive

streaming over HTTP (DASH) – Part 1: Media presentation
description and segment formats. ISO-IEC_23009-1. 2014-05-12.

[2] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. 2017.
Viewport-adaptive navigable 360-degree video delivery. In 2017
IEEE International Conference on Communications (ICC). 1–
7.

[3] Eugene d’Eon, Bob Harrison, Taos Myers, , and Philip A.
Chou. Geneva, January 2017. 8i Voxelized Full Bodies - A
Voxelized Point Cloud Dataset. In ISO/IEC JTC1/SC29 Joint
WG11/WG1 (MPEG/JPEG) input document.

[4] Olivier Devillers and Pierre-Marie Gandoin. 2000. Geometric
Compression for Interactive Transmission. In Proceedings of the
Conference on Visualization ’00 (VIS ’00). 319–326.

[5] Google. 2018. Draco: 3D Data Compression. Retrieved March
3, 2018 from https://github.com/google/draco

[6] Mario Graf, Christian Timmerer, and Christopher Mueller. 2017.
Towards Bandwidth Efficient Adaptive Streaming of Omnidirec-
tional Video over HTTP: Design, Implementation, and Evaluation.
In Proceedings of the 8th ACM on Multimedia Systems Confer-
ence (MMSys’17). ACM, 261–271.

[7] Stefan Gumhold and et al. 2005. Predictive Point-cloud Com-
pression. In ACM SIGGRAPH 2005 Sketches (SIGGRAPH ’05).
ACM, New York, USA, Article 137.

[8] M. Hosseini. 2017. View-aware tile-based adaptations in 360
virtual reality video streaming. In 2017 IEEE Virtual Reality
(VR). 423–424.

[9] M. Hosseini et al. 2016. Adaptive 360 VR Video Streaming:
Divide and Conquer. In 2016 IEEE International Symposium
on Multimedia (ISM). 107–110.

[10] Mohammad Hosseini and Gregorij Kurillo. 2015. Coordinated
Bandwidth Adaptations for Distributed 3D Tele-immersive Sys-
tems. In Proceedings of the 7th ACM International Workshop
on Massively Multiuser Virtual Environments (MMVE ’15).
13–18.

[11] Mohammad Hosseini, Gregorij Kurillo, Seyed Rasoul Etesami, and
Jiang Yu. 2016. Towards coordinated bandwidth adaptations for
hundred-scale 3D tele-immersive systems. Multimedia Systems
(2016), 1–14.

[12] Yan Huang, Jingliang Peng, C.-C. Jay Kuo, and M. Gopi. 2006.
Octree-based Progressive Geometry Coding of Point Clouds. In
Proceedings of the 3rd Eurographics / IEEE VGTC Conference
on Point-Based Graphics (SPBG’06). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 103–110.

[13] J. Kammerl et al. 2012. Real-time compression of point cloud
streams. In 2012 IEEE International Conference on Robotics
and Automation. 778–785.

[14] R. Mekuria and L. Bivolarsky. 2016. Overview of the MPEG
Activity on Point Cloud Compression. In 2016 Data Compression
Conference (DCC). 620–620.

[15] J. Ohlsson and G. Villarreal. 2005. Normal visual acuity in 17–18
year olds. Acta Ophthalmol Scand 83, 4 (Aug 2005), 487–491. p.
490.

[16] Ruwen Schnabel and Reinhard Klein. 2006. Octree-based Point-
cloud Compression. In Proc. of the IEEE VGTC Conference on
Point-Based Graphics (SPBG’06). 111–121.

https://github.com/google/draco

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Dynamic Adaptive Streaming
	2.2 View-Aware Media Streaming
	2.3 Point Cloud Compression

	3 Methodology
	3.1 DASH-PC MPD Semantics
	3.2 Point Cloud Sub-sampling
	3.3 Human Visual Acuity
	3.4 User API

	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

