
Delay-Constrained Rate Control for Real-Time Video Streaming
with Bounded Neural Network

Tianchi Huang
†∗
, Rui-Xiao Zhang

∗
, Chao Zhou

‡
, and Lifeng Sun

∗§
∗
Department of Computer Science and Technology, Tsinghua University, Beijing, China

‡
Beijing Kuaishou Technology Co., Ltd., China

†
Department of Computer Science and Technology, Guizhou University, Guizhou, China

{htc17,zhangrx17}@mails.tsinghua.edu.cn

zhouchaoyf@gmail.com, sunlf@mail.tsinghua.edu.cn

ABSTRACT
Rate control is widely adopted during video streaming to provide

both high video qualities and low latency under various network

conditions. However, despite that many work have been proposed,

they fail to tackle one major problem: previous methods determine

a future transmission rate as a single for value which will be used

in an entire time-slot, while real-world network conditions, unlike

lab setup, often suffer from rapid and stochastic changes, resulting

in the failures of predictions.

In this paper, we propose a delay-constrained rate control ap-

proach based on end-to-end deep learning. The proposed model

predicts future bit rate not as a single value, but as possible bit

rate ranges using target delay gradient, with which the transmis-

sion delay is guaranteed. We collect a large scale of real-world live

streaming data to train our model, and as a result, it automatically

learns the correlation between throughput and target delay gradi-

ent. We build a testbed to evaluate our approach. Compared with

the state-of-the-art methods, our approach demonstrates a better

performance in bandwidth utilization. In all considered scenarios,

a range based rate control approach outperforms the one without

range by 19% to 35% in average QoE improvement.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Computing
methodologies→ Neural networks;

KEYWORDS
Real-time Video Streaming, Rate Control, Deep Learning, Delay-

Constrained

ACM Reference Format:
Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng Sun. 2018. Delay-

Constrained Rate Control for Real-Time Video Streaming with Bounded

§ Lifeng Sun is the correspondence author of this paper.

† This work was done by Tianchi Huang during his visit to Tsinghua University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5772-2/18/06. . . $15.00

https://doi.org/10.1145/3210445.3210446

Neural Network. In Proceedings of NOSSDAV’18 , June 12–15, 2018, Amster-
dam, Netherlands , 6 pages.
DOI: https://doi.org/10.1145/3210445.3210446

1 INTRODUCTION
Recent years have seen a rapid increase in the requirements of

real-time video streaming. People publish and watch live video

streaming smoothly from supported applications at any time, in

any where, and under any network environments. Due to the

complicated environment and stochastic property in various net-

work environments, the abundance of rate control approaches

have been proposed to solve the fundamental problem: how to

transport video stream with higher video bitrate and lower la-

tency. For conventional approaches, loss-based approaches[8, 15]

use packet loss to control their session. Moreover, these methods

will cause delay instability.[14]. To solve this problem, delay-based

approaches[9, 16] are proposed to make the end-to-end delay con-

verge to a target value by controlling sending rate. However, the

final delay of these approaches is not constrained [6]. Model-based

approaches[3, 4, 10] aim to design a model [8]to describe the un-

derlying relationships by analyzing observed historical network

status. However, forecasting future network throughput as a single

value seems to be unreliable[13, 18, 19]. Meanwhile, many studies

focus on describing future network throughput as a probability

model[18]. Nevertheless, the fixed rules assumption continues to

struggle with their performance.

In our study, we aim to use a suitable range to describe the future

network conditions instead of using a single value. However, we

cannot quantify the value of “suitable” clearly, and we only know

the aim of “suitable” means “a range can cover the future observa-

tions but not too broad.” Motivated by this, We try to explore the

insight of network congestion via end-to-end deep learning[12].

Starting from this concept, we propose a delay-constrained rate

control approach to constrain end-to-end delay during the session.

Our approach is placed on the receiver. Upon receiving packets

from the sender, the receiver feeds a message containing the next

time sending rate back to the sender. The sender then changes

encoder’s parameters to fit it. Our method consists of two modules,

the delay filter, and the rate estimator. The delay filter is a module

that computes delay gradient required using previously delay gradi-

ent observations. The rate estimator is an end-to-end deep learning

model which can estimate future throughput in a range by using

historical observations. Due to this unique requirements, the rate

estimator consists of two neural networks, the prediction network

(PN) and the error estimation network (EEN). By comparing each

ar
X

iv
:1

80
5.

00
61

9v
1

 [
cs

.M
M

]
 2

 M
ay

 2
01

8

https://doi.org/10.1145/3210445.3210446
https://doi.org/10.1145/3210445.3210446

NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands Huang et al.

candidate architecture, we finally propose the best architecture as

the rate estimator.

After that, we evaluate our rate control approach using a full

system implementation. We collect a large corpus of data from real-

world network environments as a training dataset to optimize it.

We perform several experiments to compare the performance with

previously proposed approaches and evaluate the effectiveness of

range factor. The key contributions of our paper are as follows:

• We design and train a novel neural network architecture to

predict future network status in range instead of a single

value, which can be more conducive to encode video in real-

time video streaming scenario.

• We propose a delay-constrained rate control approach which

outputs as a range to control the session in low latency and

high bitrate under the premise of stability.

2 RELATEDWORK
Rate control methods have been proposed and applied about two

decades. These schemes are mainly classified into three types, loss-

based, delay-based and model-based[17].

Loss-based: Loss-based approaches, for instance, TFRC[8] and

rate adaptation protocol (RAP)[15], have been widely used in TCP

congestion control, which increases bitrate till packet loss occurs.

However, until packet loss occurs, latency also increases, vice versa.

Thus, a bad experience will be given to the users because of the

network jitter like sawtooth. Thus, using packet loss event as the

control signal may cause its throughput to be unstable, especially

in error-prone environments[6].

Delay-based: Some studies have also focused on delay-based

approaches solving the problem of the loss-based approach. Delay-

based approaches try to adjust sending rate to control the trans-

mission delay. According to the way in which these approaches

calculate delay, they can be divided into the end-to-end delay (RTT)

approaches, such as TCP Vegas[2]; one-way delay approaches, for

instance, LEDBAT (Over UDP) and TCP-LP[11, 16], and delay gra-

dient approaches[4]. However, it is hard for the delay metrics to

converge to the target value in some network conditions which its

upper limit has always suffered a wide range of changes, such as

WIFI[6, 14].

Model-based: Model-based approaches are also proposed in

recent years to control congestion such as Rebera[10] and GCC

(Google Congestion Control)[4]. These approaches are aimed to

design a model or a filter to describe the underlying relationships

by previously network status observations. These model forecast fu-

ture throughput as a single value. Nevertheless, due to the unstable

network environments, the single value may not fully describe the

future network status, especially in real-time live video streaming

scenario.

3 SYSTEM OVERVIEW
We start with an overview of real-time live streaming scenario

consisting of a sender and a receiver. Figure 1 illustrates the archi-

tecture. The sender generates the raw live streaming data using

a camera and sends them to the receiver. The receiver receives

the data stream and displays the view. A UDP-based protocol is

Delay-constrained
Rate Controller

ReceiverSender

Packet
Transmission

Packet
Reception

Video
Decoder

Camera Rate
Estimator

Delay
Filter

Video
Encoder

[{b0,q0},…,{bk,qk}]

q’k+1

[q0,…,qk]

{Vf,Ve}
Vf+Ve

Vf-Ve

Vf

Max
Bit rate

Bit rate

Min
Bit rate

Figure 1: Delay-constrained Rate Control System Overview

established to send live video stream in MTU-sized packet
1
and re-

ceives feedback reports from the receiver. In general, our approach

constrains the delay with the methods as follows:

Delay filter, placed on the receiver, which computes future

delay gradient q̂t on demand from historical delay gradient obser-

vations, collected that is fed back to the sender with the aim of

constraining the delay;

Rate estimation with bounded neural network, placed on

the receiver, which computes the sending bitrate range [Vf −Ve ,Vf +
Ve], where Vf is described as a target sending bitrate value, and Ve
is its error between Vf and future observations;

Rate control, placed on the sender, which controls the encoding
bitrate of the video encoder.

4 METHODS
4.1 Delay Filter
Aiming to constrain the transmission delay by controlling the send-

ing rate in the sender, we design a delay filter module that computes

delay gradient on demand denoted as q̂k+1
according to delay gra-

dient sequence [q0,q1, . . . ,qk] of past k time-slots.

At the same time, when we choose the bitrate , we try to optimize

the following formulation, as is shown in Eq.1,

min

[
q2 + ασ 2

]
(1)

where q = 1

k+1
(
k∑
i=1

qi + q̂k+1
), and σ 2 = 1

k+1
(
k∑
i=1

(qi −q)2 + (q̂k+1
−

q)2). Coefficient α is the weight to describe its aggressiveness. T

he first part of this object tries to make the average delay gradient

approximate zero to obtain the constant queuing delay and the

second part is to minimize the variation of the “change” of the delay

gradient, aiming to avoid a fierce change of queuing delay. (Eq. 2).

We will discuss the best α in Section 5.3.1.

q̂k+1
=

α − 1

α + k

k∑
i=1

qi (2)

Delay Gradient Measurement. In real-time video streaming

control scenario, one of vital work for congestion control is to

1
In this paper, the sender delivery of a single 1500-byte (MTU-sized) packet.

Rate Control for Real-time Video Streaming NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands

Ti-1

Ti

ti-1

ti

Ti - Ti-1

ti - ti-1

Packeti-1

Packeti

Sender Receiver

Figure 2: Delay Gradient Measurement

measure one-way delay or queuing delay of the session. However,

the clocks on both sides are not synchronous which makes the

delay measurement unreliable. Thus, delay gradient, defined as the

difference on delay measurement on both side, has been proposed

to measure the latency in unsynchronized clock environment.

Delay gradient (Figure 2) q(ti) is computed as follows[4] (Eq. 3) ,

which is actually used to describe the variety of the queuing delay.

If the network is congested, its delay gradient will be greater than

zero, vice versa. If the delay gradient equals to zero, we can only

infer that network is not congested.

q(ti) =
1

N

N∑
i=1

[(ti − ti−1) − (Ti −Ti−1)] (3)

Where Ti is the time at which the i-th packet has been sent, and

ti is the time at which the i-th packet has been received, and N

represents the packet count in a period. However, in real-world

network environment, delay gradient is often observed along with

burst noise. In our study, we filter the noise by a complementary

filter.

4.2 Rate Estimation with Bounded Neural
Network

In this section, wemainly set up the rate estimatormodule in several

steps. We start by explaining its bounded neural network architec-

ture including inputs, outputs, training methodology, and so forth.

Compared the performance with four architecture candidates, we

then confirm the best neural network architecture of rate estimator.

4.2.1 Bounded Neural Network Architecture. Our motivation is

to build a model which uses previously historical observation to

predict the range of future observations. We model the range as

[Vf −Ve ,Vf +Ve], where Vf is described as a baseline value, and

Ve is its error between the baseline value and future observations.

However, the range will lose its function ifVe is too large. Motivated

by this, We propose a novel neural network architecture, named as

”bounded neural network“, with two neural networks to maximize

the accuracy using single value Vf and to minimize the error value

Ve . We describe its network structure and its training methodol-

ogy. As shown in Figure 3, neural network uses the method which

involves training two neural networks, prediction network (PN)

and error estimation network (EEN). The detailed functionalities of

these networks are explained below.

Inputs After the duration of k time-slots, rate estimator takes

inputs St = (bt ,qt , et+1) to its neural networks. Where bt is a

sequence variable that represents the network throughput measure-

ment for the past time k ; qt is the delay gradient sequence data

of the past time k, which represents the difference of each latency.

Prediction Network

Error Estimation Network

Feature
Extraction

Layer

Inputs
[S0,…,St]

Regression
Layer

Regression
Layer

Vf

St+1

Ve

Outputs
[Vf + Ve,Vf - Ve]

|St+1-Vf|

ANPE

MSEUpdate

Update

Figure 3: Neural Network Architecture

Additionally, et+1 is the delay gradient on demand for the next time

t + 1, which is computed by the delay filter.

Prediction Network Prediction network (PN) aims to forecast

the baseline value of future observations by using historical time

series observations. PN uses a neural network to make logistic

regression. Furthermore, the neural network is divided into two

layers, feature extraction layer, and linear regression layer. The

feature extraction layer is used to extract features from inputs, and

the linear regression layer is proposed to estimate the outputs with

a fully connected layer. In particular, the feature extraction layer is

also the inputs of EEN. For each S in inputs, it is permitted to be

multidimensional. The outputs St+1 of PN is a linear value that falls

into (−∞,+∞), representing the predicted value for the time t + 1,

which is also the baseline value of the proposed neural network.

Error Estimation Network The Error Estimation Network

(EEN) is used to estimate the absolute value that PN generates.

The inputs of EEN is the outputs of feature extraction layer in PN.

Same as PN’s outputs, a linear value is proposed to describe the

error in PN, which is the variable value of the proposed neural

network.

Outputs Upon receiving St , rate estimator needs to predict the

value corresponding to the throughput St+1 for the given delay

gradient et+1 of next time t + 1. In our model, the value is repre-

sented by a range from minimum value to maximum value which

is inflected by the output of PN and EEN, respectively.

4.2.2 Training Methodology. We now describe how to train and

optimize the neural network architecture. The pseudo-code for

training methodology is given in Algorithm 1. PN and EEN update

Algorithm 1 Neural Network Gradient Training Algorithm

Input: Historical observations [S0, S1, . . . , St],
Prediction observations St+1, Learning rates α , β

1: procedure Update Gradient([S0, S1, . . . , St], St+1)

2: Ŝt+1 ← PN .Predict([S0, S1, . . . , St]);
3: Losspred ← ANPE(St+1, Ŝt+1);
4: Et+1 ←

��Ŝt+1 − St+1

��
; ▷ ground truth of EEN

5: Hpred ← PN .FeatureExtractionLayer ();
6: Êt+1 ← EEN .Predict(Hpred);
7: Losserr ←

��Et+1 − Êt+1

��2
;

8: PN ← PN − α∇predLosspred
9: EEN ← EEN − β∇errLosserr

NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands Huang et al.

Input

Vf

Input Input Input

concat 1D-CNN

GRUFC

Vf Vf
VfVe

Ve Ve
Ve

A B C D

Figure 4: Architecture Overview For Each Candidate

their gradient respectively during the training process. After receiv-

ing S0...t , PN predicts the future observation Ŝt+1. By comparing

the ground truth value St , we can optimize PN. To evaluate the

difference between value predicted and the ground truth, we use

absolute normalized prediction error (ANPE), which is described in

Eq.5. After calculating ANPE, PN then updates its gradients for min-

imizing ANPE by using back propagation method. While updating

the gradient of PN, the absolute error between value predicted and

true value (Eq.4), which is denoted as Et , will be used as a ground

truth of EEN. After that, EEN will use mean square error (MSE) to

update its network gradient.

ANPE(y, ŷ) =
����y − ŷŷ

���� (4)

Et = |yt − ŷt | (5)

4.2.3 Best Architecture Selection. To select the best architec-

ture, we derive four different deep neural network architectures

for the rate estimator as depicted in Figure 4, named as Arch-A to

Arch-D, respectively. Arch-A considers network variable features

as a common feature, so we only use two fully-connected layers

to design its architecture. Arch-B is similar except that some of

network metrics are assumed as a signal input, and more internal

and hidden features can be shown by convolution neural network

(CNN). The next two architectures consider the temporal properties.

The third design (Arch-C) uses GRU, a well-known recurrent neural

network (RNN), to extract the hidden features of time series. The

last design (Arch-D) is a hybrid neural network architecture which

combines both Arch-A and Arch-C with a merged layer. We test

and compare the prediction accuracy with four architectures for

selecting the best one. We collect a small scale of network status as

the dataset from real-world network environment for training and

validation. In detail, we leverage ANPE (Eq.5), error estimation rate

(EER) and coverage rate (CR) to analyze the estimation accuracy of

each architecture. EER is defined as follows w.r.t. root mean square

error (RMSE) (Eq.6).

EER = 1.0 −

√√
1

n

n∑
i=1

��Êi − Ei ��2 (6)

CR =
1

n

n∑
i=1

Pi ,where Pi =

{
1 ŷi ∈ [Vf −Ve ,Vf +Ve]
0 ŷi < [Vf −Ve ,Vf +Ve]

(7)

Where Êi represents the estimated throughput, Ei is the future
throughput observed, and n is the size of test dataset. CR is em-

ployed in a ratio to estimate the coverage of throughput range

Architecture ANPE EER CR %

Arch-A 0.41 0.14 100.0

Arch-B 0.32 0.98 94.0

Arch-C 0.51 0.99 92.3

Arch-D 0.29 0.99 95.2
Table 1: Results for Bounded Neural Network Architectures

during the session (Eq. 7). After training and testing, the final re-

sults are shown in Table 1. In short, by comparing integrated among

ANPE from PN, EER from EEN and CR from range predicted of

each network, we summarize their performance as follows:

• Despite the outstanding performance of CR by using Arch-A,

the EERmetric in a small value indicates that its error estima-

tion network has not been converged completely. Therefore,

ARCH-A cannot adequately predict the error range.

• Comparing the overall performance with Arch-B, Arch-C,

and Arch-D, we find that Arch-D has better overall perfor-

mance.

Finally, we choose Arch-D, a hybrid neural network to implement

the neural network in rate estimator.

4.2.4 Implementation. In conclusion, rate estimator passes k =
8 past throughput to the feature extraction layer, which consists

of a convolution network (CNN) and a recurrent network.The con-

volution network passes k = 8 past throughput to the convolution

layer with 64 filters, each of size 3 with stride 1. Past delay gra-

dient measurement is passed to another 1D-CNN with the same

shape. Results from these layers are then aggregated with other

inputs in a hidden layer with 64 neurons, which can be regarded

as the hyper feature of inputs. The recurrent network passes k = 8

throughput and delay gradient measurement to a gated recurrent

unit(GRU) layer with 64 hidden units, then the states of that layer

are passed to another GRU layer with the same hidden units. A

hidden layer is defined as the hidden output of the last GRU layer.

These two hidden layers are finally merged into one layer, which

is the inputs of EEN. Then the neural network is divided into two

parts. Similarly, both parts use the final output as a linear neuron,

but their duties are quite different. For PN, it updates the gradient

from the network inputs to the prediction outputs. For EEN, it only

updates the gradient from the extracting layer to error estimation

outputs.
2
During the training process, learning rates α , β for PN

and EEN are configured to be 0.000625 and 0.001 respectively. In

our experiment, we use single GPU GTX1080Ti to train our model,

and our neural network converges within 100 epochs. Finally, we

use TensorFlow[1] to implement this architecture, in particular, we

leveraged the TFLearn deep learning library’s TensorFlow API to

declare PN and EEN.

4.3 Rate Control
We now consider how to combine the outputs of the rate estimator

with the video encoder parameters. The video encoder requires a

smooth bitrate range rather than a bitrate value, so we set video

encoder type as constrained variable bit rate (CVBR) . In this type,

encoder needs bitratemax ,bitratemin ,bitrate as inputs, so after

receiving the feedback message which contains the Vf ,Ve , we set

2
Details of the neural network architecture can be found at

https://github.com/godka/bounded-neural-network.

https://github.com/godka/bounded-neural-network

Rate Control for Real-time Video Streaming NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands

Figure 5: Comparing our method with several proposed
methods, results are collected under different loss ratio in
the simulation environments.

bitratemin = Vf − Ve ,bitrate = Vf ,bitratemax = Vf + Ve . Al-
though the bitrate range can be controlled by changing α in the

delay filter module. In practice, we also use amoving average thresh-

old to protect the encoder from switching frequently in stationary

network environments.

5 EXPERIMENTS AND RESULTS
In this section, we establish a real-time video streaming system to

experimentally evaluate our rate control method. We compare our

approach with current widely used methods on a wide range of

network conditions. Our results answer the following questions:

(1) What is the best coefficient α in our scenario?

(2) By comparison of different schemes, how much impact does

range have on the results?

(3) Compared with previously proposed schemes, how does

our approach perform on the throughput, latency, and their

stability performance?

5.1 Dataset
To train rate estimator module, we collect a large number of net-

work status dataset. For this reason, we use a proprietary dataset

of packet-level live-cast session status from all platforms APPs

of Kuaishou collected in January 2018.
3
The dataset consists of

over 14 million sessions from 47,000 users covering 50 thousand

unique sessions over three days in January 2018. In each session, a

receiver set up a KTP (Kuaishou Transport Protocol) connection

with a sender and pull video stream. Within each session, we collect

network status of the stream in packet-level including send time,

receive time, receive packet size, and session id.

5.2 Simulation Environment Experiments
In this experiment, we aim to evaluate the average throughput

and performance stability of several state-of-the-art rate control

methods in some simulated network environments, and by using

Network Emulator for Windows Toolkit, we can simulate different

environments. After running five minutes for each approach, we

collect the average throughput from the receiver. We compare their

performance under different loss ratio. In this experiment, the per-

formance is compared with TFRC, a hybrid loss-based approach[8],

Cubic[7], a conventional loss-based approach and Google Conges-

tion Control[4], a hybrid delay-based and loss-based approach that

3
Kuaishou is a leading platform in China which has over 700 million users worldwide,

and millions of original videos are published on it every day.

α BT (%) σ (T) L̄(ms) σ (L)
0 83.3 0.0888 10.7279 0.6904

0.6 84.3 0.0868 10.6047 0.7126

1.2 84.7 0.0840 10.4435 0.2868
1.8 83.2 0.0832 10.7916 0.6046

2.4 82.8 0.0867 10.5954 0.5552

Table 2: Comparing performance of the delay filter that is
initialed by different coefficient α with throughput and la-
tency measurement on the network emulator. Results are
collected under the fixed bandwidth = 4Mbps, loss rate = 10%
and latency = 100ms respectively.

is used in WebRTC. Normalized throughput results have been illus-

trated in Figure 5, which has demonstrated that the performance

of our proposed method outperforms the widely used approaches,

with improvements in average packet loss and latency of 10% to 83%,

especially in error-prone environments, when packet loss bursts,

our approach remains high throughput and stability.

5.3 Real Testbed Experiments
Starting from scratch, as depicted in Figure 1 we set up a testbed

where the sender uploads live stream captured by the camera to

the receiver via UDP protocol. Our rate control approach is set

up on the receiver. The sender has two modules: one is a video

encoder which encodes video as H.265 baseline profile; the other is

the packet transmission module that transfer the stream encoded

to the receiver. The receiver is composed of two main parts, packet

reception module, which receives video streaming from the sender

and measures its network status, and rate controller, which uses

hybrid neural network architecture to constrain the end-end delay.

With theoretical analysis and recent experiments, we set time-slot

t to 1.0s, and target delay is equal to the latency that is measured

from the first time-slot.
4
The evaluation of rate control algorithm

is split into three experiments.

5.3.1 Comparison Of Different Coefficient α . In this part, we de-

sign an experiment to confirm the best coefficient α to optimize the

delay filter module. We compare throughput and latency with differ-

ent α in the same network environment. Two representative exper-

iments are designed to evaluate our proposed approach. The result

is shown in Table2, which includes bandwidth utilization and stan-

dard deviation of throughput (BT ,σ (T)) and latency (L̄,σ (L)) by the
delay filter. The delay filter is started with α ∈ {0, 0.6, 1.2, 1.8.2.4}.
In our experiment, we set α as 1.2 to estimate next delay gradient

on demand.

USI =2.15 × log(bitrate)−
1.55 × log(jitter) − 0.36 × RTT (8)

5.3.2 Effectiveness of Range Factor. We evaluate the effective-

ness of our range. We compare our method with the ones with fixed

range and the one without range, using the Users Satisfaction Index

(USI) [5] defined as the QoE metric (Eq.8). Where the bitrate is the

average video bitrate, jitter is the delay gradient, and RTT is the

round-trip time between the sender and the receiver. We use two

fixed range methods as baselines, which are 100Kbps and 500Kbps.

The result is plotted at Figure 6. From the result, we can see that

4
In this paper, we focus on how to get high video bitrate and bandwidth utilization

with delay-constrained instead of estimating target delay.

NOSSDAV’18, June 12–15, 2018, Amsterdam, Netherlands Huang et al.

Figure 6: Comparing with the USI score of different ranges,
results are collected under various network conditions, such
as Wi-Fi, LTE, wired, and “very bad network”.

Figure 7: Comparing the accuracy of neural network using
range with the one without using range, the result shows
that estimating throughput in range can be more conducive
to describe the future observations.

dynamic range method from EEN performs better than any other

range schemes. In particular, our approach using range works well

in “very bad network”
5
, and “Wi-Fi” environments, which improves

35% and 19% in USI respectively. The output of our rate control

approach is shown in Figure 7, and comparing with the one without

using range, our method is more conductive.

6 CONCLUSION
In this paper, we focus on rate control method in the real-time

live streaming scenario. Previously proposed approaches are all

devoted to finding a single precise prediction value which can not

well adapt to the stochastic dynamics of network conditions. To

solve this open issue, we describe future observations as a range

instead of a value. In this paper, we design a delay-constrained rate

control approach based on end-end deep learning. The proposed

method predicts a future throughput range with both previously

network status and future delay required. To optimize its accuracy

in different network characteristics, we train this on a large number

of real-time video streaming data. In the experiment, our approach

is deployed on the receiver, and by comparing with the state-of-

the-art methods and the method without using range, our method

all shows a better performance in bandwidth utilization. The study

5
Very bad network is a network profile in Network Link Conditioner (a tool which is

provided by Xcode), and describes the network status under the bandwidth = 1Mbps,

Loss rate = 10% and latency = 500ms.

also concludes that predicting an optimal range performs better

than predicting a value.

Additional research may focus not only on the real-time live

streaming scenario but also on any time-series forecasting environ-

ments.

Acknowledgments. We thank the anonymous NOSSDAV review-

ers for their valuable feedback. This work was done in close coop-

eration with Kuaishou Technology Co., Ltd., and was part-funded

by the National Natural Science Foundation of China under Grant

No. 61472204, 61521002, Beijing Key Laboratory of Networked Mul-

timedia (Z161100005016051).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265–283.

[2] Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to end conges-

tion avoidance on a global Internet. IEEE Journal on selected Areas in communica-
tions 13, 8 (1995), 1465–1480.

[3] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2016. BBR: Congestion-based congestion control. Queue 14, 5
(2016), 50.

[4] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016.

Analysis and design of the google congestion control for web real-time communi-

cation (WebRTC). In Proceedings of the 7th International Conference on Multimedia
Systems. ACM, 13.

[5] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. 2006. Quan-

tifying Skype user satisfaction. In ACM SIGCOMM Computer Communication
Review, Vol. 36. ACM, 399–410.

[6] Yufeng Geng, Xinggong Zhang, Tong Niu, Chao Zhou, and Zongming Guo.

2015. Delay-constrained rate control for real-time video streaming over wireless

networks. In Visual Communications and Image Processing (VCIP), 2015. IEEE,
1–4.

[7] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly

high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),

64–74.

[8] Mark Handley, Sally Floyd, Jitendra Padhye, and Jörg Widmer. 2002. TCP friendly
rate control (TFRC): Protocol specification. Technical Report.

[9] David Andrew Hayes and David Ros. [n. d.]. Delay-based congestion control for

low latency.

[10] Eymen Kurdoglu, Yong Liu, YaoWang, Yongfang Shi, ChenChen Gu, and Jing Lyu.

2016. Real-time bandwidth prediction and rate adaptation for video calls over

cellular networks. In Proceedings of the 7th International Conference on Multimedia
Systems. ACM, 12.

[11] Aleksandar Kuzmanovic and Edward W Knightly. 2006. TCP-LP: low-priority

service via end-point congestion control. IEEE/ACM Transactions on Networking
(TON) 14, 4 (2006), 739–752.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[13] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive

video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 197–210.

[14] K. Nihei, H. Yoshida, N. Kai, D. Kanetomo, and K. Satoda. 2017. QoE max-

imizing bitrate control for live video streaming on a mobile uplink. In 2017
14th International Conference on Telecommunications (ConTEL). 91–98. https:

//doi.org/10.23919/ConTEL.2017.8000044

[15] R. Rejaie, M. Handley, and D. Estrin. 1999. RAP: An end-to-end rate-based

congestion control mechanism for realtime streams in the Internet. In INFOCOM
’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, Vol. 3. 1337–1345 vol.3. https://doi.org/10.1109/

INFCOM.1999.752152

[16] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010. LEDBAT:

The New BitTorrent Congestion Control Protocol.. In ICCCN. 1–6.
[17] Dapeng Wu, Yiwei Thoms Hou, and Ya-Qin Zhang. 2000. Transporting real-time

video over the Internet: Challenges and approaches. Proc. IEEE 88, 12 (2000),

1855–1877.

[18] Hiroshi Yoshida, Kozo Satoda, and Tutomu Murase. 2013. Constructing sto-

chastic model of TCP throughput on basis of stationarity analysis. In Global
Communications Conference (GLOBECOM), 2013 IEEE. IEEE, 1544–1550.

[19] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik

Jana, Xin Jin, Jennifer Rexford, and Rakesh K Sinha. 2015. Can accurate predic-

tions improve video streaming in cellular networks?. In Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications. ACM,

57–62.

https://doi.org/10.23919/ConTEL.2017.8000044
https://doi.org/10.23919/ConTEL.2017.8000044
https://doi.org/10.1109/INFCOM.1999.752152
https://doi.org/10.1109/INFCOM.1999.752152

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Methods
	4.1 Delay Filter
	4.2 Rate Estimation with Bounded Neural Network
	4.3 Rate Control

	5 Experiments and Results
	5.1 Dataset
	5.2 Simulation Environment Experiments
	5.3 Real Testbed Experiments

	6 Conclusion
	References

